
MATLAB® 7
Function Reference: A - E

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
MATLAB Function Reference
© COPYRIGHT 1984–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
December 1996 First printing For MATLAB 5.0 (Release 8)
June 1997 Online only Revised for MATLAB 5.1 (Release 9)
October 1997 Online only Revised for MATLAB 5.2 (Release 10)
January 1999 Online only Revised for MATLAB 5.3 (Release 11)
June 1999 Second printing For MATLAB 5.3 (Release 11)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)
June 2004 Online only Revised for 7.0 (Release 14)
September 2006 Online only Revised for 7.3 (Release 2006b)
March 2007 Online only Revised for 7.4 (Release 2007a)
September 2007 Online only Revised for Version 7.5 (Release 2007b)
March 2008 Online only Revised for Version 7.6 (Release 2008a)
October 2008 Online only Revised for Version 7.7 (Release 2008b)

Contents

Function Reference
1

Desktop Tools and Development Environment 1-3
Startup and Shutdown . 1-3
Command Window and History . 1-4
Help for Using MATLAB . 1-5
Workspace, Search Path, and File Operations 1-6
Programming Tools . 1-8
System . 1-11

Mathematics . 1-13
Arrays and Matrices . 1-14
Linear Algebra . 1-20
Elementary Math . 1-24
Polynomials . 1-28
Interpolation and Computational Geometry 1-29
Cartesian Coordinate System Conversion 1-31
Nonlinear Numerical Methods . 1-32
Specialized Math . 1-35
Sparse Matrices . 1-36
Math Constants . 1-40

Data Analysis . 1-41
Basic Operations . 1-41
Descriptive Statistics . 1-41
Filtering and Convolution . 1-42
Interpolation and Regression . 1-42
Fourier Transforms . 1-43
Derivatives and Integrals . 1-43
Time Series Objects . 1-44
Time Series Collections . 1-47

Programming and Data Types . 1-49
Data Types . 1-49
Data Type Conversion . 1-57
Operators and Special Characters . 1-59
Strings . 1-61

v

Bit-Wise Operations . 1-64
Logical Operations . 1-65
Relational Operations . 1-66
Set Operations . 1-66
Date and Time Operations . 1-66
Programming in MATLAB . 1-67

Object-Oriented Programming . 1-75
Classes and Objects . 1-75
Handle Classes . 1-76
Events and Listeners . 1-77
Meta-Classes . 1-77

File I/O . 1-79
File Name Construction . 1-79
File Opening, Loading, and Saving 1-80
Memory Mapping . 1-80
Low-Level File I/O . 1-80
Text Files . 1-81
XML Documents . 1-82
Spreadsheets . 1-82
Scientific Data . 1-83
Audio and Audio/Video . 1-86
Images . 1-88
Internet Exchange . 1-88

Graphics . 1-90
Basic Plots and Graphs . 1-90
Plotting Tools . 1-91
Annotating Plots . 1-91
Specialized Plotting . 1-92
Bit-Mapped Images . 1-96
Printing . 1-96
Handle Graphics . 1-97

3-D Visualization . 1-101
Surface and Mesh Plots . 1-101
View Control . 1-103
Lighting . 1-105
Transparency . 1-105
Volume Visualization . 1-106

vi Contents

GUI Development . 1-108
Predefined Dialog Boxes . 1-108
User Interface Deployment . 1-109
User Interface Development . 1-109
User Interface Objects . 1-110
Objects from Callbacks . 1-111
GUI Utilities . 1-111
Program Execution . 1-112

External Interfaces . 1-113
Dynamic Link Libraries . 1-113
Java . 1-114
Component Object Model and ActiveX 1-115
Web Services . 1-117
Serial Port Devices . 1-118

Functions — Alphabetical List

2

Index

vii

viii Contents

1

Function Reference

Desktop Tools and Development
Environment (p. 1-3)

Startup, Command Window, help,
editing and debugging, tuning, other
general functions

Mathematics (p. 1-13) Arrays and matrices, linear algebra,
other areas of mathematics

Data Analysis (p. 1-41) Basic data operations, descriptive
statistics, covariance and correlation,
filtering and convolution, numerical
derivatives and integrals, Fourier
transforms, time series analysis

Programming and Data Types
(p. 1-49)

Function/expression evaluation,
program control, function handles,
object oriented programming, error
handling, operators, data types,
dates and times, timers

Object-Oriented Programming
(p. 1-75)

Functions for working with classes
and objects

File I/O (p. 1-79) General and low-level file I/O, plus
specific file formats, like audio,
spreadsheet, HDF, images

Graphics (p. 1-90) Line plots, annotating graphs,
specialized plots, images, printing,
Handle Graphics

3-D Visualization (p. 1-101) Surface and mesh plots, view control,
lighting and transparency, volume
visualization

1 Function Reference

GUI Development (p. 1-108) GUIDE, programming graphical
user interfaces

External Interfaces (p. 1-113) Interfaces to DLLs, Java, COM and
ActiveX, Web services, and serial
port devices, and C and Fortran
routines

1-2

Desktop Tools and Development Environment

Desktop Tools and Development Environment

Startup and Shutdown (p. 1-3) Startup and shutdown options,
preferences

Command Window and History
(p. 1-4)

Control Command Window and
History, enter statements and run
functions

Help for Using MATLAB (p. 1-5) Command line help, online
documentation in the Help browser,
demos

Workspace, Search Path, and File
Operations (p. 1-6)

Work with files, MATLAB search
path, manage variables

Programming Tools (p. 1-8) Edit and debug M-files, improve
performance, source control, publish
results

System (p. 1-11) Identify current computer, license,
product version, and more

Startup and Shutdown

exit Terminate MATLAB® program
(same as quit)

finish Termination M-file for MATLAB
program

matlab (UNIX) Start MATLAB program (UNIX®
platforms)

matlab (Windows) Start MATLAB program (Windows®
platforms)

matlabrc Startup M-file for MATLAB program
prefdir Directory containing preferences,

history, and layout files
preferences Open Preferences dialog box
quit Terminate MATLAB program

1-3

1 Function Reference

startup Startup M-file for user-defined
options

userpath View or change user portion of
search path

Command Window and History

clc Clear Command Window
commandhistory Open Command History window, or

select it if already open
commandwindow Open Command Window, or select

it if already open
diary Save session to file
dos Execute DOS command and return

result
format Set display format for output
home Move cursor to upper-left corner of

Command Window
matlabcolon (matlab:) Run specified function via hyperlink
more Control paged output for Command

Window
perl Call Perl script using appropriate

operating system executable
system Execute operating system command

and return result
unix Execute UNIX command and return

result

1-4

Desktop Tools and Development Environment

Help for Using MATLAB

builddocsearchdb Build searchable documentation
database

demo Access product demos via Help
browser

doc Reference page in Help browser
docopt Web browser for UNIX platforms
docsearch Open Help browser and search for

specified term
echodemo Run M-file demo step-by-step in

Command Window
help Help for functions in Command

Window
helpbrowser Open Help browser to access all

online documentation and demos
helpwin Provide access to M-file help for all

functions
info Information about contacting The

MathWorks
lookfor Search for keyword in all help

entries
playshow Run M-file demo (deprecated; use

echodemo instead)
support Open MathWorks Technical Support

Web page
web Open Web site or file in Web browser

or Help browser
whatsnew Release Notes for MathWorks™

products

1-5

1 Function Reference

Workspace, Search Path, and File Operations

Workspace (p. 1-6) Manage variables
Search Path (p. 1-6) View and change MATLAB search

path
File Operations (p. 1-7) View and change files and directories

Workspace

assignin Assign value to variable in specified
workspace

clear Remove items from workspace,
freeing up system memory

evalin Execute MATLAB expression in
specified workspace

exist Check existence of variable, function,
directory, or Java™ programming
language class

openvar Open workspace variable in Variable
Editor or other tool for graphical
editing

pack Consolidate workspace memory
uiimport Open Import Wizard to import data
which Locate functions and files
who, whos List variables in workspace
workspace Open Workspace browser to manage

workspace

Search Path

addpath Add directories to search path
genpath Generate path string

1-6

Desktop Tools and Development Environment

partialpath Partial pathname description
path View or change search path
path2rc Save current search path to

pathdef.m file
pathsep Path separator for current platform
pathtool Open Set Path dialog box to view

and change search path
restoredefaultpath Restore default search path
rmpath Remove directories from search path
savepath Save current search path
userpath View or change user portion of

search path

File Operations
See also “File I/O” on page 1-79 functions.

cd Change working directory
copyfile Copy file or directory
delete Remove files or graphics objects
dir Directory listing
exist Check existence of variable, function,

directory, or Java programming
language class

fileattrib Set or get attributes of file or
directory

filebrowser Current Directory browser
isdir Determine whether input is a

directory
lookfor Search for keyword in all help

entries

1-7

1 Function Reference

ls Directory contents
matlabroot Root directory
mkdir Make new directory
movefile Move file or directory
pwd Identify current directory
recycle Set option to move deleted files to

recycle folder
rehash Refresh function and file system

path caches
rmdir Remove directory
toolboxdir Root directory for specified toolbox
type Display contents of file
visdiff Compare two text files, MAT-Files,

or binary files
what List MATLAB files in current

directory
which Locate functions and files

Programming Tools

M-File Editing and Debugging
(p. 1-9)

Edit and debug M-files

M-File Performance (p. 1-9) Improve performance and find
potential problems in M-files

Source Control (p. 1-10) Interface MATLAB with source
control system

Publishing (p. 1-10) Publish M-file code and results

1-8

Desktop Tools and Development Environment

M-File Editing and Debugging

clipboard Copy and paste strings to and from
system clipboard

datatipinfo Produce short description of input
variable

dbclear Clear breakpoints
dbcont Resume execution
dbdown Change local workspace context

when in debug mode
dbquit Quit debug mode
dbstack Function call stack
dbstatus List all breakpoints
dbstep Execute one or more lines from

current breakpoint
dbstop Set breakpoints
dbtype List M-file with line numbers
dbup Change local workspace context
debug List M-file debugging functions
edit Edit or create M-file
keyboard Input from keyboard

M-File Performance

bench MATLAB Benchmark
mlint Check M-files for possible problems
mlintrpt Run mlint for file or directory,

reporting results in browser
pack Consolidate workspace memory
profile Profile execution time for function

1-9

1 Function Reference

profsave Save profile report in HTML format
rehash Refresh function and file system

path caches
sparse Create sparse matrix
zeros Create array of all zeros

Source Control

checkin Check files into a source control
system (UNIX platforms)

checkout Check files out of a source control
system (UNIX platforms)

cmopts Name of source control system
customverctrl Allow custom source control system

(UNIX platforms)
undocheckout Undo previous checkout from source

control system (UNIX platforms)
verctrl Source control actions (Windows

platforms)

Publishing

grabcode MATLAB code from M-files
published to HTML

notebook Open M-book in Microsoft® Word
software (on Microsoft Windows
platforms)

publish Publish M-file containing cells,
saving output to a file of specified
type

snapnow Force snapshot of image for inclusion
in published document

1-10

Desktop Tools and Development Environment

System

Operating System Interface (p. 1-11) Exchange operating system
information and commands with
MATLAB

MATLAB Version and License
(p. 1-12)

Information about MATLAB version
and license

Operating System Interface

clipboard Copy and paste strings to and from
system clipboard

computer Information about computer on
which MATLAB software is running

dos Execute DOS command and return
result

getenv Environment variable
hostid Server host identification number
maxNumCompThreads Controls maximum number of

computational threads
perl Call Perl script using appropriate

operating system executable
setenv Set environment variable
system Execute operating system command

and return result
unix Execute UNIX command and return

result
winqueryreg Item from Windows registry

1-11

1 Function Reference

MATLAB Version and License

ismac Determine if version is for Mac OS®
X platform

ispc Determine if version is for Windows
(PC) platform

isstudent Determine if version is Student
Version

isunix Determine if version is for UNIX
platform.

javachk Generate error message based on
Sun™ Java feature support

license Return license number or perform
licensing task

prefdir Directory containing preferences,
history, and layout files

usejava Determine whether Sun Java feature
is supported in MATLAB software

ver Version information for MathWorks
products

verLessThan Compare toolbox version to specified
version string

version Version number for the MATLAB
software

1-12

Mathematics

Mathematics

Arrays and Matrices (p. 1-14) Basic array operators and
operations, creation of elementary
and specialized arrays and matrices

Linear Algebra (p. 1-20) Matrix analysis, linear equations,
eigenvalues, singular values,
logarithms, exponentials,
factorization

Elementary Math (p. 1-24) Trigonometry, exponentials and
logarithms, complex values,
rounding, remainders, discrete math

Polynomials (p. 1-28) Multiplication, division, evaluation,
roots, derivatives, integration,
eigenvalue problem, curve fitting,
partial fraction expansion

Interpolation and Computational
Geometry (p. 1-29)

Interpolation, Delaunay
triangulation and tessellation,
convex hulls, Voronoi diagrams,
domain generation

Cartesian Coordinate System
Conversion (p. 1-31)

Conversions between Cartesian and
polar or spherical coordinates

Nonlinear Numerical Methods
(p. 1-32)

Differential equations, optimization,
integration

Specialized Math (p. 1-35) Airy, Bessel, Jacobi, Legendre, beta,
elliptic, error, exponential integral,
gamma functions

Sparse Matrices (p. 1-36) Elementary sparse matrices,
operations, reordering algorithms,
linear algebra, iterative methods,
tree operations

Math Constants (p. 1-40) Pi, imaginary unit, infinity,
Not-a-Number, largest and smallest
positive floating point numbers,
floating point relative accuracy

1-13

1 Function Reference

Arrays and Matrices

Basic Information (p. 1-14) Display array contents, get array
information, determine array type

Operators (p. 1-15) Arithmetic operators
Elementary Matrices and Arrays
(p. 1-16)

Create elementary arrays of different
types, generate arrays for plotting,
array indexing, etc.

Array Operations (p. 1-17) Operate on array content, apply
function to each array element, find
cumulative product or sum, etc.

Array Manipulation (p. 1-18) Create, sort, rotate, permute,
reshape, and shift array contents

Specialized Matrices (p. 1-19) Create Hadamard, Companion,
Hankel, Vandermonde, Pascal
matrices, etc.

Basic Information

disp Display text or array
display Display text or array (overloaded

method)
isempty Determine whether array is empty
isequal Test arrays for equality
isequalwithequalnans Test arrays for equality, treating

NaNs as equal
isfinite Array elements that are finite
isfloat Determine whether input is

floating-point array
isinf Array elements that are infinite
isinteger Determine whether input is integer

array

1-14

Mathematics

islogical Determine whether input is logical
array

isnan Array elements that are NaN
isnumeric Determine whether input is numeric

array
isscalar Determine whether input is scalar
issparse Determine whether input is sparse
isvector Determine whether input is vector
length Length of vector
max Largest elements in array
min Smallest elements in array
ndims Number of array dimensions
numel Number of elements in array or

subscripted array expression
size Array dimensions

Operators

+ Addition
+ Unary plus
- Subtraction
- Unary minus
* Matrix multiplication
^ Matrix power
\ Backslash or left matrix divide
/ Slash or right matrix divide
’ Transpose
.’ Nonconjugated transpose
.* Array multiplication (element-wise)

1-15

1 Function Reference

.^ Array power (element-wise)

.\ Left array divide (element-wise)

./ Right array divide (element-wise)

Elementary Matrices and Arrays

blkdiag Construct block diagonal matrix
from input arguments

create (RandStream) Create random number streams
diag Diagonal matrices and diagonals of

matrix
eye Identity matrix
freqspace Frequency spacing for frequency

response
get (RandStream) Random stream properties
getDefaultStream (RandStream) Default random number stream
ind2sub Subscripts from linear index
linspace Generate linearly spaced vectors
list (RandStream) Random number generator

algorithms
logspace Generate logarithmically spaced

vectors
meshgrid Generate X and Y arrays for 3-D plots
ndgrid Generate arrays for N-D functions

and interpolation
ones Create array of all ones
rand Uniformly distributed

pseudorandom numbers
rand (RandStream) Uniformly distributed random

numbers

1-16

Mathematics

randi Uniformly distributed
pseudorandom integers

randi (RandStream) Uniformly distributed
pseudorandom integers

randn Normally distributed pseudorandom
numbers

randn (RandStream) Normally distributed pseudorandom
numbers

randperm (RandStream)

RandStream Random number stream
RandStream (RandStream) Random number stream
set (RandStream) Set a random stream property
setDefaultStream (RandStream) Set the default random number

stream
sub2ind Single index from subscripts
zeros Create array of all zeros

Array Operations

See “Linear Algebra” on page 1-20 and “Elementary Math” on page 1-24 for
other array operations.

accumarray Construct array with accumulation
arrayfun Apply function to each element of

array
bsxfun Apply element-by-element binary

operation to two arrays with
singleton expansion enabled

cast Cast variable to different data type
cross Vector cross product
cumprod Cumulative product

1-17

1 Function Reference

cumsum Cumulative sum
dot Vector dot product
idivide Integer division with rounding

option
kron Kronecker tensor product
prod Product of array elements
sum Sum of array elements
tril Lower triangular part of matrix
triu Upper triangular part of matrix

Array Manipulation

blkdiag Construct block diagonal matrix
from input arguments

cat Concatenate arrays along specified
dimension

circshift Shift array circularly
diag Diagonal matrices and diagonals of

matrix
end Terminate block of code, or indicate

last array index
flipdim Flip array along specified dimension
fliplr Flip matrix left to right
flipud Flip matrix up to down
horzcat Concatenate arrays horizontally
inline Construct inline object
ipermute Inverse permute dimensions of N-D

array
permute Rearrange dimensions of N-D array
repmat Replicate and tile array

1-18

Mathematics

reshape Reshape array
rot90 Rotate matrix 90 degrees
shiftdim Shift dimensions
sort Sort array elements in ascending or

descending order
sortrows Sort rows in ascending order
squeeze Remove singleton dimensions
vectorize Vectorize expression
vertcat Concatenate arrays vertically

Specialized Matrices

compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of Hilbert matrix
magic Magic square
pascal Pascal matrix
rosser Classic symmetric eigenvalue test

problem
toeplitz Toeplitz matrix
vander Vandermonde matrix
wilkinson Wilkinson’s eigenvalue test matrix

1-19

1 Function Reference

Linear Algebra

Matrix Analysis (p. 1-20) Compute norm, rank, determinant,
condition number, etc.

Linear Equations (p. 1-21) Solve linear systems, least
squares, LU factorization, Cholesky
factorization, etc.

Eigenvalues and Singular Values
(p. 1-22)

Eigenvalues, eigenvectors, Schur
decomposition, Hessenburg
matrices, etc.

Matrix Logarithms and Exponentials
(p. 1-23)

Matrix logarithms, exponentials,
square root

Factorization (p. 1-23) Cholesky, LU, and QR factorizations,
diagonal forms, singular value
decomposition

Matrix Analysis

cond Condition number with respect to
inversion

condeig Condition number with respect to
eigenvalues

det Matrix determinant
norm Vector and matrix norms
normest 2-norm estimate
null Null space
orth Range space of matrix
rank Rank of matrix
rcond Matrix reciprocal condition number

estimate
rref Reduced row echelon form

1-20

Mathematics

subspace Angle between two subspaces
trace Sum of diagonal elements

Linear Equations

chol Cholesky factorization
cholinc Sparse incomplete Cholesky and

Cholesky-Infinity factorizations
cond Condition number with respect to

inversion
condest 1-norm condition number estimate
funm Evaluate general matrix function
ilu Sparse incomplete LU factorization
inv Matrix inverse
linsolve Solve linear system of equations
lscov Least-squares solution in presence

of known covariance
lsqnonneg Solve nonnegative least-squares

constraints problem
lu LU matrix factorization
luinc Sparse incomplete LU factorization
pinv Moore-Penrose pseudoinverse of

matrix
qr Orthogonal-triangular

decomposition
rcond Matrix reciprocal condition number

estimate

1-21

1 Function Reference

Eigenvalues and Singular Values

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

condeig Condition number with respect to
eigenvalues

eig Eigenvalues and eigenvectors
eigs Largest eigenvalues and

eigenvectors of a matrix
gsvd Generalized singular value

decomposition
hess Hessenberg form of matrix
ordeig Eigenvalues of quasitriangular

matrices
ordqz Reorder eigenvalues in QZ

factorization
ordschur Reorder eigenvalues in Schur

factorization
poly Polynomial with specified roots
polyeig Polynomial eigenvalue problem
rsf2csf Convert real Schur form to complex

Schur form
schur Schur decomposition
sqrtm Matrix square root
ss2tf Convert state-space filter parameters

to transfer function form
svd Singular value decomposition
svds Find singular values and vectors

1-22

Mathematics

Matrix Logarithms and Exponentials

expm Matrix exponential
logm Matrix logarithm
sqrtm Matrix square root

Factorization

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

chol Cholesky factorization
cholinc Sparse incomplete Cholesky and

Cholesky-Infinity factorizations
cholupdate Rank 1 update to Cholesky

factorization
gsvd Generalized singular value

decomposition
ilu Sparse incomplete LU factorization
lu LU matrix factorization
luinc Sparse incomplete LU factorization
planerot Givens plane rotation
qr Orthogonal-triangular

decomposition
qrdelete Remove column or row from QR

factorization
qrinsert Insert column or row into QR

factorization
qrupdate

1-23

1 Function Reference

qz QZ factorization for generalized
eigenvalues

rsf2csf Convert real Schur form to complex
Schur form

svd Singular value decomposition

Elementary Math

Trigonometric (p. 1-24) Trigonometric functions with results
in radians or degrees

Exponential (p. 1-26) Exponential, logarithm, power, and
root functions

Complex (p. 1-26) Numbers with real and imaginary
components, phase angles

Rounding and Remainder (p. 1-27) Rounding, modulus, and remainder
Discrete Math (p. 1-27) Prime factors, factorials,

permutations, rational fractions,
least common multiple, greatest
common divisor

Trigonometric

acos Inverse cosine; result in radians
acosd Inverse cosine; result in degrees
acosh Inverse hyperbolic cosine
acot Inverse cotangent; result in radians
acotd Inverse cotangent; result in degrees
acoth Inverse hyperbolic cotangent
acsc Inverse cosecant; result in radians
acscd Inverse cosecant; result in degrees
acsch Inverse hyperbolic cosecant

1-24

Mathematics

asec Inverse secant; result in radians
asecd Inverse secant; result in degrees
asech Inverse hyperbolic secant
asin Inverse sine; result in radians
asind Inverse sine; result in degrees
asinh Inverse hyperbolic sine
atan Inverse tangent; result in radians
atan2 Four-quadrant inverse tangent
atand Inverse tangent; result in degrees
atanh Inverse hyperbolic tangent
cos Cosine of argument in radians
cosd Cosine of argument in degrees
cosh Hyperbolic cosine
cot Cotangent of argument in radians
cotd Cotangent of argument in degrees
coth Hyperbolic cotangent
csc Cosecant of argument in radians
cscd Cosecant of argument in degrees
csch Hyperbolic cosecant
hypot Square root of sum of squares
sec Secant of argument in radians
secd Secant of argument in degrees
sech Hyperbolic secant
sin Sine of argument in radians
sind Sine of argument in degrees
sinh Hyperbolic sine of argument in

radians
tan Tangent of argument in radians

1-25

1 Function Reference

tand Tangent of argument in degrees
tanh Hyperbolic tangent

Exponential

exp Exponential
expm1 Compute exp(x)-1 accurately for

small values of x
log Natural logarithm
log10 Common (base 10) logarithm
log1p Compute log(1+x) accurately for

small values of x
log2 Base 2 logarithm and dissect

floating-point numbers into
exponent and mantissa

nextpow2 Next higher power of 2
nthroot Real nth root of real numbers
pow2 Base 2 power and scale floating-point

numbers
reallog Natural logarithm for nonnegative

real arrays
realpow Array power for real-only output
realsqrt Square root for nonnegative real

arrays
sqrt Square root

Complex

abs Absolute value and complex
magnitude

angle Phase angle

1-26

Mathematics

complex Construct complex data from real
and imaginary components

conj Complex conjugate
cplxpair Sort complex numbers into complex

conjugate pairs
i Imaginary unit
imag Imaginary part of complex number
isreal Check if input is real array
j Imaginary unit
real Real part of complex number
sign Signum function
unwrap Correct phase angles to produce

smoother phase plots

Rounding and Remainder

ceil Round toward positive infinity
fix Round toward zero
floor Round toward negative infinity
idivide Integer division with rounding

option
mod Modulus after division
rem Remainder after division
round Round to nearest integer

Discrete Math

factor Prime factors
factorial Factorial function
gcd Greatest common divisor

1-27

1 Function Reference

isprime Array elements that are prime
numbers

lcm Least common multiple
nchoosek Binomial coefficient or all

combinations
perms All possible permutations
primes Generate list of prime numbers
rat, rats Rational fraction approximation

Polynomials

conv Convolution and polynomial
multiplication

deconv Deconvolution and polynomial
division

poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Integrate polynomial analytically
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction

expansion and polynomial
coefficients

roots Polynomial roots

1-28

Mathematics

Interpolation and Computational Geometry

Interpolation (p. 1-29) Data interpolation, data gridding,
polynomial evaluation, nearest point
search

Delaunay Triangulation and
Tessellation (p. 1-30)

Delaunay triangulation and
tessellation, triangular surface and
mesh plots

Convex Hull (p. 1-31) Plot convex hull, plotting functions
Voronoi Diagrams (p. 1-31) Plot Voronoi diagram, patch graphics

object, plotting functions
Domain Generation (p. 1-31) Generate arrays for 3-D plots, or for

N-D functions and interpolation

Interpolation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search
griddata Data gridding
griddata3 Data gridding and hypersurface

fitting for 3-D data
griddatan Data gridding and hypersurface

fitting (dimension >= 2)
interp1 1-D data interpolation (table lookup)
interp1q Quick 1-D linear interpolation
interp2 2-D data interpolation (table lookup)
interp3 3-D data interpolation (table lookup)
interpft 1-D interpolation using FFT method
interpn N-D data interpolation (table lookup)
meshgrid Generate X and Y arrays for 3-D plots

1-29

1 Function Reference

mkpp Make piecewise polynomial
ndgrid Generate arrays for N-D functions

and interpolation
padecoef Padé approximation of time delays
pchip Piecewise Cubic Hermite

Interpolating Polynomial (PCHIP)
ppval Evaluate piecewise polynomial
spline Cubic spline data interpolation
tsearchn N-D closest simplex search
unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation

delaunay Delaunay triangulation
delaunay3 3-D Delaunay tessellation
delaunayn N-D Delaunay tessellation
dsearch Search Delaunay triangulation for

nearest point
dsearchn N-D nearest point search
tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot 2-D triangular plot
trisurf Triangular surface plot
tsearch Search for enclosing Delaunay

triangle
tsearchn N-D closest simplex search

1-30

Mathematics

Convex Hull

convhull Convex hull
convhulln N-D convex hull
patch Create patch graphics object
plot 2-D line plot
trisurf Triangular surface plot

Voronoi Diagrams

dsearch Search Delaunay triangulation for
nearest point

patch Create patch graphics object
plot 2-D line plot
voronoi Voronoi diagram
voronoin N-D Voronoi diagram

Domain Generation

meshgrid Generate X and Y arrays for 3-D plots
ndgrid Generate arrays for N-D functions

and interpolation

Cartesian Coordinate System Conversion

cart2pol Transform Cartesian coordinates to
polar or cylindrical

cart2sph Transform Cartesian coordinates to
spherical

1-31

1 Function Reference

pol2cart Transform polar or cylindrical
coordinates to Cartesian

sph2cart Transform spherical coordinates to
Cartesian

Nonlinear Numerical Methods

Ordinary Differential Equations
(p. 1-32)

Solve stiff and nonstiff differential
equations, define the problem, set
solver options, evaluate solution

Delay Differential Equations
(p. 1-33)

Solve delay differential equations
with constant and general delays,
set solver options, evaluate solution

Boundary Value Problems (p. 1-34) Solve boundary value problems for
ordinary differential equations, set
solver options, evaluate solution

Partial Differential Equations
(p. 1-34)

Solve initial-boundary value
problems for parabolic-elliptic PDEs,
evaluate solution

Optimization (p. 1-34) Find minimum of single and
multivariable functions, solve
nonnegative least-squares constraint
problem

Numerical Integration (Quadrature)
(p. 1-35)

Evaluate Simpson, Lobatto, and
vectorized quadratures, evaluate
double and triple integrals

Ordinary Differential Equations

decic Compute consistent initial conditions
for ode15i

deval Evaluate solution of differential
equation problem

1-32

Mathematics

ode15i Solve fully implicit differential
equations, variable order method

ode23, ode45, ode113, ode15s,
ode23s, ode23t, ode23tb

Solve initial value problems for
ordinary differential equations

odefile Define differential equation problem
for ordinary differential equation
solvers

odeget Ordinary differential equation
options parameters

odeset Create or alter options structure
for ordinary differential equation
solvers

odextend Extend solution of initial value
problem for ordinary differential
equation

Delay Differential Equations

dde23 Solve delay differential equations
(DDEs) with constant delays

ddeget Extract properties from delay
differential equations options
structure

ddesd Solve delay differential equations
(DDEs) with general delays

ddeset Create or alter delay differential
equations options structure

deval Evaluate solution of differential
equation problem

1-33

1 Function Reference

Boundary Value Problems

bvp4c Solve boundary value problems for
ordinary differential equations

bvp5c Solve boundary value problems for
ordinary differential equations

bvpget Extract properties from options
structure created with bvpset

bvpinit Form initial guess for bvp4c
bvpset Create or alter options structure of

boundary value problem
bvpxtend Form guess structure for extending

boundary value solutions
deval Evaluate solution of differential

equation problem

Partial Differential Equations

pdepe Solve initial-boundary value
problems for parabolic-elliptic PDEs
in 1-D

pdeval Evaluate numerical solution of PDE
using output of pdepe

Optimization

fminbnd Find minimum of single-variable
function on fixed interval

fminsearch Find minimum of unconstrained
multivariable function using
derivative-free method

fzero Find root of continuous function of
one variable

1-34

Mathematics

lsqnonneg Solve nonnegative least-squares
constraints problem

optimget Optimization options values
optimset Create or edit optimization options

structure

Numerical Integration (Quadrature)

dblquad Numerically evaluate double
integral

quad Numerically evaluate integral,
adaptive Simpson quadrature

quadgk Numerically evaluate integral,
adaptive Gauss-Kronrod quadrature

quadl Numerically evaluate integral,
adaptive Lobatto quadrature

quadv Vectorized quadrature
triplequad Numerically evaluate triple integral

Specialized Math

airy Airy functions
besselh Bessel function of third kind (Hankel

function)
besseli Modified Bessel function of first kind
besselj Bessel function of first kind
besselk Modified Bessel function of second

kind
bessely Bessel function of second kind
beta Beta function
betainc Incomplete beta function

1-35

1 Function Reference

betaln Logarithm of beta function
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of first

and second kind
erf, erfc, erfcx, erfinv,
erfcinv

Error functions

expint Exponential integral
gamma, gammainc, gammaln Gamma functions
legendre Associated Legendre functions
psi Psi (polygamma) function

Sparse Matrices

Elementary Sparse Matrices
(p. 1-37)

Create random and nonrandom
sparse matrices

Full to Sparse Conversion (p. 1-37) Convert full matrix to sparse, sparse
matrix to full

Sparse Matrix Manipulation (p. 1-37) Test matrix for sparseness, get
information on sparse matrix,
allocate sparse matrix, apply
function to nonzero elements,
visualize sparsity pattern

Reordering Algorithms (p. 1-38) Random, column, minimum degree,
Dulmage-Mendelsohn, and reverse
Cuthill-McKee permutations

Linear Algebra (p. 1-39) Compute norms, eigenvalues,
factorizations, least squares,
structural rank

1-36

Mathematics

Linear Equations (Iterative
Methods) (p. 1-39)

Methods for conjugate and
biconjugate gradients, residuals,
lower quartile

Tree Operations (p. 1-40) Elimination trees, tree plotting,
factorization analysis

Elementary Sparse Matrices

spdiags Extract and create sparse band and
diagonal matrices

speye Sparse identity matrix
sprand Sparse uniformly distributed

random matrix
sprandn Sparse normally distributed random

matrix
sprandsym Sparse symmetric random matrix

Full to Sparse Conversion

find Find indices and values of nonzero
elements

full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import matrix from sparse matrix

external format

Sparse Matrix Manipulation

issparse Determine whether input is sparse
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements

1-37

1 Function Reference

nzmax Amount of storage allocated for
nonzero matrix elements

spalloc Allocate space for sparse matrix
spfun Apply function to nonzero sparse

matrix elements
spones Replace nonzero sparse matrix

elements with ones
spparms Set parameters for sparse matrix

routines
spy Visualize sparsity pattern

Reordering Algorithms

amd Approximate minimum degree
permutation

colamd Column approximate minimum
degree permutation

colperm Sparse column permutation based
on nonzero count

dmperm Dulmage-Mendelsohn decomposition
ldl Block LDL’ factorization for

Hermitian indefinite matrices
randperm Random permutation
symamd Symmetric approximate minimum

degree permutation
symrcm Sparse reverse Cuthill-McKee

ordering

1-38

Mathematics

Linear Algebra

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

condest 1-norm condition number estimate
eigs Largest eigenvalues and

eigenvectors of a matrix
ilu Sparse incomplete LU factorization
luinc Sparse incomplete LU factorization
normest 2-norm estimate
spaugment Form least squares augmented

system
sprank Structural rank
svds Find singular values and vectors

Linear Equations (Iterative Methods)

bicg Biconjugate gradients method
bicgstab Biconjugate gradients stabilized

method
cgs Conjugate gradients squared method
gmres Generalized minimum residual

method (with restarts)
lsqr LSQR method
minres Minimum residual method
pcg Preconditioned conjugate gradients

method
qmr Quasi-minimal residual method
symmlq Symmetric LQ method

1-39

1 Function Reference

Tree Operations

etree Elimination tree
etreeplot Plot elimination tree
gplot Plot nodes and links representing

adjacency matrix
symbfact Symbolic factorization analysis
treelayout Lay out tree or forest
treeplot Plot picture of tree

Math Constants

eps Floating-point relative accuracy
i Imaginary unit
Inf Infinity
intmax Largest value of specified integer

type
intmin Smallest value of specified integer

type
j Imaginary unit
NaN Not-a-Number
pi Ratio of circle’s circumference to its

diameter, π
realmax Largest positive floating-point

number
realmin Smallest positive normalized

floating-point number

1-40

Data Analysis

Data Analysis

Basic Operations (p. 1-41) Sums, products, sorting
Descriptive Statistics (p. 1-41) Statistical summaries of data
Filtering and Convolution (p. 1-42) Data preprocessing
Interpolation and Regression
(p. 1-42)

Data fitting

Fourier Transforms (p. 1-43) Frequency content of data
Derivatives and Integrals (p. 1-43) Data rates and accumulations
Time Series Objects (p. 1-44) Methods for timeseries objects
Time Series Collections (p. 1-47) Methods for tscollection objects

Basic Operations

brush Interactively mark, delete, modify,
and save observations in graphs

cumprod Cumulative product
cumsum Cumulative sum
linkdata Automatically update graphs when

variables change
prod Product of array elements
sort Sort array elements in ascending or

descending order
sortrows Sort rows in ascending order
sum Sum of array elements

Descriptive Statistics

corrcoef Correlation coefficients
cov Covariance matrix

1-41

1 Function Reference

max Largest elements in array
mean Average or mean value of array
median Median value of array
min Smallest elements in array
mode Most frequent values in array
std Standard deviation
var Variance

Filtering and Convolution

conv Convolution and polynomial
multiplication

conv2 2-D convolution
convn N-D convolution
deconv Deconvolution and polynomial

division
detrend Remove linear trends
filter 1-D digital filter
filter2 2-D digital filter

Interpolation and Regression

interp1 1-D data interpolation (table lookup)
interp2 2-D data interpolation (table lookup)
interp3 3-D data interpolation (table lookup)
interpn N-D data interpolation (table lookup)
mldivide \, mrdivide / Left or right matrix division
polyfit Polynomial curve fitting
polyval Polynomial evaluation

1-42

Data Analysis

Fourier Transforms

abs Absolute value and complex
magnitude

angle Phase angle
cplxpair Sort complex numbers into complex

conjugate pairs
fft Discrete Fourier transform
fft2 2-D discrete Fourier transform
fftn N-D discrete Fourier transform
fftshift Shift zero-frequency component to

center of spectrum
fftw Interface to FFTW library run-time

algorithm tuning control
ifft Inverse discrete Fourier transform
ifft2 2-D inverse discrete Fourier

transform
ifftn N-D inverse discrete Fourier

transform
ifftshift Inverse FFT shift
nextpow2 Next higher power of 2
unwrap Correct phase angles to produce

smoother phase plots

Derivatives and Integrals

cumtrapz Cumulative trapezoidal numerical
integration

del2 Discrete Laplacian
diff Differences and approximate

derivatives

1-43

1 Function Reference

gradient Numerical gradient
polyder Polynomial derivative
polyint Integrate polynomial analytically
trapz Trapezoidal numerical integration

Time Series Objects

Utilities (p. 1-44) Combine timeseries objects,
query and set timeseries object
properties, plot timeseries objects

Data Manipulation (p. 1-45) Add or delete data, manipulate
timeseries objects

Event Data (p. 1-46) Add or delete events, create new
timeseries objects based on event
data

Descriptive Statistics (p. 1-46) Descriptive statistics for timeseries
objects

Utilities

get (timeseries) Query timeseries object property
values

getdatasamplesize Size of data sample in timeseries
object

getqualitydesc Data quality descriptions
isempty (timeseries) Determine whether timeseries

object is empty
length (timeseries) Length of time vector
plot (timeseries) Plot time series
set (timeseries) Set properties of timeseries object
size (timeseries) Size of timeseries object

1-44

Data Analysis

timeseries Create timeseries object
tsdata.event Construct event object for

timeseries object
tsprops Help on timeseries object

properties
tstool Open Time Series Tools GUI

Data Manipulation

addsample Add data sample to timeseries
object

ctranspose (timeseries) Transpose timeseries object
delsample Remove sample from timeseries

object
detrend (timeseries) Subtract mean or best-fit line and all

NaNs from time series
filter (timeseries) Shape frequency content of time

series
getabstime (timeseries) Extract date-string time vector into

cell array
getinterpmethod Interpolation method for timeseries

object
getsampleusingtime
(timeseries)

Extract data samples into new
timeseries object

idealfilter (timeseries) Apply ideal (noncausal) filter to
timeseries object

resample (timeseries) Select or interpolate timeseries
data using new time vector

setabstime (timeseries) Set times of timeseries object as
date strings

setinterpmethod Set default interpolation method for
timeseries object

1-45

1 Function Reference

synchronize Synchronize and resample two
timeseries objects using common
time vector

transpose (timeseries) Transpose timeseries object
vertcat (timeseries) Vertical concatenation of

timeseries objects

Event Data

addevent Add event to timeseries object
delevent Remove tsdata.event objects from

timeseries object
gettsafteratevent New timeseries object with samples

occurring at or after event
gettsafterevent New timeseries object with samples

occurring after event
gettsatevent New timeseries object with samples

occurring at event
gettsbeforeatevent New timeseries object with samples

occurring before or at event
gettsbeforeevent New timeseries object with samples

occurring before event
gettsbetweenevents New timeseries object with samples

occurring between events

Descriptive Statistics

iqr (timeseries) Interquartile range of timeseries
data

max (timeseries) Maximum value of timeseries data
mean (timeseries) Mean value of timeseries data
median (timeseries) Median value of timeseries data

1-46

Data Analysis

min (timeseries) Minimum value of timeseries data
std (timeseries) Standard deviation of timeseries

data
sum (timeseries) Sum of timeseries data
var (timeseries) Variance of timeseries data

Time Series Collections

Utilities (p. 1-47) Query and set tscollection object
properties, plot tscollection
objects

Data Manipulation (p. 1-48) Add or delete data, manipulate
tscollection objects

Utilities

get (tscollection) Query tscollection object property
values

isempty (tscollection) Determine whether tscollection
object is empty

length (tscollection) Length of time vector
plot (timeseries) Plot time series
set (tscollection) Set properties of tscollection

object
size (tscollection) Size of tscollection object
tscollection Create tscollection object
tstool Open Time Series Tools GUI

1-47

1 Function Reference

Data Manipulation

addsampletocollection Add sample to tscollection object
addts Add timeseries object to

tscollection object
delsamplefromcollection Remove sample from tscollection

object
getabstime (tscollection) Extract date-string time vector into

cell array
getsampleusingtime
(tscollection)

Extract data samples into new
tscollection object

gettimeseriesnames Cell array of names of timeseries
objects in tscollection object

horzcat (tscollection) Horizontal concatenation for
tscollection objects

removets Remove timeseries objects from
tscollection object

resample (tscollection) Select or interpolate data in
tscollection using new time vector

setabstime (tscollection) Set times of tscollection object as
date strings

settimeseriesnames Change name of timeseries object
in tscollection

vertcat (tscollection) Vertical concatenation for
tscollection objects

1-48

Programming and Data Types

Programming and Data Types

Data Types (p. 1-49) Numeric, character, structures, cell
arrays, and data type conversion

Data Type Conversion (p. 1-57) Convert one numeric type to another,
numeric to string, string to numeric,
structure to cell array, etc.

Operators and Special Characters
(p. 1-59)

Arithmetic, relational, and logical
operators, and special characters

Strings (p. 1-61) Create, identify, manipulate, parse,
evaluate, and compare strings

Bit-Wise Operations (p. 1-64) Perform set, shift, and, or, compare,
etc. on specific bit fields

Logical Operations (p. 1-65) Evaluate conditions, testing for true
or false

Relational Operations (p. 1-66) Compare values for equality, greater
than, less than, etc.

Set Operations (p. 1-66) Find set members, unions,
intersections, etc.

Date and Time Operations (p. 1-66) Obtain information about dates and
times

Programming in MATLAB (p. 1-67) M-files, function/expression
evaluation, program control,
function handles, object oriented
programming, error handling

Data Types

Numeric Types (p. 1-50) Integer and floating-point data
Characters and Strings (p. 1-51) Characters and arrays of characters
Structures (p. 1-52) Data of varying types and sizes

stored in fields of a structure

1-49

1 Function Reference

Cell Arrays (p. 1-53) Data of varying types and sizes
stored in cells of array

Function Handles (p. 1-54) Invoke a function indirectly via
handle

Java Classes and Objects (p. 1-54) Access Java classes through
MATLAB interface

Data Type Identification (p. 1-56) Determine data type of a variable

Numeric Types

arrayfun Apply function to each element of
array

cast Cast variable to different data type
cat Concatenate arrays along specified

dimension
class Create object or return class of object
find Find indices and values of nonzero

elements
intmax Largest value of specified integer

type
intmin Smallest value of specified integer

type
intwarning Control state of integer warnings
ipermute Inverse permute dimensions of N-D

array
isa Determine whether input is object

of given class
isequal Test arrays for equality
isequalwithequalnans Test arrays for equality, treating

NaNs as equal
isfinite Array elements that are finite

1-50

Programming and Data Types

isinf Array elements that are infinite
isnan Array elements that are NaN
isnumeric Determine whether input is numeric

array
isreal Check if input is real array
isscalar Determine whether input is scalar
isvector Determine whether input is vector
permute Rearrange dimensions of N-D array
realmax Largest positive floating-point

number
realmin Smallest positive normalized

floating-point number
reshape Reshape array
squeeze Remove singleton dimensions
zeros Create array of all zeros

Characters and Strings

See “Strings” on page 1-61 for all string-related functions.

cellstr Create cell array of strings from
character array

char Convert to character array (string)
eval Execute string containing MATLAB

expression
findstr Find string within another, longer

string
isstr Determine whether input is

character array
regexp, regexpi Match regular expression
sprintf Write formatted data to string

1-51

1 Function Reference

sscanf Read formatted data from string
strcat Concatenate strings horizontally
strcmp, strcmpi Compare strings
strings String handling
strjust Justify character array
strmatch Find possible matches for string
strread Read formatted data from string
strrep Find and replace substring
strtrim Remove leading and trailing white

space from string
strvcat Concatenate strings vertically

Structures

arrayfun Apply function to each element of
array

cell2struct Convert cell array to structure array
class Create object or return class of object
deal Distribute inputs to outputs
fieldnames Field names of structure, or public

fields of object
getfield Field of structure array
isa Determine whether input is object

of given class
isequal Test arrays for equality
isfield Determine whether input is

structure array field
isscalar Determine whether input is scalar
isstruct Determine whether input is

structure array

1-52

Programming and Data Types

isvector Determine whether input is vector
orderfields Order fields of structure array
rmfield Remove fields from structure
setfield Set value of structure array field
struct Create structure array
struct2cell Convert structure to cell array
structfun Apply function to each field of scalar

structure

Cell Arrays

cell Construct cell array
cell2mat Convert cell array of matrices to

single matrix
cell2struct Convert cell array to structure array
celldisp Cell array contents
cellfun Apply function to each cell in cell

array
cellplot Graphically display structure of cell

array
cellstr Create cell array of strings from

character array
class Create object or return class of object
deal Distribute inputs to outputs
isa Determine whether input is object

of given class
iscell Determine whether input is cell

array
iscellstr Determine whether input is cell

array of strings

1-53

1 Function Reference

isequal Test arrays for equality
isscalar Determine whether input is scalar
isvector Determine whether input is vector
mat2cell Divide matrix into cell array of

matrices
num2cell Convert numeric array to cell array
struct2cell Convert structure to cell array

Function Handles

class Create object or return class of object
feval Evaluate function
func2str Construct function name string from

function handle
functions Information about function handle
function_handle (@) Handle used in calling functions

indirectly
isa Determine whether input is object

of given class
isequal Test arrays for equality
str2func Construct function handle from

function name string

Java Classes and Objects

cell Construct cell array
class Create object or return class of object
clear Remove items from workspace,

freeing up system memory
depfun List dependencies of M-file or P-file

1-54

Programming and Data Types

exist Check existence of variable, function,
directory, or Java programming
language class

fieldnames Field names of structure, or public
fields of object

im2java Convert image to Java image
import Add package or class to current

import list
inmem Names of M-files, MEX-files, Sun

Java classes in memory
isa Determine whether input is object

of given class
isjava Determine whether input is Sun

Java object
javaaddpath Add entries to dynamic Sun Java

class path
javaArray Construct Sun Java array
javachk Generate error message based on

Sun Java feature support
javaclasspath Set and get dynamic Sun Java class

path
javaMethod Invoke Sun Java method
javaObject Construct Sun Java object
javarmpath Remove entries from dynamic Sun

Java class path
methods Information on class methods
methodsview Information on class methods in

separate window
usejava Determine whether Sun Java feature

is supported in MATLAB software
which Locate functions and files

1-55

1 Function Reference

Data Type Identification

is* Detect state
isa Determine whether input is object

of given class
iscell Determine whether input is cell

array
iscellstr Determine whether input is cell

array of strings
ischar Determine whether item is character

array
isfield Determine whether input is

structure array field
isfloat Determine whether input is

floating-point array
isinteger Determine whether input is integer

array
isjava Determine whether input is Sun

Java object
islogical Determine whether input is logical

array
isnumeric Determine whether input is numeric

array
isobject Determine if input is MATLAB

object
isreal Check if input is real array
isstr Determine whether input is

character array
isstruct Determine whether input is

structure array
validateattributes Check validity of array
who, whos List variables in workspace

1-56

Programming and Data Types

Data Type Conversion

Numeric (p. 1-57) Convert data of one numeric type to
another numeric type

String to Numeric (p. 1-57) Convert characters to numeric
equivalent

Numeric to String (p. 1-58) Convert numeric to character
equivalent

Other Conversions (p. 1-58) Convert to structure, cell array,
function handle, etc.

Numeric

cast Cast variable to different data type
double Convert to double precision
int8, int16, int32, int64 Convert to signed integer
single Convert to single precision
typecast Convert data types without changing

underlying data
uint8, uint16, uint32, uint64 Convert to unsigned integer

String to Numeric

base2dec Convert base N number string to
decimal number

bin2dec Convert binary number string to
decimal number

cast Cast variable to different data type
hex2dec Convert hexadecimal number string

to decimal number
hex2num Convert hexadecimal number string

to double-precision number

1-57

1 Function Reference

str2double Convert string to double-precision
value

str2num Convert string to number
unicode2native Convert Unicode® characters to

numeric bytes

Numeric to String

cast Cast variable to different data type
char Convert to character array (string)
dec2base Convert decimal to base N number

in string
dec2bin Convert decimal to binary number

in string
dec2hex Convert decimal to hexadecimal

number in string
int2str Convert integer to string
mat2str Convert matrix to string
native2unicode Convert numeric bytes to Unicode

characters
num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array
datestr Convert date and time to string

format
func2str Construct function name string from

function handle

1-58

Programming and Data Types

logical Convert numeric values to logical
mat2cell Divide matrix into cell array of

matrices
num2cell Convert numeric array to cell array
num2hex Convert singles and doubles to

IEEE® hexadecimal strings
str2func Construct function handle from

function name string
str2mat Form blank-padded character matrix

from strings
struct2cell Convert structure to cell array

Operators and Special Characters

Arithmetic Operators (p. 1-59) Plus, minus, power, left and right
divide, transpose, etc.

Relational Operators (p. 1-60) Equal to, greater than, less than or
equal to, etc.

Logical Operators (p. 1-60) Element-wise and short circuit and,
or, not

Special Characters (p. 1-61) Array constructors, line
continuation, comments, etc.

Arithmetic Operators

+ Plus
- Minus
. Decimal point
= Assignment
* Matrix multiplication
/ Matrix right division

1-59

1 Function Reference

\ Matrix left division
^ Matrix power
’ Matrix transpose
.* Array multiplication (element-wise)
./ Array right division (element-wise)
.\ Array left division (element-wise)
.^ Array power (element-wise)
.’ Array transpose

Relational Operators

< Less than
<= Less than or equal to

> Greater than
>= Greater than or equal to
== Equal to
~= Not equal to

Logical Operators
See also for functions like xor, all, any, etc.

&& Logical AND
|| Logical OR
& Logical AND for arrays
| Logical OR for arrays
~ Logical NOT

1-60

Programming and Data Types

Special Characters

: Create vectors, subscript arrays, specify for-loop iterations
() Pass function arguments, prioritize operators
[] Construct array, concatenate elements, specify multiple

outputs from function
{ } Construct cell array, index into cell array
. Insert decimal point, define structure field, reference methods

of object
.() Reference dynamic field of structure
.. Reference parent directory

... Continue statement to next line
, Separate rows of array, separate function input/output

arguments, separate commands
; Separate columns of array, suppress output from current

command
% Insert comment line into code

%{ %} Insert block of comments into code
! Issue command to operating system
’ ’ Construct character array
@ Construct function handle, reference class directory

Strings

Description of Strings in MATLAB
(p. 1-62)

Basics of string handling in
MATLAB

String Creation (p. 1-62) Create strings, cell arrays of strings,
concatenate strings together

String Identification (p. 1-62) Identify characteristics of strings

1-61

1 Function Reference

String Manipulation (p. 1-63) Convert case, strip blanks, replace
characters

String Parsing (p. 1-63) Formatted read, regular expressions,
locate substrings

String Evaluation (p. 1-64) Evaluate stated expression in string
String Comparison (p. 1-64) Compare contents of strings

Description of Strings in MATLAB

strings String handling

String Creation

blanks Create string of blank characters
cellstr Create cell array of strings from

character array
char Convert to character array (string)
sprintf Write formatted data to string
strcat Concatenate strings horizontally
strvcat Concatenate strings vertically

String Identification

class Create object or return class of object
isa Determine whether input is object

of given class
iscellstr Determine whether input is cell

array of strings
ischar Determine whether item is character

array

1-62

Programming and Data Types

isletter Array elements that are alphabetic
letters

isscalar Determine whether input is scalar
isspace Array elements that are space

characters
isstrprop Determine whether string is of

specified category
isvector Determine whether input is vector
validatestring Check validity of text string

String Manipulation

deblank Strip trailing blanks from end of
string

lower Convert string to lowercase
strjust Justify character array
strrep Find and replace substring
strtrim Remove leading and trailing white

space from string
upper Convert string to uppercase

String Parsing

findstr Find string within another, longer
string

regexp, regexpi Match regular expression
regexprep Replace string using regular

expression
regexptranslate Translate string into regular

expression
sscanf Read formatted data from string

1-63

1 Function Reference

strfind Find one string within another
strread Read formatted data from string
strtok Selected parts of string

String Evaluation

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

String Comparison

strcmp, strcmpi Compare strings
strmatch Find possible matches for string
strncmp, strncmpi Compare first n characters of strings

Bit-Wise Operations

bitand Bitwise AND
bitcmp Bitwise complement
bitget Bit at specified position
bitmax Maximum double-precision

floating-point integer
bitor Bitwise OR
bitset Set bit at specified position
bitshift Shift bits specified number of places

1-64

Programming and Data Types

bitxor Bitwise XOR
swapbytes Swap byte ordering

Logical Operations

all Determine whether all array
elements are nonzero

and Find logical AND of array or scalar
inputs

any Determine whether any array
elements are nonzero

false Logical 0 (false)
find Find indices and values of nonzero

elements
isa Determine whether input is object

of given class
iskeyword Determine whether input is

MATLAB keyword
isvarname Determine whether input is valid

variable name
logical Convert numeric values to logical
not Find logical NOT of array or scalar

input
or Find logical OR of array or scalar

inputs
true Logical 1 (true)
xor Logical exclusive-OR

See “Operators and Special Characters” on page 1-59 for logical operators.

1-65

1 Function Reference

Relational Operations

eq Test for equality
ge Test for greater than or equal to
gt Test for greater than
le Test for less than or equal to
lt Test for less than
ne Test for inequality

See “Operators and Special Characters” on page 1-59 for relational operators.

Set Operations

intersect Find set intersection of two vectors
ismember Array elements that are members

of set
issorted Determine whether set elements are

in sorted order
setdiff Find set difference of two vectors
setxor Find set exclusive OR of two vectors
union Find set union of two vectors
unique Find unique elements of vector

Date and Time Operations

addtodate Modify date number by field
calendar Calendar for specified month
clock Current time as date vector
cputime Elapsed CPU time
date Current date string

1-66

Programming and Data Types

datenum Convert date and time to serial date
number

datestr Convert date and time to string
format

datevec Convert date and time to vector of
components

eomday Last day of month
etime Time elapsed between date vectors
now Current date and time
weekday Day of week

Programming in MATLAB

M-Files and Scripts (p. 1-68) Declare functions, handle
arguments, identify dependencies,
etc.

Evaluation (p. 1-69) Evaluate expression in string, apply
function to array, run script file, etc.

Timer (p. 1-70) Schedule execution of MATLAB
commands

Variables and Functions in Memory
(p. 1-70)

List files in memory, clear M-files
in memory, assign to variable in
nondefault workspace, refresh
caches

Control Flow (p. 1-71) if-then-else, for loops, switch-case,
try-catch

Error Handling (p. 1-72) Generate warnings and errors, test
for and catch errors, retrieve most
recent error message

MEX Programming (p. 1-73) Compile MEX function from C or
Fortran code, list MEX-files in
memory, debug MEX-files

1-67

1 Function Reference

M-Files and Scripts

addOptional (inputParser) Add optional argument to
inputParser schema

addParamValue (inputParser) Add parameter-value argument to
inputParser schema

addRequired (inputParser) Add required argument to
inputParser schema

createCopy (inputParser) Create copy of inputParser object
depdir List dependent directories of M-file

or P-file
depfun List dependencies of M-file or P-file
echo Echo M-files during execution
end Terminate block of code, or indicate

last array index
function Declare M-file function
input Request user input
inputname Variable name of function input
inputParser Construct input parser object
mfilename Name of currently running M-file
namelengthmax Maximum identifier length
nargchk Validate number of input arguments
nargin, nargout Number of function arguments
nargoutchk Validate number of output

arguments
parse (inputParser) Parse and validate named inputs
pcode Create preparsed pseudocode file

(P-file)
script Script M-file description
syntax Two ways to call MATLAB functions

1-68

Programming and Data Types

varargin Variable length input argument list
varargout Variable length output argument list

Evaluation

ans Most recent answer
arrayfun Apply function to each element of

array
assert Generate error when condition is

violated
builtin Execute built-in function from

overloaded method
cellfun Apply function to each cell in cell

array
echo Echo M-files during execution
eval Execute string containing MATLAB

expression
evalc Evaluate MATLAB expression with

capture
evalin Execute MATLAB expression in

specified workspace
feval Evaluate function
iskeyword Determine whether input is

MATLAB keyword
isvarname Determine whether input is valid

variable name
pause Halt execution temporarily
run Run script that is not on current

path
script Script M-file description

1-69

1 Function Reference

structfun Apply function to each field of scalar
structure

symvar Determine symbolic variables in
expression

tic, toc Measure performance using
stopwatch timer

Timer

delete (timer) Remove timer object from memory
disp (timer) Information about timer object
get (timer) Timer object properties
isvalid (timer) Determine whether timer object is

valid
set (timer) Configure or display timer object

properties
start Start timer(s) running
startat Start timer(s) running at specified

time
stop Stop timer(s)
timer Construct timer object
timerfind Find timer objects
timerfindall Find timer objects, including

invisible objects
wait Wait until timer stops running

Variables and Functions in Memory

ans Most recent answer
assignin Assign value to variable in specified

workspace

1-70

Programming and Data Types

datatipinfo Produce short description of input
variable

genvarname Construct valid variable name from
string

global Declare global variables
inmem Names of M-files, MEX-files, Sun

Java classes in memory
isglobal Determine whether input is global

variable
memory Display memory information
mislocked Determine whether M-file or

MEX-file cannot be cleared from
memory

mlock Prevent clearing M-file or MEX-file
from memory

munlock Allow clearing M-file or MEX-file
from memory

namelengthmax Maximum identifier length
pack Consolidate workspace memory
persistent Define persistent variable
rehash Refresh function and file system

path caches

Control Flow

break Terminate execution of for or while
loop

case Execute block of code if condition is
true

catch Specify how to respond to error in
try statement

1-71

1 Function Reference

continue Pass control to next iteration of for
or while loop

else Execute statements if condition is
false

elseif Execute statements if additional
condition is true

end Terminate block of code, or indicate
last array index

error Display message and abort function
for Execute block of code specified

number of times
if Execute statements if condition is

true
otherwise Default part of switch statement
parfor Parallel for-loop
return Return to invoking function
switch Switch among several cases, based

on expression
try Attempt to execute block of code, and

catch errors
while Repeatedly execute statements while

condition is true

Error Handling

addCause (MException) Append MException objects
assert Generate error when condition is

violated
catch Specify how to respond to error in

try statement
disp (MException) Display MException object

1-72

Programming and Data Types

eq (MException) Compare MException objects for
equality

error Display message and abort function
ferror Query the MATLAB software about

errors in file input or output
getReport (MException) Get error message for exception
intwarning Control state of integer warnings
isequal (MException) Compare MException objects for

equality
last (MException) Last uncaught exception
lasterr Last error message
lasterror Last error message and related

information
lastwarn Last warning message
MException Construct MException object
ne (MException) Compare MException objects for

inequality
rethrow Reissue error
rethrow (MException) Reissue existing exception
throw (MException) Terminate function and issue

exception
try Attempt to execute block of code, and

catch errors
warning Warning message

MEX Programming

dbmex Enable MEX-file debugging
inmem Names of M-files, MEX-files, Sun

Java classes in memory

1-73

1 Function Reference

mex Compile MEX-function from C/ C++
or Fortran source code

mex.getCompilerConfigurations Get compiler configuration
information for building MEX-files

mexext Binary MEX-file name extension

1-74

Object-Oriented Programming

Object-Oriented Programming

Classes and Objects (p. 1-75) Get information about classes and
objects

Handle Classes (p. 1-76) Define and use handle classes
Events and Listeners (p. 1-77) Define and use events and listeners
Meta-Classes (p. 1-77) Access information about classes

without requiring instances

Classes and Objects

class Create object or return class of object
classdef Class definition key words
fieldnames Field names of structure, or public

fields of object
inferiorto Specify inferior class relationship
isa Determine whether input is object

of given class
isobject Determine if input is MATLAB

object
loadobj User-defined class method called by

load function
methods Information on class methods
methodsview Information on class methods in

separate window
properties Display class property names
saveobj Method called by save function for

user-defined objects
subsasgn Subscripted assignment for objects
subsindex Subscripted indexing for objects
subsref Subscripted reference for objects

1-75

1 Function Reference

substruct Create structure argument for
subsasgn or subsref

superiorto Establish superior class relationship

Handle Classes

addlistener (handle) Create event listener
addprop (dynamicprops) Add dynamic property
delete (handle) Handle object destructor function
dynamicprops Abstract class used to derive handle

class with dynamic properties
findobj (handle) Finds objects matching specified

conditions
findprop (handle) Find meta.property object

associated with property name
get (hgsetget) Query property values of handle

objects derived from hgsetget class
getdisp (hgsetget) Override to change command

window display
handle Abstract class for deriving handle

classes
hgsetget Abstract class used to derive handle

class with set and get methods
isvalid (handle) Is object valid handle object
notify (handle) notify listeners that event is

occurring
relationaloperators (handle) Equality and sorting of handle

objects

1-76

Object-Oriented Programming

set (hgsetget) Assign property values to handle
objects derived from hgsetget class

setdisp (hgsetget) Override to change command
window display

Events and Listeners

addlistener (handle) Create event listener
event.EventData Base class for all data objects passed

to event listeners
event.listener Class defining listener objects
event.PropertyEvent Listener for property events
event.proplistener Define listener object for property

events
events Display class event names
notify (handle) notify listeners that event is

occurring

Meta-Classes

meta.class meta.class class describes
MATLAB classes

meta.class.fromName Return meta.class object associated
with named class

meta.DynamicProperty meta.DynamicProperty class
describes dynamic property of
MATLAB object

meta.event meta.event class describes
MATLAB class events

meta.method meta.method class describes
MATLAB class methods

1-77

1 Function Reference

meta.package meta.package class describes
MATLAB packages

meta.package.fromName Return meta.package object for
specified package

meta.package.getAllPackages Get all top-level packages
meta.property meta.property class describes

MATLAB class properties
metaclass Return meta.class object

1-78

File I/O

File I/O

File Name Construction (p. 1-79) Get path, directory, filename
information; construct filenames

File Opening, Loading, and Saving
(p. 1-80)

Open files; transfer data between
files and MATLAB workspace

Memory Mapping (p. 1-80) Access file data via memory map
using MATLAB array indexing

Low-Level File I/O (p. 1-80) Low-level operations that use a file
identifier

Text Files (p. 1-81) Delimited or formatted I/O to text
files

XML Documents (p. 1-82) Documents written in Extensible
Markup Language

Spreadsheets (p. 1-82) Excel and Lotus 1-2-3 files
Scientific Data (p. 1-83) CDF, FITS, HDF formats
Audio and Audio/Video (p. 1-86) General audio functions;

SparcStation, WAVE, AVI files
Images (p. 1-88) Graphics files
Internet Exchange (p. 1-88) URL, FTP, zip, tar, and e-mail

To see a listing of file formats that are readable from MATLAB, go to file
formats.

File Name Construction

filemarker Character to separate file name and
internal function name

fileparts Parts of file name and path
filesep Directory separator for current

platform
fullfile Build full filename from parts

1-79

1 Function Reference

tempdir Name of system’s temporary
directory

tempname Unique name for temporary file

File Opening, Loading, and Saving

daqread Read Data Acquisition Toolbox™
(.daq) file

filehandle Construct file handle object
importdata Load data from disk file
load Load workspace variables from disk
open Open files based on extension
save Save workspace variables to disk
uiimport Open Import Wizard to import data
winopen Open file in appropriate application

(Windows)

Memory Mapping

disp (memmapfile) Information about memmapfile
object

get (memmapfile) Memmapfile object properties
memmapfile Construct memmapfile object

Low-Level File I/O

fclose Close one or more open files
feof Test for end-of-file
ferror Query the MATLAB software about

errors in file input or output

1-80

File I/O

fgetl Read line from file, discarding
newline character

fgets Read line from file, keeping newline
character

fopen Open file, or obtain information
about open files

fprintf Write formatted data to file
fread Read binary data from file
frewind Move file position indicator to

beginning of open file
fscanf Read formatted data from file
fseek Set file position indicator
ftell File position indicator
fwrite Write binary data to file

Text Files

csvread Read comma-separated value file
csvwrite Write comma-separated value file
dlmread Read ASCII-delimited file of numeric

data into matrix
dlmwrite Write matrix to ASCII-delimited file
fileread Return contents of file as string

vector
textread Read data from text file; write to

multiple outputs
textscan Read formatted data from text file

or string

1-81

1 Function Reference

XML Documents

xmlread Parse XML document and return
Document Object Model node

xmlwrite Serialize XML Document Object
Model node

xslt Transform XML document using
XSLT engine

Spreadsheets

Microsoft Excel (p. 1-82) Read and write Microsoft Excel
spreadsheet

Lotus 1-2-3 (p. 1-82) Read and write Lotus WK1
spreadsheet

Microsoft Excel

xlsfinfo Determine whether file contains
Microsoft® Excel® (.xls) spreadsheet

xlsread Read Microsoft Excel spreadsheet
file (.xls)

xlswrite Write Microsoft Excel spreadsheet
file (.xls)

Lotus 1-2-3

wk1finfo Determine whether file contains
1-2-3 WK1 worksheet

wk1read Read Lotus 1-2-3 WK1 spreadsheet
file into matrix

wk1write Write matrix to Lotus 1-2-3 WK1
spreadsheet file

1-82

File I/O

Scientific Data

Common Data Format (p. 1-83) Work with CDF files
Network Common Data Form
(p. 1-83)

Work with netCDF files

Flexible Image Transport System
(p. 1-85)

Work with FITS files

Hierarchical Data Format (p. 1-85) Work with HDF files
Band-Interleaved Data (p. 1-86) Work with band-interleaved files

Common Data Format

cdfepoch Construct cdfepoch object for
Common Data Format (CDF) export

cdfinfo Information about Common Data
Format (CDF) file

cdfread Read data from Common Data
Format (CDF) file

cdfwrite Write data to Common Data Format
(CDF) file

todatenum Convert CDF epoch object to
MATLAB datenum

Network Common Data Form
File Operations

netcdf Summary of MATLAB Network
Common Data Form (netCDF)
capabilities

netcdf.abort Revert recent netCDF file definitions
netcdf.close Close netCDF file
netcdf.create Create new netCDF dataset

1-83

1 Function Reference

netcdf.endDef End netCDF file define mode
netcdf.getConstant Return numeric value of named

constant
netcdf.getConstantNames Return list of constants known to

netCDF library
netcdf.inq Return information about netCDF

file
netcdf.inqLibVers Return netCDF library version

information
netcdf.open Open netCDF file
netcdf.reDef Put open netCDF file into define

mode
netcdf.setDefaultFormat Change default netCDF file format
netcdf.setFill Set netCDF fill mode
netcdf.sync Synchronize netCDF file to disk

Dimensions

netcdf.defDim Create netCDF dimension
netcdf.inqDim Return netCDF dimension name and

length
netcdf.inqDimID Return dimension ID
netcdf.renameDim Change name of netCDF dimension

Variables

netcdf.defVar Create netCDF variable
netcdf.getVar Return data from netCDF variable
netcdf.inqVar Return information about variable
netcdf.inqVarID Return ID associated with variable

name

1-84

File I/O

netcdf.putVar Write data to netCDF variable
netcdf.renameVar Change name of netCDF variable

Attributes

netcdf.copyAtt Copy attribute to new location
netcdf.delAtt Delete netCDF attribute
netcdf.getAtt Return netCDF attribute
netcdf.inqAtt Return information about netCDF

attribute
netcdf.inqAttID Return ID of netCDF attribute
netcdf.inqAttName Return name of netCDF attribute
netcdf.putAtt Write netCDF attribute
netcdf.renameAtt Change name of attribute

Flexible Image Transport System

fitsinfo Information about FITS file
fitsread Read data from FITS file

Hierarchical Data Format

hdf Summary of MATLAB HDF4
capabilities

hdf5 Summary of MATLAB HDF5
capabilities

hdf5info Information about HDF5 file
hdf5read Read HDF5 file
hdf5write Write data to file in HDF5 format

1-85

1 Function Reference

hdfinfo Information about HDF4 or
HDF-EOS file

hdfread Read data from HDF4 or HDF-EOS
file

hdftool Browse and import data from HDF4
or HDF-EOS files

Band-Interleaved Data

multibandread Read band-interleaved data from
binary file

multibandwrite Write band-interleaved data to file

Audio and Audio/Video

Utilities (p. 1-86) Create audio player object, obtain
information about multimedia files,
convert to/from audio signal

SPARCstation-Specific Sound
(p. 1-87)

Access NeXT/SUN (.au) sound files

Microsoft WAVE Sound (p. 1-87) Access Microsoft WAVE (.wav)
sound files

Audio/Video Interleaved (p. 1-88) Access Audio/Video interleaved
(.avi) sound files

Utilities

audioplayer Create audio player object
audiorecorder Create audio recorder object
beep Produce beep sound
lin2mu Convert linear audio signal to

mu-law

1-86

File I/O

mmfileinfo Information about multimedia file
mmreader Create multimedia reader object for

reading video files
mu2lin Convert mu-law audio signal to

linear
read Read video frame data from

multimedia reader object
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound

aufinfo Information about NeXT/SUN (.au)
sound file

auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

Microsoft WAVE Sound

wavfinfo Information about Microsoft WAVE
(.wav) sound file

wavplay Play recorded sound on PC-based
audio output device

wavread Read Microsoft WAVE (.wav) sound
file

wavrecord Record sound using PC-based audio
input device

wavwrite Write Microsoft WAVE (.wav) sound
file

1-87

1 Function Reference

Audio/Video Interleaved

addframe Add frame to Audio/Video
Interleaved (AVI) file

avifile Create new Audio/Video Interleaved
(AVI) file

aviinfo Information about Audio/Video
Interleaved (AVI) file

aviread Read Audio/Video Interleaved (AVI)
file

close (avifile) Close Audio/Video Interleaved (AVI)
file

movie2avi Create Audio/Video Interleaved
(AVI) movie from MATLAB movie

Images

exifread Read EXIF information from JPEG
and TIFF image files

im2java Convert image to Java image
imfinfo Information about graphics file
imread Read image from graphics file
imwrite Write image to graphics file

Internet Exchange

URL, Zip, Tar, E-Mail (p. 1-89) Send e-mail, read from given URL,
extract from tar or zip file, compress
and decompress files

FTP (p. 1-89) Connect to FTP server, download
from server, manage FTP files, close
server connection

1-88

File I/O

URL, Zip, Tar, E-Mail

gunzip Uncompress GNU zip files
gzip Compress files into GNU zip files
sendmail Send e-mail message to address list
tar Compress files into tar file
untar Extract contents of tar file
unzip Extract contents of zip file
urlread Read content at URL
urlwrite Save contents of URL to file
zip Compress files into zip file

FTP

ascii Set FTP transfer type to ASCII
binary Set FTP transfer type to binary
cd (ftp) Change current directory on FTP

server
close (ftp) Close connection to FTP server
delete (ftp) Remove file on FTP server
dir (ftp) Directory contents on FTP server
ftp Connect to FTP server, creating FTP

object
mget Download file from FTP server
mkdir (ftp) Create new directory on FTP server
mput Upload file or directory to FTP server
rename Rename file on FTP server
rmdir (ftp) Remove directory on FTP server

1-89

1 Function Reference

Graphics

Basic Plots and Graphs (p. 1-90) Linear line plots, log and semilog
plots

Plotting Tools (p. 1-91) GUIs for interacting with plots
Annotating Plots (p. 1-91) Functions for and properties of titles,

axes labels, legends, mathematical
symbols

Specialized Plotting (p. 1-92) Bar graphs, histograms, pie charts,
contour plots, function plotters

Bit-Mapped Images (p. 1-96) Display image object, read and write
graphics file, convert to movie frames

Printing (p. 1-96) Printing and exporting figures to
standard formats

Handle Graphics (p. 1-97) Creating graphics objects, setting
properties, finding handles

Basic Plots and Graphs

box Axes border
errorbar Plot error bars along curve
hold Retain current graph in figure
LineSpec (Line Specification) Line specification string syntax
loglog Log-log scale plot
plot 2-D line plot
plot3 3-D line plot
plotyy 2-D line plots with y-axes on both

left and right side
polar Polar coordinate plot
semilogx, semilogy Semilogarithmic plots
subplot Create axes in tiled positions

1-90

Graphics

Plotting Tools

figurepalette Show or hide figure palette
pan Pan view of graph interactively
plotbrowser Show or hide figure plot browser
plotedit Interactively edit and annotate plots
plottools Show or hide plot tools
propertyeditor Show or hide property editor
rotate3d Rotate 3-D view using mouse
showplottool Show or hide figure plot tool
zoom Turn zooming on or off or magnify

by factor

Annotating Plots

annotation Create annotation objects
clabel Contour plot elevation labels
datacursormode Enable or disable interactive data

cursor mode
datetick Date formatted tick labels
gtext Mouse placement of text in 2-D view
legend Graph legend for lines and patches
line Create line object
rectangle Create 2-D rectangle object
texlabel Produce TeX format from character

string
title Add title to current axes
xlabel, ylabel, zlabel Label x-, y-, and z-axis

1-91

1 Function Reference

Specialized Plotting

Area, Bar, and Pie Plots (p. 1-92) 1-D, 2-D, and 3-D graphs and charts
Contour Plots (p. 1-93) Unfilled and filled contours in 2-D

and 3-D
Direction and Velocity Plots (p. 1-93) Comet, compass, feather and quiver

plots
Discrete Data Plots (p. 1-93) Stair, step, and stem plots
Function Plots (p. 1-93) Easy-to-use plotting utilities for

graphing functions
Histograms (p. 1-94) Plots for showing distributions of

data
Polygons and Surfaces (p. 1-94) Functions to generate and plot

surface patches in two or more
dimensions

Scatter/Bubble Plots (p. 1-95) Plots of point distributions
Animation (p. 1-95) Functions to create and play movies

of plots

Area, Bar, and Pie Plots

area Filled area 2-D plot
bar, barh Plot bar graph (vertical and

horizontal)
bar3, bar3h Plot 3-D bar chart
pareto Pareto chart
pie Pie chart
pie3 3-D pie chart

1-92

Graphics

Contour Plots

contour Contour plot of matrix
contour3 3-D contour plot
contourc Low-level contour plot computation
contourf Filled 2-D contour plot
ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter

Direction and Velocity Plots

comet 2-D comet plot
comet3 3-D comet plot
compass Plot arrows emanating from origin
feather Plot velocity vectors
quiver Quiver or velocity plot
quiver3 3-D quiver or velocity plot

Discrete Data Plots

stairs Stairstep graph
stem Plot discrete sequence data
stem3 Plot 3-D discrete sequence data

Function Plots

ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter
ezmesh Easy-to-use 3-D mesh plotter

1-93

1 Function Reference

ezmeshc Easy-to-use combination
mesh/contour plotter

ezplot Easy-to-use function plotter
ezplot3 Easy-to-use 3-D parametric curve

plotter
ezpolar Easy-to-use polar coordinate plotter
ezsurf Easy-to-use 3-D colored surface

plotter
ezsurfc Easy-to-use combination

surface/contour plotter
fplot Plot function between specified

limits

Histograms

hist Histogram plot
histc Histogram count
rose Angle histogram plot

Polygons and Surfaces

convhull Convex hull
cylinder Generate cylinder
delaunay Delaunay triangulation
delaunay3 3-D Delaunay tessellation
delaunayn N-D Delaunay tessellation
dsearch Search Delaunay triangulation for

nearest point
dsearchn N-D nearest point search
ellipsoid Generate ellipsoid

1-94

Graphics

fill Filled 2-D polygons
fill3 Filled 3-D polygons
inpolygon Points inside polygonal region
pcolor Pseudocolor (checkerboard) plot
polyarea Area of polygon
rectint Rectangle intersection area
ribbon Ribbon plot
slice Volumetric slice plot
sphere Generate sphere
tsearch Search for enclosing Delaunay

triangle
tsearchn N-D closest simplex search
voronoi Voronoi diagram
waterfall Waterfall plot

Scatter/Bubble Plots

plotmatrix Scatter plot matrix
scatter Scatter plot
scatter3 3-D scatter plot

Animation

frame2im Return image data associated with
movie frame

getframe Capture movie frame
im2frame Convert image to movie frame

1-95

1 Function Reference

movie Play recorded movie frames
noanimate Change EraseMode of all objects to

normal

Bit-Mapped Images

frame2im Return image data associated with
movie frame

im2frame Convert image to movie frame
im2java Convert image to Java image
image Display image object
imagesc Scale data and display image object
imfinfo Information about graphics file
imformats Manage image file format registry
imread Read image from graphics file
imwrite Write image to graphics file
ind2rgb Convert indexed image to RGB

image

Printing

hgexport Export figure
orient Hardcopy paper orientation
print, printopt Print figure or save to file and

configure printer defaults
printdlg Print dialog box
printpreview Preview figure to print
saveas Save figure or Simulink block

diagram using specified format

1-96

Graphics

Handle Graphics

Graphics Object Identification
(p. 1-97)

Find and manipulate graphics
objects via their handles

Object Creation (p. 1-98) Constructors for core graphics
objects

Plot Objects (p. 1-98) Property descriptions for plot objects
Figure Windows (p. 1-99) Control and save figures
Axes Operations (p. 1-100) Operate on axes objects
Object Property Operations (p. 1-100) Query, set, and link object properties

Graphics Object Identification

allchild Find all children of specified objects
ancestor Ancestor of graphics object
copyobj Copy graphics objects and their

descendants
delete Remove files or graphics objects
findall Find all graphics objects
findfigs Find visible offscreen figures
findobj Locate graphics objects with specific

properties
gca Current axes handle
gcbf Handle of figure containing object

whose callback is executing
gcbo Handle of object whose callback is

executing
gco Handle of current object
get Query Handle Graphics® object

properties

1-97

1 Function Reference

ishandle Determine whether input is valid
Handle Graphics handle

propedit Open Property Editor
set Set Handle Graphics object

properties

Object Creation

axes Create axes graphics object
figure Create figure graphics object
hggroup Create hggroup object
hgtransform Create hgtransform graphics object
image Display image object
light Create light object
line Create line object
patch Create patch graphics object
rectangle Create 2-D rectangle object
root object Root object properties
surface Create surface object
text Create text object in current axes
uicontextmenu Create context menu

Plot Objects

Annotation Arrow Properties Define annotation arrow properties
Annotation Doublearrow
Properties

Define annotation doublearrow
properties

Annotation Ellipse Properties Define annotation ellipse properties
Annotation Line Properties Define annotation line properties

1-98

Graphics

Annotation Rectangle
Properties

Define annotation rectangle
properties

Annotation Textarrow
Properties

Define annotation textarrow
properties

Annotation Textbox Properties Define annotation textbox properties
Areaseries Properties Define areaseries properties
Barseries Properties Define barseries properties
Contourgroup Properties Define contourgroup properties
Errorbarseries Properties Define errorbarseries properties
Image Properties Define image properties
Lineseries Properties Define lineseries properties
Quivergroup Properties Define quivergroup properties
Scattergroup Properties Define scattergroup properties
Stairseries Properties Define stairseries properties
Stemseries Properties Define stemseries properties
Surfaceplot Properties Define surfaceplot properties

Figure Windows

clf Clear current figure window
close Remove specified figure
closereq Default figure close request function
drawnow Flush event queue and update figure

window
gcf Current figure handle
hgload Load Handle Graphics object

hierarchy from file
hgsave Save Handle Graphics object

hierarchy to file

1-99

1 Function Reference

newplot Determine where to draw graphics
objects

opengl Control OpenGL® rendering
refresh Redraw current figure
saveas Save figure or Simulink block

diagram using specified format

Axes Operations

axis Axis scaling and appearance
box Axes border
cla Clear current axes
gca Current axes handle
grid Grid lines for 2-D and 3-D plots
ishold Current hold state
makehgtform Create 4-by-4 transform matrix

Object Property Operations

get Query Handle Graphics object
properties

linkaxes Synchronize limits of specified 2-D
axes

linkprop Keep same value for corresponding
properties

refreshdata Refresh data in graph when data
source is specified

set Set Handle Graphics object
properties

1-100

3-D Visualization

3-D Visualization

Surface and Mesh Plots (p. 1-101) Plot matrices, visualize functions of
two variables, specify colormap

View Control (p. 1-103) Control the camera viewpoint,
zooming, rotation, aspect ratio, set
axis limits

Lighting (p. 1-105) Add and control scene lighting
Transparency (p. 1-105) Specify and control object

transparency
Volume Visualization (p. 1-106) Visualize gridded volume data

Surface and Mesh Plots

Surface andMesh Creation (p. 1-101) Visualizing gridded and triangulated
data as lines and surfaces

Domain Generation (p. 1-102) Gridding data and creating arrays
Color Operations (p. 1-102) Specifying, converting, and

manipulating color spaces,
colormaps, colorbars, and
backgrounds

Colormaps (p. 1-103) Built-in colormaps you can use

Surface and Mesh Creation

hidden Remove hidden lines from mesh plot
mesh, meshc, meshz Mesh plots
peaks Example function of two variables
surf, surfc 3-D shaded surface plot
surface Create surface object
surfl Surface plot with colormap-based

lighting

1-101

1 Function Reference

tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot 2-D triangular plot
trisurf Triangular surface plot

Domain Generation

griddata Data gridding
meshgrid Generate X and Y arrays for 3-D plots

Color Operations

brighten Brighten or darken colormap
caxis Color axis scaling
colorbar Colorbar showing color scale
colordef Set default property values to

display different color schemes
colormap Set and get current colormap
colormapeditor Start colormap editor
ColorSpec (Color
Specification)

Color specification

graymon Set default figure properties for
grayscale monitors

hsv2rgb Convert HSV colormap to RGB
colormap

rgb2hsv Convert RGB colormap to HSV
colormap

rgbplot Plot colormap
shading Set color shading properties
spinmap Spin colormap

1-102

3-D Visualization

surfnorm Compute and display 3-D surface
normals

whitebg Change axes background color

Colormaps

contrast Grayscale colormap for contrast
enhancement

View Control

Camera Viewpoint (p. 1-103) Orbiting, dollying, pointing, rotating
camera positions and setting fields
of view

Aspect Ratio and Axis Limits
(p. 1-104)

Specifying what portions of axes to
view and how to scale them

Object Manipulation (p. 1-104) Panning, rotating, and zooming
views

Region of Interest (p. 1-105) Interactively identifying rectangular
regions

Camera Viewpoint

camdolly Move camera position and target
cameratoolbar Control camera toolbar

programmatically
camlookat Position camera to view object or

group of objects
camorbit Rotate camera position around

camera target
campan Rotate camera target around camera

position

1-103

1 Function Reference

campos Set or query camera position
camproj Set or query projection type
camroll Rotate camera about view axis
camtarget Set or query location of camera

target
camup Set or query camera up vector
camva Set or query camera view angle
camzoom Zoom in and out on scene
makehgtform Create 4-by-4 transform matrix
view Viewpoint specification
viewmtx View transformation matrices

Aspect Ratio and Axis Limits

daspect Set or query axes data aspect ratio
pbaspect Set or query plot box aspect ratio
xlim, ylim, zlim Set or query axis limits

Object Manipulation

pan Pan view of graph interactively
reset Reset graphics object properties to

their defaults
rotate Rotate object in specified direction
rotate3d Rotate 3-D view using mouse
selectmoveresize Select, move, resize, or copy axes

and uicontrol graphics objects
zoom Turn zooming on or off or magnify

by factor

1-104

3-D Visualization

Region of Interest

dragrect Drag rectangles with mouse
rbbox Create rubberband box for area

selection

Lighting

camlight Create or move light object in camera
coordinates

diffuse Calculate diffuse reflectance
light Create light object
lightangle Create or position light object in

spherical coordinates
lighting Specify lighting algorithm
material Control reflectance properties of

surfaces and patches
specular Calculate specular reflectance

Transparency

alim Set or query axes alpha limits
alpha Set transparency properties for

objects in current axes
alphamap Specify figure alphamap

(transparency)

1-105

1 Function Reference

Volume Visualization

coneplot Plot velocity vectors as cones in 3-D
vector field

contourslice Draw contours in volume slice planes
curl Compute curl and angular velocity

of vector field
divergence Compute divergence of vector field
flow Simple function of three variables
interpstreamspeed Interpolate stream-line vertices from

flow speed
isocaps Compute isosurface end-cap

geometry
isocolors Calculate isosurface and patch colors
isonormals Compute normals of isosurface

vertices
isosurface Extract isosurface data from volume

data
reducepatch Reduce number of patch faces
reducevolume Reduce number of elements in

volume data set
shrinkfaces Reduce size of patch faces
slice Volumetric slice plot
smooth3 Smooth 3-D data
stream2 Compute 2-D streamline data
stream3 Compute 3-D streamline data
streamline Plot streamlines from 2-D or 3-D

vector data
streamparticles Plot stream particles
streamribbon 3-D stream ribbon plot from vector

volume data

1-106

3-D Visualization

streamslice Plot streamlines in slice planes
streamtube Create 3-D stream tube plot
subvolume Extract subset of volume data set
surf2patch Convert surface data to patch data
volumebounds Coordinate and color limits for

volume data

1-107

1 Function Reference

GUI Development

Predefined Dialog Boxes (p. 1-108) Dialog boxes for error, user input,
waiting, etc.

User Interface Deployment (p. 1-109) Launch GUIs, create the handles
structure

User Interface Development
(p. 1-109)

Start GUIDE, manage application
data, get user input

User Interface Objects (p. 1-110) Create GUI components
Objects from Callbacks (p. 1-111) Find object handles from within

callbacks functions
GUI Utilities (p. 1-111) Move objects, wrap text
Program Execution (p. 1-112) Wait and resume based on user

input

Predefined Dialog Boxes

dialog Create and display dialog box
errordlg Create and open error dialog box
export2wsdlg Export variables to workspace
helpdlg Create and open help dialog box
inputdlg Create and open input dialog box
listdlg Create and open list-selection dialog

box
msgbox Create and open message box
printdlg Print dialog box
printpreview Preview figure to print
questdlg Create and open question dialog box
uigetdir Open standard dialog box for

selecting a directory

1-108

GUI Development

uigetfile Open standard dialog box for
retrieving files

uigetpref Open dialog box for retrieving
preferences

uiopen Open file selection dialog box with
appropriate file filters

uiputfile Open standard dialog box for saving
files

uisave Open standard dialog box for saving
workspace variables

uisetcolor Open standard dialog box for setting
object’s ColorSpec

uisetfont Open standard dialog box for setting
object’s font characteristics

waitbar Open waitbar
warndlg Open warning dialog box

User Interface Deployment

guidata Store or retrieve GUI data
guihandles Create structure of handles
movegui Move GUI figure to specified location

on screen
openfig Open new copy or raise existing copy

of saved figure

User Interface Development

addpref Add preference
getappdata Value of application-defined data
getpref Preference

1-109

1 Function Reference

ginput Graphical input from mouse or
cursor

guidata Store or retrieve GUI data
guide Open GUI Layout Editor
inspect Open Property Inspector
isappdata True if application-defined data

exists
ispref Test for existence of preference
rmappdata Remove application-defined data
rmpref Remove preference
setappdata Specify application-defined data
setpref Set preference
uigetpref Open dialog box for retrieving

preferences
uisetpref Manage preferences used in

uigetpref

waitfor Wait for condition before resuming
execution

waitforbuttonpress Wait for key press or mouse-button
click

User Interface Objects

menu Generate menu of choices for user
input

uibuttongroup Create container object to exclusively
manage radio buttons and toggle
buttons

uicontextmenu Create context menu
uicontrol Create user interface control object

1-110

GUI Development

uimenu Create menus on figure windows
uipanel Create panel container object
uipushtool Create push button on toolbar
uitable Create 2-D graphic table GUI

component
uitoggletool Create toggle button on toolbar
uitoolbar Create toolbar on figure

Objects from Callbacks

findall Find all graphics objects
findfigs Find visible offscreen figures
findobj Locate graphics objects with specific

properties
gcbf Handle of figure containing object

whose callback is executing
gcbo Handle of object whose callback is

executing

GUI Utilities

getpixelposition Get component position in pixels
listfonts List available system fonts
selectmoveresize Select, move, resize, or copy axes

and uicontrol graphics objects
setpixelposition Set component position in pixels
textwrap Wrapped string matrix for given

uicontrol
uistack Reorder visual stacking order of

objects

1-111

1 Function Reference

Program Execution

uiresume Resume execution of blocked M-file
uiwait Block execution and wait for resume

1-112

External Interfaces

External Interfaces

Dynamic Link Libraries (p. 1-113) Access functions stored in external
shared library (.dll) files

Java (p. 1-114) Work with objects constructed from
Java API and third-party class
packages

Component Object Model and
ActiveX (p. 1-115)

Integrate COM components into
your application

Web Services (p. 1-117) Communicate between applications
over a network using SOAP and
WSDL

Serial Port Devices (p. 1-118) Read and write to devices connected
to your computer’s serial port

See also MATLAB C and Fortran API Reference for functions you can use
in external routines that interact with MATLAB programs and the data in
MATLAB workspaces.

Dynamic Link Libraries

calllib Call function in shared library
libfunctions Return information on functions in

shared library
libfunctionsview View functions in a shared library
libisloaded Determine if shared library is loaded
libpointer Create pointer object for use with

shared libraries
libstruct Create structure pointer for use with

shared libraries

1-113

1 Function Reference

loadlibrary Load shared library into MATLAB
software

unloadlibrary Unload shared library from memory

Java

class Create object or return class of object
fieldnames Field names of structure, or public

fields of object
import Add package or class to current

import list
inspect Open Property Inspector
isa Determine whether input is object

of given class
isjava Determine whether input is Sun

Java object
javaaddpath Add entries to dynamic Sun Java

class path
javaArray Construct Sun Java array
javachk Generate error message based on

Sun Java feature support
javaclasspath Set and get dynamic Sun Java class

path
javaMethod Invoke Sun Java method
javaObject Construct Sun Java object
javarmpath Remove entries from dynamic Sun

Java class path
methods Information on class methods

1-114

External Interfaces

methodsview Information on class methods in
separate window

usejava Determine whether Sun Java feature
is supported in MATLAB software

Component Object Model and ActiveX

actxcontrol Create Microsoft® ActiveX® control
in figure window

actxcontrollist List all currently installed Microsoft
ActiveX controls

actxcontrolselect Open GUI to create Microsoft
ActiveX control

actxGetRunningServer Get handle to running instance of
Automation server

actxserver Create COM server
addproperty Add custom property to COM object
class Create object or return class of object
delete (COM) Remove COM control or server
deleteproperty Remove custom property from COM

object
enableservice Enable, disable, or report status of

Automation server
eventlisteners List all event handler functions

registered for COM object
events (COM) List of events COM object can trigger
Execute Execute MATLAB command in

Automation server
Feval (COM) Evaluate MATLAB function in

Automation server

1-115

1 Function Reference

fieldnames Field names of structure, or public
fields of object

get (COM) Get property value from interface, or
display properties

GetCharArray Get character array from server
GetFullMatrix Get matrix from server
GetVariable Get data from variable in server

workspace
GetWorkspaceData Get data from server workspace
inspect Open Property Inspector
interfaces List custom interfaces to COM server
invoke Invoke method on COM object or

interface, or display methods
isa Determine whether input is object

of given class
iscom Is input COM object
isevent True if COM object event
isinterface Is input COM interface
ismethod Determine whether input is COM

object method
isprop Determine whether input is COM

object property
load (COM) Initialize control object from file
MaximizeCommandWindow Open server window on Microsoft

Windows desktop
methods Information on class methods
methodsview Information on class methods in

separate window
MinimizeCommandWindow Minimize size of server window

1-116

External Interfaces

move Move or resize control in parent
window

propedit (COM) Open built-in property page for
control

PutCharArray Store character array in server
PutFullMatrix Store matrix in server
PutWorkspaceData Store data in server workspace
Quit (COM) Terminate MATLAB server
registerevent Register event handler for COM

object event at run-time
release Release COM interface
save (COM) Serialize control object to file
set (COM) Set object or interface property to

specified value
unregisterallevents Unregister all event handlers for

COM object event at run-time
unregisterevent Unregister event handler for COM

object event at run-time

Web Services

callSoapService Send SOAP message off to endpoint
createClassFromWsdl Create MATLAB object based on

WSDL file
createSoapMessage Create SOAP message to send to

server
parseSoapResponse Convert response string from SOAP

server into MATLAB types

1-117

1 Function Reference

Serial Port Devices

clear (serial) Remove serial port object from
MATLAB workspace

delete (serial) Remove serial port object from
memory

fgetl (serial) Read line of text from device and
discard terminator

fgets (serial) Read line of text from device and
include terminator

fopen (serial) Connect serial port object to device
fprintf (serial) Write text to device
fread (serial) Read binary data from device
fscanf (serial) Read data from device, and format

as text
fwrite (serial) Write binary data to device
get (serial) Serial port object properties
instrcallback Event information when event

occurs
instrfind Read serial port objects frommemory

to MATLAB workspace
instrfindall Find visible and hidden serial port

objects
isvalid (serial) Determine whether serial port

objects are valid
length (serial) Length of serial port object array
load (serial) Load serial port objects and variables

into MATLAB workspace
readasync Read data asynchronously from

device
record Record data and event information

to file

1-118

External Interfaces

save (serial) Save serial port objects and variables
to MAT-file

serial Create serial port object
serialbreak Send break to device connected to

serial port
set (serial) Configure or display serial port

object properties
size (serial) Size of serial port object array
stopasync Stop asynchronous read and write

operations

1-119

1 Function Reference

1-120

2

Functions — Alphabetical
List

Arithmetic Operators + - * / \ ^ ’
Relational Operators < > <= >= == ~=
Logical Operators: Elementwise & | ~
Logical Operators: Short-circuit && ||
Special Characters [] () {} = ’ , ; : % ! @
colon (:)
abs
accumarray
acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
actxcontrol
actxcontrollist
actxcontrolselect
actxGetRunningServer
actxserver
addCause (MException)
addevent
addframe
addlistener (handle)

2 Functions — Alphabetical List

addOptional (inputParser)
addParamValue (inputParser)
addpath
addpref
addprop (dynamicprops)
addproperty
addRequired (inputParser)
addsample
addsampletocollection
addtodate
addts
airy
align
alim
all
allchild
alpha
alphamap
amd
ancestor
and
angle
annotation
Annotation Arrow Properties
Annotation Doublearrow Properties
Annotation Ellipse Properties
Annotation Line Properties
Annotation Rectangle Properties
Annotation Textarrow Properties
Annotation Textbox Properties
ans
any
area
Areaseries Properties
arrayfun
ascii
asec

2-2

asecd
asech
asin
asind
asinh
assert
assignin
atan
atan2
atand
atanh
audioplayer
audiorecorder
aufinfo
auread
auwrite
avifile
aviinfo
aviread
axes
Axes Properties
axis
balance
bar, barh
bar3, bar3h
Barseries Properties
base2dec
beep
bench
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaln

2-3

2 Functions — Alphabetical List

bicg
bicgstab
bin2dec
binary
bitand
bitcmp
bitget
bitmax
bitor
bitset
bitshift
bitxor
blanks
blkdiag
box
break
brighten
brush
bsxfun
builddocsearchdb
builtin
bvp4c
bvp5c
bvpget
bvpinit
bvpset
bvpxtend
calendar
calllib
callSoapService
camdolly
cameratoolbar
camlight
camlookat
camorbit
campan
campos

2-4

camproj
camroll
camtarget
camup
camva
camzoom
cart2pol
cart2sph
case
cast
cat
catch
caxis
cd
cd (ftp)
cdf2rdf
cdfepoch
cdfinfo
cdfread
cdfwrite
ceil
cell
cell2mat
cell2struct
celldisp
cellfun
cellplot
cellstr
cgs
char
checkin
checkout
chol
cholinc
cholupdate
circshift
cla

2-5

2 Functions — Alphabetical List

clabel
class
classdef
clc
clear
clearvars
clear (serial)
clf
clipboard
clock
close
close (avifile)
close (ftp)
closereq
cmopts
colamd
colorbar
colordef
colormap
colormapeditor
ColorSpec (Color Specification)
colperm
comet
comet3
commandhistory
commandwindow
compan
compass
complex
computer
cond
condeig
condest
coneplot
conj
continue
contour

2-6

contour3
contourc
contourf
Contourgroup Properties
contourslice
contrast
conv
conv2
convhull
convhulln
convn
copyfile
copyobj
corrcoef
cos
cosd
cosh
cot
cotd
coth
cov
cplxpair
cputime
create (RandStream)
createClassFromWsdl
createCopy (inputParser)
createSoapMessage
cross
csc
cscd
csch
csvread
csvwrite
ctranspose (timeseries)
cumprod
cumsum
cumtrapz

2-7

2 Functions — Alphabetical List

curl
customverctrl
cylinder
daqread
daspect
datacursormode
datatipinfo
date
datenum
datestr
datetick
datevec
dbclear
dbcont
dbdown
dblquad
dbmex
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
dde23
ddeget
ddesd
ddeset
deal
deblank
debug
dec2base
dec2bin
dec2hex
decic
deconv
del2

2-8

delaunay
delaunay3
delaunayn
delete
delete (COM)
delete (ftp)
delete (handle)
delete (serial)
delete (timer)
deleteproperty
delevent
delsample
delsamplefromcollection
demo
depdir
depfun
det
detrend
detrend (timeseries)
deval
diag
dialog
diary
diff
diffuse
dir
dir (ftp)
disp
disp (memmapfile)
disp (MException)
disp (serial)
disp (timer)
display
divergence
dlmread
dlmwrite
dmperm

2-9

2 Functions — Alphabetical List

doc
docopt
docsearch
dos
dot
double
dragrect
drawnow
dsearch
dsearchn
dynamicprops
echo
echodemo
edit
eig
eigs
ellipj
ellipke
ellipsoid
else
elseif
enableservice
end
eomday
eps
eq
eq (MException)
erf, erfc, erfcx, erfinv, erfcinv
error
errorbar
Errorbarseries Properties
errordlg
etime
etree
etreeplot
eval
evalc

2-10

evalin
event.EventData
event.PropertyEvent
event.listener
event.proplistener
eventlisteners
events
events (COM)
Execute
exifread
exist
exit
exp
expint
expm
expm1
export2wsdlg
eye
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
factor
factorial
false
fclose
fclose (serial)
feather
feof
ferror
feval
Feval (COM)

2-11

2 Functions — Alphabetical List

fft
fft2
fftn
fftshift
fftw
fgetl
fgetl (serial)
fgets
fgets (serial)
fieldnames
figure
Figure Properties
figurepalette
fileattrib
filebrowser
File Formats
filehandle
filemarker
fileparts
fileread
filesep
fill
fill3
filter
filter (timeseries)
filter2
find
findall
findfigs
findobj
findobj (handle)
findprop (handle)
findstr
finish
fitsinfo
fitsread
fix

2-12

flipdim
fliplr
flipud
floor
flow
fminbnd
fminsearch
fopen
fopen (serial)
for
format
fplot
fprintf
fprintf (serial)
frame2im
fread
fread (serial)
freqspace
frewind
fscanf
fscanf (serial)
fseek
ftell
ftp
full
fullfile
func2str
function
function_handle (@)
functions
funm
fwrite
fwrite (serial)
fzero
gallery
gamma, gammainc, gammaln
gca

2-13

2 Functions — Alphabetical List

gcbf
gcbo
gcd
gcf
gco
ge
genpath
genvarname
get
get (COM)
get (hgsetget)
get (memmapfile)
get (RandStream)
get (serial)
get (timer)
get (timeseries)
get (tscollection)
getabstime (timeseries)
getabstime (tscollection)
getappdata
GetCharArray
getdatasamplesize
getDefaultStream (RandStream)
getdisp (hgsetget)
getenv
getfield
getframe
GetFullMatrix
getinterpmethod
getpixelposition
getpref
getqualitydesc
getReport (MException)
getsampleusingtime (timeseries)
getsampleusingtime (tscollection)
gettimeseriesnames
gettsafteratevent

2-14

gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent
gettsbetweenevents
GetVariable
GetWorkspaceData
ginput
global
gmres
gplot
grabcode
gradient
graymon
grid
griddata
griddata3
griddatan
gsvd
gt
gtext
guidata
guide
guihandles
gunzip
gzip
hadamard
handle
hankel
hdf
hdf5
hdf5info
hdf5read
hdf5write
hdfinfo
hdfread
hdftool

2-15

2 Functions — Alphabetical List

help
helpbrowser
helpdesk
helpdlg
helpwin
hess
hex2dec
hex2num
hgexport
hggroup
Hggroup Properties
hgload
hgsave
hgsetget
hgtransform
Hgtransform Properties
hidden
hilb
hist
histc
hold
home
horzcat
horzcat (tscollection)
hostid
hsv2rgb
hypot
i
idealfilter (timeseries)
idivide
if
ifft
ifft2
ifftn
ifftshift
ilu
im2frame

2-16

im2java
imag
image
Image Properties
imagesc
imfinfo
imformats
import
importdata
imread
imwrite
ind2rgb
ind2sub
Inf
inferiorto
info
inline
inmem
inpolygon
input
inputdlg
inputname
inputParser
inspect
instrcallback
instrfind
instrfindall
int2str
int8, int16, int32, int64
interfaces
interp1
interp1q
interp2
interp3
interpft
interpn
interpstreamspeed

2-17

2 Functions — Alphabetical List

intersect
intmax
intmin
intwarning
inv
invhilb
invoke
ipermute
iqr (timeseries)
is*
isa
isappdata
iscell
iscellstr
ischar
iscom
isdir
isempty
isempty (timeseries)
isempty (tscollection)
isequal
isequal (MException)
isequalwithequalnans
isevent
isfield
isfinite
isfloat
isglobal
ishandle
ishold
isinf
isinteger
isinterface
isjava
isKey (Map)
iskeyword
isletter

2-18

islogical
ismac
ismember
ismethod
isnan
isnumeric
isobject
isocaps
isocolors
isonormals
isosurface
ispc
ispref
isprime
isprop
isreal
isscalar
issorted
isspace
issparse
isstr
isstrprop
isstruct
isstudent
isunix
isvalid (handle)
isvalid (serial)
isvalid (timer)
isvarname
isvector
j
javaaddpath
javaArray
javachk
javaclasspath
javaMethod
javaObject

2-19

2 Functions — Alphabetical List

javarmpath
keyboard
keys (Map)
kron
last (MException)
lasterr
lasterror
lastwarn
lcm
ldl
ldivide, rdivide
le
legend
legendre
length
length (Map)
length (serial)
length (timeseries)
length (tscollection)
libfunctions
libfunctionsview
libisloaded
libpointer
libstruct
license
light
Light Properties
lightangle
lighting
lin2mu
line
Line Properties
Lineseries Properties
LineSpec (Line Specification)
linkaxes
linkdata
linkprop

2-20

linsolve
linspace
list (RandStream)
listdlg
listfonts
load
load (COM)
load (serial)
loadlibrary
loadobj
log
log10
log1p
log2
logical
loglog
logm
logspace
lookfor
lower
ls
lscov
lsqnonneg
lsqr
lt
lu
luinc
magic
makehgtform
containers.Map
mat2cell
mat2str
material
matlabcolon (matlab:)
matlabrc
matlabroot
matlab (UNIX)

2-21

2 Functions — Alphabetical List

matlab (Windows)
max
max (timeseries)
MaximizeCommandWindow
maxNumCompThreads
mean
mean (timeseries)
median
median (timeseries)
memmapfile
memory
menu
mesh, meshc, meshz
meshgrid
meta.class
meta.class.fromName
meta.DynamicProperty
meta.event
meta.method
meta.package
meta.package.fromName
meta.package.getAllPackages
meta.property
metaclass
methods
methodsview
mex
mex.getCompilerConfigurations
MException
mexext
mfilename
mget
min
min (timeseries)
MinimizeCommandWindow
minres
mislocked

2-22

mkdir
mkdir (ftp)
mkpp
mldivide \, mrdivide /
mlint
mlintrpt
mlock
mmfileinfo
mmreader
mod
mode
more
move
movefile
movegui
movie
movie2avi
mput
msgbox
mtimes
mu2lin
multibandread
multibandwrite
munlock
namelengthmax
NaN
nargchk
nargin, nargout
nargoutchk
native2unicode
nchoosek
ndgrid
ndims
ne
ne (MException)
netcdf
netcdf.abort

2-23

2 Functions — Alphabetical List

netcdf.close
netcdf.copyAtt
netcdf.create
netcdf.defDim
netcdf.defVar
netcdf.delAtt
netcdf.endDef
netcdf.getAtt
netcdf.getConstant
netcdf.getConstantNames
netcdf.getVar
netcdf.inq
netcdf.inqAtt
netcdf.inqAttID
netcdf.inqAttName
netcdf.inqDim
netcdf.inqDimID
netcdf.inqLibVers
netcdf.inqVar
netcdf.inqVarID
netcdf.open
netcdf.putAtt
netcdf.putVar
netcdf.reDef
netcdf.renameAtt
netcdf.renameDim
netcdf.renameVar
netcdf.setDefaultFormat
netcdf.setFill
netcdf.sync
newplot
nextpow2
nnz
noanimate
nonzeros
norm
normest

2-24

not
notebook
notify (handle)
now
nthroot
null
num2cell
num2hex
num2str
numel
nzmax
ode15i
ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb
odefile
odeget
odeset
odextend
onCleanup
ones
open
openfig
opengl
openvar
optimget
optimset
or
ordeig
orderfields
ordqz
ordschur
orient
orth
otherwise
pack
padecoef
pagesetupdlg
pan

2-25

2 Functions — Alphabetical List

pareto
parfor
parse (inputParser)
parseSoapResponse
partialpath
pascal
patch
Patch Properties
path
path2rc
pathsep
pathtool
pause
pbaspect
pcg
pchip
pcode
pcolor
pdepe
pdeval
peaks
perl
perms
permute
persistent
pi
pie
pie3
pinv
planerot
playshow
plot
plot (timeseries)
plot3
plotbrowser
plotedit
plotmatrix

2-26

plottools
plotyy
pol2cart
polar
poly
polyarea
polyder
polyeig
polyfit
polyint
polyval
polyvalm
pow2
power
ppval
prefdir
preferences
primes
print, printopt
printdlg
printpreview
prod
profile
profsave
propedit
propedit (COM)
properties
propertyeditor
psi
publish
PutCharArray
PutFullMatrix
PutWorkspaceData
pwd
qmr
qr
qrdelete

2-27

2 Functions — Alphabetical List

qrinsert
qrupdate
quad
quadgk
quadl
quadv
questdlg
quit
Quit (COM)
quiver
quiver3
Quivergroup Properties
qz
rand
rand (RandStream)
randi
randi (RandStream)
randn
randn (RandStream)
randperm
randperm (RandStream)
RandStream
RandStream (RandStream)
rank
rat, rats
rbbox
rcond
read
readasync
real
reallog
realmax
realmin
realpow
realsqrt
record
rectangle

2-28

Rectangle Properties
rectint
recycle
reducepatch
reducevolume
refresh
refreshdata
regexp, regexpi
regexprep
regexptranslate
registerevent
rehash
release
relationaloperators (handle)
rem
remove (Map)
removets
rename
repmat
resample (timeseries)
resample (tscollection)
reset
reset (RandStream)
reshape
residue
restoredefaultpath
rethrow
rethrow (MException)
return
rgb2hsv
rgbplot
ribbon
rmappdata
rmdir
rmdir (ftp)
rmfield
rmpath

2-29

2 Functions — Alphabetical List

rmpref
root object
Root Properties
roots
rose
rosser
rot90
rotate
rotate3d
round
rref
rsf2csf
run
save
save (COM)
save (serial)
saveas
saveobj
savepath
scatter
scatter3
Scattergroup Properties
schur
script
sec
secd
sech
selectmoveresize
semilogx, semilogy
sendmail
serial
serialbreak
set
set (COM)
set (hgsetget)
set (RandStream)
set (serial)

2-30

set (timer)
set (timeseries)
set (tscollection)
setabstime (timeseries)
setabstime (tscollection)
setappdata
setDefaultStream (RandStream)
setdiff
setdisp (hgsetget)
setenv
setfield
setinterpmethod
setpixelposition
setpref
setstr
settimeseriesnames
setxor
shading
shg
shiftdim
showplottool
shrinkfaces
sign
sin
sind
single
sinh
size
size (Map)
size (serial)
size (timeseries)
size (tscollection)
slice
smooth3
snapnow
sort
sortrows

2-31

2 Functions — Alphabetical List

sound
soundsc
spalloc
sparse
spaugment
spconvert
spdiags
specular
speye
spfun
sph2cart
sphere
spinmap
spline
spones
spparms
sprand
sprandn
sprandsym
sprank
sprintf
spy
sqrt
sqrtm
squeeze
ss2tf
sscanf
stairs
Stairseries Properties
start
startat
startup
std
std (timeseries)
stem
stem3
Stemseries Properties

2-32

stop
stopasync
str2double
str2func
str2mat
str2num
strcat
strcmp, strcmpi
stream2
stream3
streamline
streamparticles
streamribbon
streamslice
streamtube
strfind
strings
strjust
strmatch
strncmp, strncmpi
strread
strrep
strtok
strtrim
struct
struct2cell
structfun
strvcat
sub2ind
subplot
subsasgn
subsindex
subspace
subsref
substruct
subvolume
sum

2-33

2 Functions — Alphabetical List

sum (timeseries)
superiorto
support
surf, surfc
surf2patch
surface
Surface Properties
Surfaceplot Properties
surfl
surfnorm
svd
svds
swapbytes
switch
symamd
symbfact
symmlq
symrcm
symvar
synchronize
syntax
system
tan
tand
tanh
tar
tempdir
tempname
tetramesh
texlabel
text
Text Properties
textread
textscan
textwrap
throw (MException)
throwAsCaller (MException)

2-34

tic, toc
timer
timerfind
timerfindall
timeseries
title
todatenum
toeplitz
toolboxdir
trace
transpose (timeseries)
trapz
treelayout
treeplot
tril
trimesh
triplequad
triplot
trisurf
triu
true
try
tscollection
tsdata.event
tsearch
tsearchn
tsprops
tstool
type
typecast
uibuttongroup
Uibuttongroup Properties
uicontextmenu
Uicontextmenu Properties
uicontrol
Uicontrol Properties
uigetdir

2-35

2 Functions — Alphabetical List

uigetfile
uigetpref
uiimport
uimenu
Uimenu Properties
uint8, uint16, uint32, uint64
uiopen
uipanel
Uipanel Properties
uipushtool
Uipushtool Properties
uiputfile
uiresume
uisave
uisetcolor
uisetfont
uisetpref
uistack
uitable
Uitable Properties
uitoggletool
Uitoggletool Properties
uitoolbar
Uitoolbar Properties
uiwait
undocheckout
unicode2native
union
unique
unix
unloadlibrary
unmkpp
unregisterallevents
unregisterevent
untar
unwrap
unzip

2-36

upper
urlread
urlwrite
usejava
userpath
validateattributes
validatestring
values (Map)
vander
var
var (timeseries)
varargin
varargout
vectorize
ver
verctrl
verLessThan
version
vertcat
vertcat (timeseries)
vertcat (tscollection)
view
viewmtx
visdiff
volumebounds
voronoi
voronoin
wait
waitbar
waitfor
waitforbuttonpress
warndlg
warning
waterfall
wavfinfo
wavplay
wavread

2-37

2 Functions — Alphabetical List

wavrecord
wavwrite
web
weekday
what
whatsnew
which
while
whitebg
who, whos
wilkinson
winopen
winqueryreg
wk1finfo
wk1read
wk1write
workspace
xlabel, ylabel, zlabel
xlim, ylim, zlim
xlsfinfo
xlsread
xlswrite
xmlread
xmlwrite
xor
xslt
zeros
zip
zoom

2-38

Arithmetic Operators + - * / \ ^ ’

Purpose Matrix and array arithmetic

Syntax A+B
A-B
A*B
A.*B
A/B
A./B
A\B
A.\B
A^B
A.^B
A'
A.'

Description MATLAB software has two different types of arithmetic operations.
Matrix arithmetic operations are defined by the rules of linear algebra.
Array arithmetic operations are carried out element by element, and
can be used with multidimensional arrays. The period character
(.) distinguishes the array operations from the matrix operations.
However, since the matrix and array operations are the same for
addition and subtraction, the character pairs .+ and .- are not used.

+ Addition or unary plus. A+B adds A and B. A and B must have
the same size, unless one is a scalar. A scalar can be added
to a matrix of any size.

- Subtraction or unary minus. A-B subtracts B from A. A and B
must have the same size, unless one is a scalar. A scalar can
be subtracted from a matrix of any size.

2-39

Arithmetic Operators + - * / \ ^ ’

* Matrix multiplication. C = A*B is the linear algebraic product
of the matrices A and B. More precisely,

C i j A i k B k j
k

n
(,) (,) (,)=

=
∑

1

For nonscalar A and B, the number of columns of A must equal
the number of rows of B. A scalar can multiply a matrix of
any size.

.* Array multiplication. A.*B is the element-by-element product
of the arrays A and B. A and B must have the same size, unless
one of them is a scalar.

/ Slash or matrix right division. B/A is roughly the same as
B*inv(A). More precisely, B/A = (A'\B')'. See the reference
page for mrdivide for more information.

./ Array right division. A./B is the matrix with elements
A(i,j)/B(i,j). A and B must have the same size, unless one
of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B
is roughly the same as inv(A)*B, except it is computed in a
different way. If A is an n-by-n matrix and B is a column vector
with n components, or a matrix with several such columns,
then X = A\B is the solution to the equation AX = B computed
by Gaussian elimination. A warning message is displayed if A
is badly scaled or nearly singular. See the reference page for
mldivide for more information.

2-40

Arithmetic Operators + - * / \ ^ ’

If A is an m-by-n matrix with m ~= n and B is a column vector
with m components, or a matrix with several such columns,
then X = A\B is the solution in the least squares sense to the
under- or overdetermined system of equations AX = B. The
effective rank, k, of A is determined from the QR decomposition
with pivoting (see “Algorithm” on page 2-2333 for details). A
solution X is computed that has at most k nonzero components
per column. If k < n, this is usually not the same solution
as pinv(A)*B, which is the least squares solution with the

smallest norm X .
.\ Array left division. A.\B is the matrix with elements

B(i,j)/A(i,j). A and B must have the same size, unless one
of them is a scalar.

^ Matrix power. X^p is X to the power p, if p is a scalar. If p is an
integer, the power is computed by repeated squaring. If the
integer is negative, X is inverted first. For other values of p,
the calculation involves eigenvalues and eigenvectors, such
that if [V,D] = eig(X), then X^p = V*D.^p/V.
If x is a scalar and P is a matrix, x^P is x raised to the matrix
power P using eigenvalues and eigenvectors. X^P, where X and
P are both matrices, is an error.

.^ Array power. A.^B is the matrix with elements A(i,j) to the
B(i,j) power. A and B must have the same size, unless one of
them is a scalar.

' Matrix transpose. A' is the linear algebraic transpose of A. For
complex matrices, this is the complex conjugate transpose.

.' Array transpose. A.' is the array transpose of A. For complex
matrices, this does not involve conjugation.

2-41

Arithmetic Operators + - * / \ ^ ’

Nondouble
Data Type
Support

This section describes the arithmetic operators’ support for data types
other than double.

Data Type single

You can apply any of the arithmetic operators to arrays of type single
and MATLAB software returns an answer of type single. You can
also combine an array of type double with an array of type single,
and the result has type single.

Integer Data Types

You can apply most of the arithmetic operators to real arrays of the
following integer data types:

• int8 and uint8

• int16 and uint16

• int32 and uint32

All operands must have the same integer data type and MATLAB
returns an answer of that type.

Note The arithmetic operators do not support operations on the data
types int64 or uint64. Except for the unary operators +A and A.',
the arithmetic operators do not support operations on complex arrays
of any integer data type.

For example,

x = int8(3) + int8(4);
class(x)

ans =

int8

2-42

Arithmetic Operators + - * / \ ^ ’

The following table lists the binary arithmetic operators that you can
apply to arrays of the same integer data type. In the table, A and B are
arrays of the same integer data type and c is a scalar of type double or
the same type as A and B.

Operation Support when A and B Have Same Integer Type

+A, -A Yes
A+B, A+c,
c+B

Yes

A-B, A-c,
c-B

Yes

A.*B Yes
A*c, c*B Yes
A*B No
A/c, c/B Yes
A.\B, A./B Yes
A\B, A/B No
A.^B Yes, if B has nonnegative integer values.
c^k Yes, for a scalar c and a nonnegative scalar integer k,

which have the same integer data type or one of which
has type double

A.', A' Yes

Combining Integer Data Types with Type Double

For the operations that support integer data types, you can combine a
scalar or array of an integer data type with a scalar, but not an array,
of type double and the result has the same integer data type as the
input of integer type. For example,

y = 5 + int32(7);
class(y)

2-43

Arithmetic Operators + - * / \ ^ ’

ans =

int32

However, you cannot combine an array of an integer data type with
either of the following:

• A scalar or array of a different integer data type

• A scalar or array of type single

The section “Numeric Classes”, under “Classes (Data Types)” in the
MATLAB Programming Fundamentals documentation, provides more
information about operations on nondouble data types.

Remarks The arithmetic operators have M-file function equivalents, as shown:

Binary addition A+B plus(A,B)

Unary plus +A uplus(A)

Binary subtraction A-B minus(A,B)

Unary minus -A uminus(A)

Matrix
multiplication

A*B mtimes(A,B)

Arraywise
multiplication

A.*B times(A,B)

Matrix right
division

A/B mrdivide(A,B)

Arraywise right
division

A./B rdivide(A,B)

Matrix left division A\B mldivide(A,B)

Arraywise left
division

A.\B ldivide(A,B)

2-44

Arithmetic Operators + - * / \ ^ ’

Matrix power A^B mpower(A,B)

Arraywise power A.^B power(A,B)

Complex transpose A' ctranspose(A)

Matrix transpose A.' transpose(A)

Note For some toolboxes, the arithmetic operators are overloaded,
that is, they perform differently in the context of that toolbox. To see
the toolboxes that overload a given operator, type help followed by
the operator name. For example, type help plus. The toolboxes that
overload plus (+) are listed. For information about using the operator
in that toolbox, see the documentation for the toolbox.

Examples Here are two vectors, and the results of various matrix and array
operations on them, printed with format rat.

Matrix Operations Array Operations

x 1

2

3

y 4

5

6

x' 1 2 3 y' 4 5 6

x+y 5

7

9

x-y -3

-3

-3

x + 2 3

4

5

x-2 -1

0

1

2-45

Arithmetic Operators + - * / \ ^ ’

Matrix Operations Array Operations

x * y Error x.*y 4

10

18

x'*y 32 x'.*y Error
x*y' 4 5 6

8 10 12

12 15 18

x.*y' Error

x*2 2

4

6

x.*2 2

4

6

x\y 16/7 x.\y 4

5/2

2

2\x 1/2

1

3/2

2./x 2

1

2/3
x/y 0 0 1/6

0 0 1/3

0 0 1/2

x./y 1/4

2/5

1/2

x/2 1/2

1

3/2

x./2 1/2

1

3/2

2-46

Arithmetic Operators + - * / \ ^ ’

Matrix Operations Array Operations

x^y Error x.^y 1

32

729

x^2 Error x.^2 1

4

9

2^x Error 2.^x 2

4

8

(x+i*y)' 1 - 4i 2 - 5i
3 - 6i

(x+i*y).' 1 + 4i 2 + 5i
3 + 6i

Diagnostics • From matrix division, if a square A is singular,

Warning: Matrix is singular to working precision.

• From elementwise division, if the divisor has zero elements,

Warning: Divide by zero.

Matrix division and elementwise division can produce NaNs or Infs
where appropriate.

• If the inverse was found, but is not reliable,

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = xxx

• From matrix division, if a nonsquare A is rank deficient,

2-47

Arithmetic Operators + - * / \ ^ ’

Warning: Rank deficient, rank = xxx tol = xxx

See Also mldivide, mrdivide, chol, det, inv, lu, orth, permute, ipermute, qr,
rref

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

[2] Davis, T.A., UMFPACK Version 4.6 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2002.

[3] Davis, T. A., CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod), Dept. of
Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, 2005.

2-48

http://www.netlib.org/lapack/lug/lapack_lug.html
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/cholmod

Relational Operators < > <= >= == ~=

Purpose Relational operations

Syntax A < B
A > B
A <= B
A >= B
A == B
A ~= B

Description The relational operators are <, >, <=, >=, ==, and ~=. Relational
operators perform element-by-element comparisons between two
arrays. They return a logical array of the same size, with elements
set to logical 1 (true) where the relation is true, and elements set to
logical 0 (false) where it is not.

The operators <, >, <=, and >= use only the real part of their operands for
the comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors
of dissimilar length to be compared.

Note For some toolboxes, the relational operators are overloaded,
that is, they perform differently in the context of that toolbox. To see
the toolboxes that overload a given operator, type help followed by the
operator name. For example, type help lt. The toolboxes that overload
lt (<) are listed. For information about using the operator in that
toolbox, see the documentation for the toolbox.

Examples If one of the operands is a scalar and the other a matrix, the scalar
expands to the size of the matrix. For example, the two pairs of
statements

X = 5; X >= [1 2 3; 4 5 6; 7 8 10]
X = 5*ones(3,3); X >= [1 2 3; 4 5 6; 7 8 10]

produce the same result:

2-49

Relational Operators < > <= >= == ~=

ans =

1 1 1
1 1 0
0 0 0

See Also all, any, find, strcmp

Logical Operators: Elementwise & | ~, Logical Operators:
Short-circuit && ||

2-50

Logical Operators: Elementwise & | ~

Purpose Elementwise logical operations on arrays

Syntax expr1 & expr2
expr1 | expr2
~expr

Description The symbols &, |, and ~ are the logical array operators AND, OR, and NOT.
These operators are commonly used in conditional statements, such as
if and while, to determine whether or not to execute a particular block
of code. Logical operations return a logical array with elements set to
1 (true) or 0 (false), as appropriate.

expr1 & expr2 represents a logical AND operation between values,
arrays, or expressions expr1 and expr2. In an AND operation, if expr1
is true and expr2 is true, then the AND of those inputs is true. If
either expression is false, the result is false. Here is a pseudocode
example of AND:

IF (expr1: all required inputs were passed) AND ...
(expr2: all inputs are valid)

THEN (result: execute the function)

expr1 | expr2 represents a logical OR operation between values,
arrays, or expressions expr1 and expr2. In an OR operation, if expr1
is true or expr2 is true, then the OR of those inputs is true. If both
expressions are false, the result is false. Here is a pseudocode
example of OR:

IF (expr1: S is a string) OR ...
(expr2: S is a cell array of strings)

THEN (result: parse string S)

~expr represents a logical NOT operation applied to expression expr. In
a NOT operation, if expr is false, then the result of the operation is
true. If expr is true, the result is false. Here is a pseudocode example
of NOT:

IF (expr: function returned a Success status) is NOT true

2-51

Logical Operators: Elementwise & | ~

THEN (result: throw an error)

The function xor(A,B) implements the exclusive OR operation.

Logical Operations on Arrays

The expression operands for AND, OR, and NOT are often arrays of
nonsingleton dimensions. When this is the case, The MATLAB software
performs the logical operation on each element of the arrays. The
output is an array that is the same size as the input array or arrays.

If just one operand is an array and the other a scalar, then the scalar is
matched against each element of the array. When the operands include
two or more nonscalar arrays, the sizes of those arrays must be equal.

This table shows the output of AND, OR, and NOT statements that
use scalar and/or array inputs. In the table, S is a scalar array, A is a
nonscalar array, and R is the resulting array:

Operation Result

S1 & S2 R = S1 & S2

S & A R(1) = S & A(1); ...
R(2) = S & A(2); ...

A1 & A2 R(1) = A1(1) & A2(1);
R(2) = A1(2) & A2(2); ...

S1 | S2 R = S1 | S2

S | A R(1) = S | A(1);
R(2) = S | A(2); ...

A1 | A2 R(1) = A1(1) | A2(1);
R(2) = A1(2) | A2(2); ...

~S R = ~S

~A R(1) = ~A(1);
R(2) = ~A(2), ...

2-52

Logical Operators: Elementwise & | ~

Compound Logical Statements

The number of expressions that you can evaluate with AND or OR is
not limited to two (e.g., A & B). Statements such as the following are
also valid:

expr1 & expr2 & expr3 | expr4 & expr5

Use parentheses to establish the order in which MATLAB evaluates
a compound operation. Note the difference in the following two
statements:

(expr1 & expr2) | (expr3 & expr4) % 2-component OR
expr1 & (expr2 | expr3) & expr4 % 3-component AND

Operator Precedence

The precedence for the logical operators with respect to each other
is shown in the table below. MATLAB always gives the & operator
precedence over the | operator. Although MATLAB typically evaluates
expressions from left to right, the expression a|b&c is evaluated as
a|(b&c). It is a good idea to use parentheses to explicitly specify the
intended precedence of statements containing combinations of & and |.

Operator Operation Priority

~ NOT Highest
& Elementwise AND
| Elementwise OR
&& Short-circuit AND
|| Short-circuit OR Lowest

Short-Circuiting in Elementwise Operators

The &, and |operators do not short-circuit. See the documentation on
the && and || operators if you need short-circuiting capability.

When used in the context of an if or while expression, and only in
this context, the elementwise & and | operators use short-circuiting in

2-53

Logical Operators: Elementwise & | ~

evaluating their expressions. That is, A&B and A|B ignore the second
operand, B, if the first operand, A, is sufficient to determine the result.

So, although the statement 1|[] evaluates to false, the same statement
evaluates to true when used in either an if or while expression:

A = 1; B = [];
if(A|B) disp 'The statement is true', end;

The statement is true

while the reverse logical expression, which does not short-circuit,
evaluates to false:

if(B|A) disp 'The statement is true', end;

Another example of short-circuiting with elementwise operators shows
that a logical expression such as the one shown below, which under
most circumstances is invalid due to a size mismatch between A and B,
works within the context of an if or while expression:

The A|B statement generates an error:

A = [1 1]; B = [2 0 1];
A|B
??? Error using ==> or
Matrix dimensions must agree.

But the same statement used to test an if condition does not error:

if (A|B) disp 'The statement is true', end;
The statement is true

Operator Truth Table

The following is a truth table for the operators and functions in the
previous example.

2-54

Logical Operators: Elementwise & | ~

Inputs and or not xor

A B A & B A | B ~A xor(A,B)

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0

Equivalent Functions

These logical operators have M-file function equivalents, as shown here.

Logical
Operation Equivalent Function

A & B and(A,B)

A | B or(A,B)

~A not(A)

Examples Example 1 — Conditional Statement with OR

Using OR in a conditional statement, call function parseString on S,
but only if S is a character array or a cell array of strings:

if ischar(S) || iscellstr(S)
parseString(S)

end

Example 2 — Array AND Array

Find those elements of array R that are both greater than 0.3 AND
less then 0.9:

rand('state',0);
R=rand(5,7);

R>0.3 & R<0.9

2-55

Logical Operators: Elementwise & | ~

ans =
0 1 1 1 0 0 0
0 1 1 0 1 0 1
1 0 0 0 1 1 1
1 1 1 1 0 0 0
1 1 0 1 0 0 1

Example 3 — Array AND Scalar

Find those elements of array R that are greater than or equal to 25
AND are less than or equal to 50:

rand('state',0);
R = rand(3,5) * 50;
R > 40

ans =

1 0 0 0 1
0 1 0 0 0
0 0 1 0 0

Example 4 — Check Status with NOT

Throw an error if the return status of a function does NOT indicate
success:

[Z, status] = myfun(X, Y);
if ~(status == SUCCESS);

error('Error in function myfun')
end

Example 5 — OR of Binary Arrays

This example shows the logical OR of the elements in the vector u with
the corresponding elements in the vector v:

u = [0 0 1 1 0 1];
v = [0 1 1 0 0 1];
u | v

2-56

Logical Operators: Elementwise & | ~

ans =
0 1 1 1 0 1

See Also all, any, find, logical, xor, true, false

Logical Operators: Short-circuit && ||

Relational Operators < > <= >= == ~=

2-57

Logical Operators: Short-circuit && ||

Purpose Logical operations, with short-circuiting capability

Syntax expr1 && expr2
expr1 || expr2

Description expr1 && expr2 represents a logical AND operation that employs
short-circuiting behavior. With short-circuiting, the second operand
expr2 is evaluated only when the result is not fully determined by the
first operand expr1. For example, if A = 0, then the following statement
evaluates to false, regardless of the value of B, so the MATLAB
software does not evaluate B:

A && B

These two expressions must each be a valid MATLAB statement that
evaluates to a scalar logical result.

expr1 || expr2 represents a logical OR operation that employs
short-circuiting behavior.

Note Always use the && and || operators when short-circuiting is
required. Using the elementwise operators (& and |) for short-circuiting
can yield unexpected results.

Examples In the following statement, it doesn’t make sense to evaluate the
relation on the right if the divisor, b, is zero. The test on the left is put
in to avoid generating a warning under these circumstances:

x = (b ~= 0) && (a/b > 18.5)

By definition, if any operands of an AND expression are false, the
entire expression must be false. So, if (b ~= 0) evaluates to false,
MATLAB assumes the entire expression to be false and terminates its
evaluation of the expression early. This avoids the warning that would
be generated if MATLAB were to evaluate the operand on the right.

2-58

Logical Operators: Short-circuit && ||

See Also all, any, find, logical, xor, true, false

Logical Operators: Elementwise & | ~

Relational Operators < > <= >= == ~=

2-59

Special Characters [] () {} = ’ , ; : % ! @

Purpose Special characters

Syntax []
{ }
()
=
'
.
.
.()
..
...
,
;
:
%
%{ %}
!
@

2-60

Special Characters [] () {} = ’ , ; : % ! @

Description [] Brackets are used to form vectors and matrices. [6.9 9.64
sqrt(-1)] is a vector with three elements separated by blanks.
[6.9, 9.64, i] is the same thing. [1+j 2-j 3] and [1 +j
2 -j 3] are not the same. The first has three elements, the
second has five.

[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends
the first row.

Vectors and matrices can be used inside [] brackets. [A
B;C] is allowed if the number of rows of A equals the number
of rows of B and the number of columns of A plus the number
of columns of B equals the number of columns of C. This
rule generalizes in a hopefully obvious way to allow fairly
complicated constructions.

A = [] stores an empty matrix in A. A(m,:) = [] deletes
row m of A. A(:,n) = [] deletes column n of A. A(n) = []
reshapes A into a column vector and deletes the third element.

[A1,A2,A3...] = function assigns function output to
multiple variables.

For the use of [and] on the left of an “=” in multiple
assignment statements, see lu, eig, svd, and so on.

{ } Curly braces are used in cell array assignment statements. For
example, A(2,1) = {[1 2 3; 4 5 6]}, or A{2,2} = ('str').
See help paren for more information about { }.

2-61

Special Characters [] () {} = ’ , ; : % ! @

() Parentheses are used to indicate precedence in arithmetic
expressions in the usual way. They are used to enclose
arguments of functions in the usual way. They are also used
to enclose subscripts of vectors and matrices in a manner
somewhat more general than usual. If X and V are vectors,
then X(V) is [X(V(1)), X(V(2)), ..., X(V(n))]. The
components of V must be integers to be used as subscripts. An
error occurs if any such subscript is less than 1 or greater than
the size of X. Some examples are

• X(3) is the third element of X.

• X([1 2 3]) is the first three elements of X.

See help paren for more information about ().
If X has n components, X(n: 1:1) reverses them. The same
indirect subscripting works in matrices. If V has m components
and W has n components, then A(V,W) is the m-by-n matrix
formed from the elements of A whose subscripts are the
elements of V and W. For example, A([1,5],:) = A([5,1],:)
interchanges rows 1 and 5 of A.

= Used in assignment statements. B = A stores the elements of A
in B. == is the relational equals operator. See the Relational
Operators < > <= >= == ~= page.

' Matrix transpose. X' is the complex conjugate transpose of X.
X.' is the nonconjugate transpose.

Quotation mark. 'any text' is a vector whose components are
the ASCII codes for the characters. A quotation mark within
the text is indicated by two quotation marks.

. Decimal point. 314/100, 3.14, and .314e1 are all the same.

Element-by-element operations. These are obtained using .* ,
.^, ./, or .\. See the Arithmetic Operators page.

. Field access. S(m).f when S is a structure, accesses the
contents of field f of that structure.

2-62

Special Characters [] () {} = ’ , ; : % ! @

.(
)

Dynamic Field access. S.(df) when A is a structure, accesses
the contents of dynamic field df of that structure. Dynamic
field names are defined at runtime.

.. Parent directory. See cd.

... Continuation. Three or more periods at the end of a line
continue the current function on the next line. Three or more
periods before the end of a line cause the MATLAB software to
ignore the remaining text on the current line and continue the
function on the next line. This effectively makes a comment
out of anything on the current line that follows the three
periods. See “Entering Multiple-Line (Long) Statements —
Line Continuation” for more information.

, Comma. Used to separate matrix subscripts and function
arguments. Used to separate statements in multistatement
lines. For multistatement lines, the comma can be replaced by
a semicolon to suppress printing.

; Semicolon. Used inside brackets to end rows. Used after an
expression or statement to suppress printing or to separate
statements.

: Colon. Create vectors, array subscripting, and for loop
iterations. See colon (:) for details.

% Percent. The percent symbol denotes a comment; it indicates
a logical end of line. Any following text is ignored. MATLAB
displays the first contiguous comment lines in a M-file in
response to a help command.

%{
%}

Percent-brace. The text enclosed within the %{ and %} symbols
is a comment block. Use these symbols to insert comments that
take up more than a single line in your M-file code. Any text
between these two symbols is ignored by MATLAB.

With the exception of whitespace characters, the %{ and %}
operators must appear alone on the lines that immediately
precede and follow the block of help text. Do not include any
other text on these lines.

2-63

Special Characters [] () {} = ’ , ; : % ! @

! Exclamation point. Indicates that the rest of the input line is
issued as a command to the operating system. See “Running
External Programs” for more information.

@ Function handle. MATLAB data type that is a handle to a
function. See function_handle (@) for details.

Remarks Some uses of special characters have M-file function equivalents, as
shown:

Horizontal
concatenation

[A,B,C...] horzcat(A,B,C...)

Vertical
concatenation

[A;B;C...] vertcat(A,B,C...)

Subscript reference A(i,j,k...)subsref(A,S). See help
subsref.

Subscript
assignment

A(i,j,k...)=
B

subsasgn(A,S,B). See help
subsasgn.

Note For some toolboxes, the special characters are overloaded, that
is, they perform differently in the context of that toolbox. To see the
toolboxes that overload a given character, type help followed by the
character name. For example, type help transpose. The toolboxes
that overload transpose (.') are listed. For information about using
the character in that toolbox, see the documentation for the toolbox.

See Also Arithmetic Operators + - * / \ ^ '

Relational Operators < > <= >= == ~=

Logical Operators: Elementwise & | ~,

2-64

colon (:)

Purpose Create vectors, array subscripting, and for-loop iterators

Description The colon is one of the most useful operators in MATLAB. It can create
vectors, subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced
vectors:

j:k is the same as [j,j+1,...,k]
j:k is empty if j > k

j:i:k is the same as [j,j+i,j+2i, ...,k]

j:i:k is empty if i == 0, if i > 0 and j > k, or if i < 0 and j < k

where i, j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick
out selected rows, columns, and elements of vectors, matrices, and
higher-dimensional arrays:

A(:,j) is the jth column of A
A(i,:) is the ith row of A
A(:,:) is the equivalent two-dimensional array. For matrices this

is the same as A.
A(j:k) is A(j), A(j+1),...,A(k)

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k)

A(:,:,k) is the kth page of three-dimensional array A.
A(i,j,k,:)is a vector in four-dimensional array A. The vector includes

A(i,j,k,1), A(i,j,k,2), A(i,j,k,3), and so on.
A(:) is all the elements of A, regarded as a single column. On

the left side of an assignment statement, A(:) fills A,
preserving its shape from before. In this case, the right
side must contain the same number of elements as A.

2-65

colon (:)

For more information on how the colon operator works, see
http://www.mathworks.com/support/solutions/data/1-4FLI96.html?solution=1-4FLI96.

Examples Using the colon with integers,

D = 1:4

results in

D =
1 2 3 4

Using two colons to create a vector with arbitrary real increments
between the elements,

E = 0:.1:.5

results in

E =
0 0.1000 0.2000 0.3000 0.4000 0.5000

The command

A(:,:,2) = pascal(3)

generates a three-dimensional array whose first page is all zeros.

A(:,:,1) =
0 0 0
0 0 0
0 0 0

A(:,:,2) =
1 1 1
1 2 3
1 3 6

Using a colon with characters to iterate a for-loop,

2-66

http://www.mathworks.com/support/solutions/data/1-4FLI96.html?solution=1-4FLI96

colon (:)

for x='a':'d',x,end

results in

x =
a

x =
b

x =
c

x =
d

See Also for, linspace, logspace, reshape

2-67

abs

Purpose Absolute value and complex magnitude

Syntax abs(X)

Description abs(X) returns an array Y such that each element of Y is the absolute
value of the corresponding element of X.

If X is complex, abs(X) returns the complex modulus (magnitude),
which is the same as

sqrt(real(X).^2 + imag(X).^2)

Examples abs(-5)
ans =

5

abs(3+4i)
ans =

5

See Also angle, sign, unwrap

2-68

accumarray

Purpose Construct array with accumulation

Syntax A = accumarray(subs,val)
A = accumarray(subs,val,sz)
A = accumarray(subs,val,sz,fun)
A = accumarray(subs,val,sz,fun,fillval)
A = accumarray(subs,val,sz,fun,fillval,issparse)
A = accumarray({subs1, subs2, ...}, val, ...)

Description accumarray groups elements from a data set and applies a function
to each group. A = accumarray(subs,val) creates an array A by
accumulating elements of the vector val using the elements of subs as
indices. The position of an element in subs determines which value of
vals it selects for the accumulated vector; the value of an element in
subs determines the position of the accumulated vector in the output.

A = accumarray(subs,val,sz) creates an array A with size sz,
where sz is a vector of positive integers. If subs is nonempty with
N>1 columns, then sz must have N elements, where all(sz >=
max(subs,[],1)). If subs is a nonempty column vector, then sz must
be [M 1], where M >= MAX(subs). Specify sz as [] for the default
behavior.

A = accumarray(subs,val,sz,fun) applies function fun to each
subset of elements of val. The default accumulating function is sum. To
specify another function fun, use the @ symbol (e.g., @max). The function
fun must accept a column vector and return a numeric, logical, or
character scalar, or a scalar cell. Return value A has the same class as
the values returned by fun. Specify fun as [] for the default behavior.

A = accumarray(subs,val,sz,fun,fillval) puts the scalar value
fillval in elements of A that are not referred to by any row of subs.
For example, if subs is empty, then A is repmat(fillval,sz). fillval
and the values returned by fun must belong to the same class. The
default value of fillval is 0.

A = accumarray(subs,val,sz,fun,fillval,issparse) creates an
array A that is sparse if the scalar input issparse is equal to logical 1
(i.e., true), or full if issparse is equal to logical 0 (false). A is full by

2-69

accumarray

default. If issparse is true, then fillval must be zero or [], and val
and the output of fun must be double.

A = accumarray({subs1, subs2, ...}, val, ...) passes multiple
subs vectors in a cell array. You can use any of the four optional inputs
(sz, fun, fillval, or issparse) with this syntax.

Note If the subscripts in subs are not sorted, fun should not depend on
the order of the values in its input data.

The function processes the input as follows:

1 Find out how many unique indices there are in subs. Each unique
index defines a bin in the output array. The maximum index value in
subs determines the size of the output array.

2 Find out how many times each index is repeated.

This determines how many elements of vals are going to be
accumulated at each bin in the output array.

3 Create an output array. The output array is of size max(subs) or
of size sz.

4 Accumulate the entries in vals into bins using the values of the
indices in subs and apply fun to the entries in each bin.

5 Fill the values in the output for positions not referred to by subs.
Default fill value is zero; use fillval to set a different value.

2-70

accumarray

Note subs should contain positive integers. subs can also be a cell
vector with one or more elements, each element a vector of positive
integers. All the vectors must have the same length. In this case, subs
is treated as if the vectors formed columns of an index matrix.val must
be a numeric, logical, or character vector with the same length as
the number of rows in subs. val can also be a scalar whose value is
repeated for all the rows of subs.

Examples Example 1

Create a 5-by-1 vector and sum values for repeated 1-D subscripts:

val = 101:105;
subs = [1; 2; 4; 2; 4]
subs =

1
2
4
2
4

A = accumarray(subs, val)
A =

101 % A(1) = val(1) = 101
206 % A(2) = val(2)+val(4) = 102+104 = 206

0 % A(3) = 0
208 % A(4) = val(3)+val(5) = 103+105 = 208

Example 2

Create a 4-by-4 matrix and subtract values for repeated 2-D subscripts:

val = 101:106;
subs=[1 2; 1 2; 3 1; 4 1; 4 4; 4 1];
B = accumarray(subs,val,[],@(x)sum(diff(x)))

B =

2-71

accumarray

0 -1 0 0
0 0 0 0
0 0 0 0
2 0 0 0

The order of the subscripts matters:

val = 101:106;
subs=[1 2; 3 1; 1 2; 4 4; 4 1; 4 1];
B1 = accumarray(subs,val,[],@(x)sum(diff(x)))

B1 =

0 -2 0 0
0 0 0 0
0 0 0 0

-1 0 0 0

Example 3

Create a 2-by-3-by-2 array and sum values for repeated 3-D subscripts:

val = 101:105;
subs = [1 1 1; 2 1 2; 2 3 2; 2 1 2; 2 3 2];

A = accumarray(subs, val)
A(:,:,1) =

101 0 0
0 0 0

A(:,:,2) =
0 0 0

206 0 208

Example 4

Create a 2-by-3-by-2 array, and sum values natively:

val = 101:105;
subs = [1 1 1; 2 1 2; 2 3 2; 2 1 2; 2 3 2];

2-72

accumarray

A = accumarray(subs, int8(val), [], @(x) sum(x,'native'))
A(:,:,1) =

101 0 0
0 0 0

A(:,:,2) =
0 0 0

127 0 127

class(A)
ans =

int8

Example 5

Pass multiple subscript arguments in a cell array.

1 Create a 12-element vector V:

V = 101:112;

2 Create three 12-element vectors, one for each dimension of the
resulting array A. Note how the indices of these vectors determine
which elements of V are accumulated in A:

% index 1 index 6 => V(1)+V(6) => A(1,3,1)
% | |
rowsubs = [1 3 3 2 3 1 2 2 3 3 1 2];
colsubs = [3 4 2 1 4 3 4 2 2 4 3 4];
pagsubs = [1 1 2 2 1 1 2 1 1 1 2 2];
% |
% index 4 => V(4) => A(2,1,2)
%
% A(1,3,1) = V(1) + V(6) = 101 + 106 = 207
% A(2,1,2) = V(4) = 104

3 Call accumarray, passing the subscript vectors in a cell array:

A = accumarray({rowsubs colsubs pagsubs}, V)

2-73

accumarray

A(:,:,1) =
0 0 207 0 % A(1,3,1) is 207
0 108 0 0
0 109 0 317

A(:,:,2) =
0 0 111 0

104 0 0 219 % A(2,1,2) is 104
0 103 0 0

Example 6

Create an array with the max function, and fill all empty elements of
that array with NaN:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @max, NaN)
A =

101 NaN NaN NaN
104 NaN 105 NaN

Example 7

Create a sparse matrix using the prod function:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @prod, 0, true)
A =

(1,1) 101
(2,1) 10608
(2,3) 10815

Example 8

Count the number of entries accumulated in each bin:

val = 1;

2-74

accumarray

subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4])
A =

1 0 0 0
2 0 2 0

Example 9

Create a logical array that shows which bins will accumulate two or
more values:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @(x) length(x) > 1)
A =

0 0 0 0
1 0 1 0

Example 10

Group values in a cell array:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @(x) {x})
A =

[101] [] [] []
[2x1 double] [] [2x1 double] []

A{2}
ans =

104
102

See Also full, sparse, sum

2-75

acos

Purpose Inverse cosine; result in radians

Syntax Y = acos(X)

Description Y = acos(X) returns the inverse cosine (arccosine) for each element of
X. For real elements of X in the domain , acos(X) is real and in
the range . For real elements of X outside the domain ,
acos(X) is complex.

The acos function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse cosine function over the domain .

x = -1:.05:1;
plot(x,acos(x)), grid on

2-76

acos

Definition The inverse cosine can be defined as

Algorithm acos uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems™ business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also acosd, acosh, cos

2-77

http://www.netlib.org

acosd

Purpose Inverse cosine; result in degrees

Syntax Y = acosd(X)

Description Y = acosd(X) is the inverse cosine, expressed in degrees, of the
elements of X.

See Also cosd, acos

2-78

acosh

Purpose Inverse hyperbolic cosine

Syntax Y = acosh(X)

Description Y = acosh(X) returns the inverse hyperbolic cosine for each element
of X.

The acosh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosine function over the domain .

x = 1:pi/40:pi;
plot(x,acosh(x)), grid on

Definition The hyperbolic inverse cosine can be defined as

2-79

acosh

Algorithm acosh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also acos, cosh

2-80

http://www.netlib.org

acot

Purpose Inverse cotangent; result in radians

Syntax Y = acot(X)

Description Y = acot(X) returns the inverse cotangent (arccotangent) for each
element of X.

The acot function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse cotangent over the domains and
.

x1 = -2*pi:pi/30:-0.1;
x2 = 0.1:pi/30:2*pi;
plot(x1,acot(x1),x2,acot(x2)), grid on

Definition The inverse cotangent can be defined as

2-81

acot

Algorithm acot uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also cot, acotd, acoth

2-82

http://www.netlib.org

acotd

Purpose Inverse cotangent; result in degrees

Syntax Y = acosd(X)

Description Y = acosd(X) is the inverse cotangent, expressed in degrees, of the
elements of X.

See Also cotd, acot

2-83

acoth

Purpose Inverse hyperbolic cotangent

Syntax Y = acoth(X)

Description Y = acoth(X) returns the inverse hyperbolic cotangent for each
element of X.

The acoth function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cotangent over the domains
and .

x1 = -30:0.1:-1.1;
x2 = 1.1:0.1:30;
plot(x1,acoth(x1),x2,acoth(x2)), grid on

Definition The hyperbolic inverse cotangent can be defined as

2-84

acoth

Algorithm acoth uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also acot, coth

2-85

http://www.netlib.org

acsc

Purpose Inverse cosecant; result in radians

Syntax Y = acsc(X)

Description Y = acsc(X) returns the inverse cosecant (arccosecant) for each
element of X.

The acsc function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse cosecant over the domains and
.

x1 = -10:0.01:-1.01;
x2 = 1.01:0.01:10;
plot(x1,acsc(x1),x2,acsc(x2)), grid on

2-86

acsc

Definition The inverse cosecant can be defined as

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also csc, acscd, acsch

2-87

http://www.netlib.org

acscd

Purpose Inverse cosecant; result in degrees

Syntax Y = acscd(X)

Description Y = acscd(X) is the inverse cotangent, expressed in degrees, of the
elements of X.

See Also cscd, acsc

2-88

acsch

Purpose Inverse hyperbolic cosecant

Syntax Y = acsch(X)

Description Y = acsch(X) returns the inverse hyperbolic cosecant for each element
of X.

The acsch function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosecant over the domains
and .

x1 = -20:0.01:-1;
x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2)), grid on

Definition The hyperbolic inverse cosecant can be defined as

2-89

acsch

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also acsc, csch

2-90

http://www.netlib.org

actxcontrol

Purpose Create Microsoft ActiveX control in figure window

Syntax h = actxcontrol('progid')
h = actxcontrol('progid','param1',value1,...)
h = actxcontrol('progid', position)
h = actxcontrol('progid', position, fig_handle)
h = actxcontrol('progid',position,fig_handle,event_handler)
h = actxcontrol('progid',position,fig_handle,event_handler,

'filename')

Description h = actxcontrol('progid') creates an ActiveX® control in a
figure window. The programmatic identifier (progid) for the control
determines the type of control created. (See the documentation provided
by the control vendor to get this string.) The returned object, h,
represents the default interface for the control.

Note that progid cannot be an ActiveX server because the MATLAB
software cannot insert ActiveX servers in a figure. See actxserver for
use with ActiveX servers.

h = actxcontrol('progid','param1',value1,...) creates an
ActiveX control using the optional parameter name/value pairs.
Parameter names include:

• position — MATLAB position vector specifying the control’s
position. The format is [left, bottom, width, height] using pixel units.

• parent— Handle to parent figure, model, or command window.

• callback— Name of event handler. Specify a single name to use the
same handler for all events. Specify a cell array of event name/event
handler pairs to handle specific events.

• filename — Sets the control’s initial conditions to those in the
previously saved control.

• licensekey — License key to create licensed ActiveX controls that
require design-time licenses. See “Deploying ActiveX Controls
Requiring Run-Time Licenses” for information on how to use controls
that require run-time licenses.

2-91

actxcontrol

One possible format is:

h = actxcontrol('myProgid','newPosition',[0 0 200 200],...
'myFigHandle',gcf,...
'myCallback',{'Click' 'myClickHandler';...
'DblClick' 'myDblClickHandler';...
'MouseDown' 'myMouseDownHandler'});

The following syntaxes are deprecated and will not become obsolete.
They are included for reference, but the above syntaxes are preferred.

h = actxcontrol('progid', position) creates an ActiveX control
having the location and size specified in the vector, position. The
format of this vector is:

[x y width height]

The first two elements of the vector determine where the control is
placed in the figure window, with x and y being offsets, in pixels, from
the bottom left corner of the figure window to the same corner of the
control. The last two elements, width and height, determine the size
of the control itself.

The default position vector is [20 20 60 60].

h = actxcontrol('progid', position, fig_handle) creates an
ActiveX control at the specified position in an existing figure window.
This window is identified by the Handle Graphics handle, fig_handle.

The current figure handle is returned by the gcf command.

Note If the figure window designated by fig_handle is invisible, the
control is invisible. If you want the control you are creating to be
invisible, use the handle of an invisible figure window.

h = actxcontrol('progid',position,fig_handle,event_handler)
creates an ActiveX control that responds to events. Controls respond
to events by invoking an M-file function whenever an event (such

2-92

actxcontrol

as clicking a mouse button) is fired. The event_handler argument
identifies one or more M-file functions to be used in handling events (see
“Specifying Event Handlers” on page 2-93 below).

h =
actxcontrol('progid',position,fig_handle,event_handler,'filename')
creates an ActiveX control with the first four arguments, and sets its
initial state to that of a previously saved control. MATLAB loads the
initial state from the file specified in the string filename.

If you don’t want to specify an event_handler, you can use an empty
string ('') as the fourth argument.

The progid argument must match the progid of the saved control.

Specifying Event Handlers

There is more than one valid format for the event_handler argument.
Use this argument to specify one of the following:

• A different event handler routine for each event supported by the
control

• One common routine to handle selected events

• One common routine to handle all events

In the first case, use a cell array for the event_handler argument, with
each row of the array specifying an event and handler pair:

{'event' 'eventhandler'; 'event2' 'eventhandler2'; ...}

event can be either a string containing the event name or a numeric
event identifier (see Example 2 below), and eventhandler is a string
identifying the M-file function you want the control to use in handling
the event. Include only those events that you want enabled.

In the second case, use the same cell array syntax just described, but
specify the same eventhandler for each event. Again, include only
those events that you want enabled.

2-93

actxcontrol

In the third case, make event_handler a string (instead of a cell array)
that contains the name of the one M-file function that is to handle all
events for the control.

There is no limit to the number of event and handler pairs you can
specify in the event_handler cell array.

Event handler functions should accept a variable number of arguments.

Strings used in the event_handler argument are not case sensitive.

Note Although using a single handler for all events may be easier in
some cases, specifying an individual handler for each event creates
more efficient code that results in better performance.

Remarks If the control implements any custom interfaces, use the interfaces
function to list them, and the invoke function to get a handle to a
selected interface.

When you no longer need the control, call release to release the
interface and free memory and other resources used by the interface.
Note that releasing the interface does not delete the control itself. Use
the delete function to do this.

For more information on handling control events, see Writing Event
Handlers in the External Interfaces documentation.

For an example event handler, see the file sampev.m in the
toolbox\matlab\winfun\comcli directory.

COM functions are available on Microsoft Windows systems only.

Note If you encounter problems creating Microsoft Forms 2.0 controls
in MATLAB software or other non-VBA container applications, see
“Using Microsoft Forms 2.0 Controls” in the External Interfaces
documentation.

2-94

actxcontrol

Examples Example 1 — Basic Control Methods

Start by creating a figure window to contain the control. Then create a
control to run a Microsoft Calendar application in the window. Position
the control at a [0 0] x-y offset from the bottom left of the figure
window, and make it the same size (600 x 500 pixels) as the figure
window.

f = figure('position', [300 300 600 500]);
cal = actxcontrol('mscal.calendar', [0 0 600 500], f);

Call the get method on cal to list all properties of the calendar,
including today’s date:

cal.get

For example, MATLAB displays (in part):

BackColor: 2.1475e+009
Day: 23

DayFont: [1x1 Interface.Standard_OLE_Types.Font]
Value: '8/20/2001'

.

.

.

Read today’s date:

date = cal.Value

MATLAB displays a date similar to:

date =
8/20/2001

Set the Day property to a new value:

cal.Day = 5;
date = cal.Value

2-95

actxcontrol

MATLAB displays a date similar to:

date =
8/5/2001

Call invoke to list all available methods:

meth = cal.invoke

MATLAB displays (in part):

meth =
NextDay: 'HRESULT NextDay(handle)'

NextMonth: 'HRESULT NextMonth(handle)'
NextWeek: 'HRESULT NextWeek(handle)'
NextYear: 'HRESULT NextYear(handle)'

.

.

.

Invoke the NextWeek method to advance the current date by one week:

cal.NextWeek;
date = cal.Value

MATLAB displays a date similar to:

date =
8/12/2001

Call events to list all calendar events that can be triggered:

cal.events

MATLAB displays:

Click = void Click()
DblClick = void DblClick()

2-96

actxcontrol

KeyDown = void KeyDown(int16 KeyCode, int16 Shift)
KeyPress = void KeyPress(int16 KeyAscii)
KeyUp = void KeyUp(int16 KeyCode, int16 Shift)
BeforeUpdate = void BeforeUpdate(int16 Cancel)
AfterUpdate = void AfterUpdate()
NewMonth = void NewMonth()
NewYear = void NewYear()

Example 2 — Event Handling

The event_handler argument specifies how you want the control to
handle any events that occur. The control can handle all events with
one common handler function, selected events with a common handler
function, or each type of event can be handled by a separate function.

This command creates an mwsamp control that uses one event handler,
sampev, to respond to all events:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, 'sampev');

The next command also uses a common event handler, but will only
invoke the handler when selected events, Click and DblClick are fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {'Click' 'sampev'; 'DblClick' 'sampev'});

This command assigns a different handler routine to each event. For
example, Click is an event, and myclick is the routine that executes
whenever a Click event is fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {'Click', 'myclick'; 'DblClick' 'my2click'; ...
'MouseDown' 'mymoused'});

The next command does the same thing, but specifies the events using
numeric event identifiers:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {-600, 'myclick'; -601 'my2click'; -605 'mymoused'});

2-97

actxcontrol

See the section, “Sample Event Handlers” in the External Interfaces
documentation for examples of event handler functions and how to
register them with MATLAB software.

See Also actxserver, release, delete (COM), save (COM), load (COM),
interfaces

2-98

actxcontrollist

Purpose List all currently installed Microsoft ActiveX controls

Syntax C = actxcontrollist

Description C = actxcontrollist returns a list of each control, including its name,
programmatic identifier (or ProgID), and filename, in output cell array
C.

Remarks COM functions are available on Microsoft Windows systems only.

Examples Here is an example of the information that might be returned for
several controls:

list = actxcontrollist;

for k = 1:2
sprintf(' Name = %s\n ProgID = %s\n File = %s\n', list{k,:})

end

MATLAB software displays information similar to:

ans =
Name = Calendar Control 11.0
ProgID = MSCAL.Calendar.7
File = C:\Program Files\MSOffice\OFFICE11\MSCAL.OCX

ans =
Name = CTreeView Control
ProgID = CTREEVIEW.CTreeViewCtrl.1
File = C:\WINNT\system32\dmocx.dll

See Also actxcontrolselect, actxcontrol

2-99

actxcontrolselect

Purpose Open GUI to create Microsoft ActiveX control

Syntax h = actxcontrolselect
[h, info] = actxcontrolselect

Description h = actxcontrolselect displays a graphical interface that lists all
ActiveX controls installed on the system and creates the one that you
select from the list. The function returns a handle h for the object. Use
the handle to identify this particular control object when calling other
MATLAB COM functions.

[h, info] = actxcontrolselect returns the handle h and also the
1-by-3 cell array info containing information about the control. The
information returned in the cell array shows the name, programmatic
identifier (or ProgID), and filename for the control.

2-100

actxcontrolselect

The actxcontrolselect interface has a selection pane at the left of the
window and a preview pane at the right. Click on one of the control
names in the selection pane to see a preview of the control displayed. (If
MATLAB cannot create the control, an error message is displayed in
the preview pane.) Select an item from the list and click the Create
button at the bottom.

Remarks Click the Properties button on the actxcontrolselect window to
enter nondefault values for properties when creating the control. You
can select which figure window to put the control in (Parent field),
where to position it in the window (X and Y fields), and what size to
make the control (Width and Height).

You can also register any events you want the control to respond to and
what event handling routines to use when any of these events fire. Do
this by entering the name of the appropriate event handling routine
to the right of the event, or clicking the Browse button to search for
the event handler file.

COM functions are available on Microsoft Windows systems only.

2-101

actxcontrolselect

Note If you encounter problems creating Microsoft Forms 2.0 controls
in MATLAB software or other non-VBA container applications, see
“Using Microsoft Forms 2.0 Controls” in the External Interfaces
documentation.

Examples Open a window showing the ActiveXcontrols on your system:

[h, info] = actxcontrolselect

Select the Calendar Control in the window and click Properties to
open the window shown above. Enter new values for the size of the
control, setting Width to 500 and Height to 350, then click OK. Click
Create in the actxcontrolselect window to create the control.

The control appears in a MATLAB figure window. MATLAB displays
information similar to (your version number may be different):

h =
COM.MSCAL_Calendar_7

info =
[1x21 char] 'MSCAL.Calendar.7' [1x44 char]%}

Expand the info cell array to show the control name, ProgID, and
filename:

info{:}

MATLAB displays information similar to:

ans =
Calendar Control 11.0

ans =
MSCAL.Calendar.7

ans =

2-102

actxcontrolselect

C:\Program Files\MSOffice\OFFICE11\MSCAL.OCX

See Also actxcontrollist, actxcontrol

2-103

actxGetRunningServer

Purpose Get handle to running instance of Automation server

Syntax h = actxGetRunningServer('progid')

Description h = actxGetRunningServer('progid') gets a reference to a
running instance of the OLE Automation server, where progid is the
programmatic identifier of the Automation server object and h is the
handle to the server object’s default interface.

The function issues an error if the server specified by progid is not
currently running or if the server object is not registered. When there
are multiple instances of the Automation server already running, the
behavior of this function is controlled by the operating system.

Remarks COM functions are available on Microsoft Windows systems only.

Example h = actxGetRunningServer('matlab.application')

See Also actxcontrol, actxserver

2-104

actxserver

Purpose Create COM server

Syntax h = actxserver('progid')
h = actxserver('progid', 'machine', 'machineName')
h = actxserver('progid', 'interface', 'interfaceName')
h = actxserver('progid', 'machine', 'machineName',

'interface', 'interfaceName')
h = actxserver('progid', machine)

Description h = actxserver('progid') creates a local OLE Automation server,
where progid is the programmatic identifier of the COM server, and h
is the handle of the server’s default interface.

Get progid from the control or server vendor’s documentation. To
see the progid values for MATLAB software, refer to “Programmatic
Identifiers” in the MATLAB External Interfaces documentation.

h = actxserver('progid', 'machine', 'machineName') creates an
OLE Automation server on a remote machine, where machineName is a
string specifying the name of the machine on which to launch the server.

h = actxserver('progid', 'interface', 'interfaceName')
creates a Custom interface server, where interfaceName is a
string specifying the interface name of the COM object. Values for
interfaceName are

• IUnknown — Use the IUnknown interface.

• The Custom interface name

You must know the name of the interface and have the server vendor’s
documentation in order to use the interfaceName value. See “COM
Server Types” in the MATLAB External Interfaces documentation for
information about Custom COM servers and interfaces.

Note The MATLAB COM Interface does not support invoking
functions with optional parameters.

2-105

actxserver

h = actxserver('progid', 'machine', 'machineName',
'interface', 'interfaceName') creates a Custom interface server on
a remote machine.

The following syntaxes are deprecated and will not become obsolete.
They are included for reference, but the syntaxes described earlier are
preferred:

h = actxserver('progid', machine) creates a COM server running
on the remote system named by the machine argument. This can be an
IP address or a DNS name. Use this syntax only in environments that
support Distributed Component Object Model (DCOM).

Remarks For components implemented in a dynamic link library (DLL),
actxserver creates an in-process server. For components implemented
as an executable (EXE), actxserver creates an out-of-process server.
Out-of-process servers can be created either on the client system or on
any other system on a network that supports DCOM.

If the control implements any Custom interfaces, use the interfaces
function to list them, and the invoke function to get a handle to a
selected interface.

You can register events for COM servers.

COM functions are available on Microsoft Windows systems only.

Microsoft
Excel
Workbook
Example

This example creates an OLE Automation server, Excel® version 9.0,
and manipulates a workbook in the application:

% Create a COM server running Microsoft Excel
e = actxserver ('Excel.Application')
%{
e =

COM.Excel.application
%}
% Make the Excel frame window visible
e.Visible = 1;

2-106

actxserver

% Use the get method on the Excel object "e"
% to list all properties of the application:
e.get
%{

Application: [1x1
Interface.Microsoft_Excel_9.0_Object_Library._Application]

Creator: 'xlCreatorCode'
.
.
.

Workbooks: [1x1
Interface.Microsoft_Excel_9.0_Object_Library.Workbooks]

.

.

.
Caption: 'Microsoft Excel - Book1'

CellDragAndDrop: 0
ClipboardFormats: {3x1 cell}

.

.

.
Cursor: 'xlNorthwestArrow'

.

.

.
%}
% Create an interface "eWorkBooks"
eWorkbooks = e.Workbooks
%{
eWorkbooks =

Interface.Microsoft_Excel_9.0_Object_Library.Workbooks
%}
% List all methods for that interface
eWorkbooks.invoke
%{

Add: 'handle Add(handle, [Optional]Variant)'
Close: 'void Close(handle)'

2-107

actxserver

Item: 'handle Item(handle, Variant)'
Open: 'handle Open(handle, string, [Optional]Variant)'

OpenText: 'void OpenText(handle, string, [Optional]Variant)'
.
.
.

%}
% Add a new workbook "w",
% also creating a new interface
w = eWorkbooks.Add
%{
w =

Interface.Microsoft_Excel_9.0_Object_Library._Workbook
%}
% Close Excel and delete the object
e.Quit;
e.delete;

See Also actxcontrol, actxGetRunningServer, release, delete (COM), save
(COM), load (COM), interfaces

COM functions are available on Microsoft Windows systems only.

2-108

addCause (MException)

Purpose Append MException objects

Syntax new_ME = addCause(base_ME, cause_ME)
base_ME = addCause(base_ME, cause_ME)

Description new_ME = addCause(base_ME, cause_ME) creates a new MException
object new_ME from two existing MException objects, base_ME and
cause_ME. addCause constructs new_ME by making a copy of the base_ME
object and appending cause_ME to the cause property of that object.

If other errors have contributed to the exception currently being thrown,
you can add the MException objects that represent these errors to the
cause field of the current MException to provide further information
for diagnosing the error at hand. All objects of the MException class
have a property called cause which is defined as a vector of additional
MException objects that can be added onto a base object of that class.

base_ME = addCause(base_ME, cause_ME) modifies existing
MException object base_ME by appending cause_ME to the cause
property of that object.

Examples Example 1

This example attempts to assign data from array D. If D does not exist,
the code attempts to recreate D by loading it from a MAT-file. The code
constructs a new MException object new_ME to store the causes of the
first two errors, cause1_ME and cause2_ME:

try
x = D(1:25);

catch cause1_ME
try

filename = 'test204';
testdata = load(filename);
x = testdata.D(1:25)

catch cause2_ME
base_ME = MException('MATLAB:LoadErr', ...

'Unable to load from file %s', filename);

2-109

addCause (MException)

new_ME = addCause(base_ME, cause1_ME);
new_ME = addCause(new_ME, cause2_ME);
throw(new_ME);

end
end

When you run the code, the MATLAB software displays the following
message:

??? Unable to load from file test204

There are two exceptions in the cause field of new_ME:

new_ME.cause
ans =

[1x1 MException]
[1x1 MException]

Examine the cause field of new_ME to see the related errors:

new_ME.cause{:}
ans =

MException object with properties:

identifier: 'MATLAB:UndefinedFunction'
message: 'Undefined function or method 'D' for

input arguments of type 'double'.'
stack: [0x1 struct]
cause: {}

ans =

MException object with properties:

identifier: 'MATLAB:load:couldNotReadFile'
message: 'Unable to read file test204: No such file

or directory.'
stack: [0x1 struct]

2-110

addCause (MException)

cause: {}

Example 2

This example attempts to open a file in a directory that is not on the
MATLAB path. It uses a nested try-catch block to give the user the
opportunity to extend the path. If the file still cannot be found, the
program issues an exception with the first error appended to the second
using addCause:

function data = read_it(filename);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch ME1
if strcmp(ME1.identifier, 'MATLAB:FileIO:InvalidFid')

msg = sprintf('\n%s%s%s', 'Cannot open file ', ...
filename, '. Try another location? ');

reply = input(msg, 's')
if reply(1) == 'y'

newdir = input('Enter directory name: ', 's');
else

throw(ME1);
end
addpath(newdir);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch ME2
ME3 = addCause(ME2, ME1)
throw(ME3);

end
rmpath(newdir);

end
end
fclose(fid);

2-111

addCause (MException)

If you run this function in a try-catch block at the command line, you
can look at the MException object by assigning it to a variable (e) with
the catch command.

try
d = read_it('anytextfile.txt');

catch e
end

e
e =
MException object with properties:

identifier: 'MATLAB:FileIO:InvalidFid'
message: 'Invalid file identifier. Use fopen

to generate a valid file identifier.'
stack: [1x1 struct]
cause: {[1x1 MException]}

Cannot open file anytextfile.txt. Try another location?y
Enter directory name: xxxxxxx
Warning: Name is nonexistent or not a directory: xxxxxxx.
> In path at 110

In addpath at 89

See Also try, catch, error, assert, , MException, throw(MException),
rethrow(MException), throwAsCaller(MException),
getReport(MException), disp(MException), isequal(MException),
eq(MException), ne(MException), last(MException)

2-112

addevent

Purpose Add event to timeseries object

Syntax ts = addevent(ts,e)
ts = addevent(ts,Name,Time)

Description ts = addevent(ts,e) adds one or more tsdata.event objects, e, to
the timeseries object ts. e is either a single tsdata.event object or
an array of tsdata.event objects.

ts = addevent(ts,Name,Time) constructs one or more tsdata.event
objects and adds them to the Events property of ts. Name is a cell array
of event name strings. Time is a cell array of event times.

Examples Create a time-series object and add an event to this object.

%% Import the sample data
load count.dat

%% Create time-series object
count1=timeseries(count(:,1),1:24,'name', 'data');

%% Modify the time units to be 'hours' ('seconds' is default)
count1.TimeInfo.Units = 'hours';

%% Construct and add the first event at 8 AM
e1 = tsdata.event('AMCommute',8);

%% Specify the time units of the time
e1.Units = 'hours';

View the properties (EventData, Name, Time, Units, and StartDate)
of the event object.

get(e1)

MATLAB software responds with

EventData: []

2-113

addevent

Name: 'AMCommute'
Time: 8

Units: 'hours'
StartDate: ''

%% Add the event to count1
count1 = addevent(count1,e1);

An alternative syntax for adding two events to the time series count1 is
as follows:

count1 = addevent(count1,{'AMCommute' 'PMCommute'},{8 18})

See Also timeseries, tsdata.event, tsprops

2-114

addframe

Purpose Add frame to Audio/Video Interleaved (AVI) file

Syntax aviobj = addframe(aviobj,frame)
aviobj = addframe(aviobj,frame1,frame2,frame3,...)
aviobj = addframe(aviobj,mov)
aviobj = addframe(aviobj,h)

Description aviobj = addframe(aviobj,frame) appends the data in frame to
the AVI file identified by aviobj, which was created by a previous
call to avifile. frame can be either an indexed image (m-by-n) or a
truecolor image (m-by-n-by-3) of double or uint8 precision. If frame is
not the first frame added to the AVI file, it must be consistent with the
dimensions of the previous frames.

addframe returns a handle to the updated AVI file object, aviobj. For
example, addframe updates the TotalFrames property of the AVI file
object each time it adds a frame to the AVI file.

aviobj = addframe(aviobj,frame1,frame2,frame3,...) adds
multiple frames to an AVI file.

aviobj = addframe(aviobj,mov) appends the frames contained in the
MATLAB movie mov to the AVI file aviobj. MATLAB movies that store
frames as indexed images use the colormap in the first frame as the
colormap for the AVI file, unless the colormap has been previously set.

aviobj = addframe(aviobj,h) captures a frame from the figure or
axis handle h and appends this frame to the AVI file. addframe renders
the figure into an offscreen array before appending it to the AVI file.
This ensures that the figure is written correctly to the AVI file even if
the figure is obscured on the screen by another window or screen saver.

Note If an animation uses XOR graphics, you must use getframe to
capture the graphics into a frame of a MATLAB movie. You can then
add the frame to an AVI movie using the addframe syntax aviobj =
addframe(aviobj,mov). See the example for an illustration.

2-115

addframe

Example This example calls addframe to add frames to the AVI file object aviobj.

t = linspace(0,2.5*pi,40);
fact = 10*sin(t);
fig=figure;
aviobj = avifile('example.avi')
[x,y,z] = peaks;
for k=1:length(fact)

h = surf(x,y,fact(k)*z);
axis([-3 3 -3 3 -80 80])
axis off
caxis([-90 90])
F = getframe(fig);
aviobj = addframe(aviobj,F);

end
close(fig)
aviobj = close(aviobj);

See Also avifile, close, movie2avi

2-116

addlistener (handle)

Purpose Create event listener

Syntax lh = addlistener(Hsource,'EventName',callback)
lh = addlistener(Hsource,property,'EventName',callback)

Description lh = addlistener(Hsource,'EventName',callback)) creates a
listener for the specified event.

lh = addlistener(Hsource,property,'EventName',callback)
creates a listener for one of the predefined property events. There are
four property events:

• PreSet — triggered just before the property value is set, before
calling its set access method.

• PostSet — triggered just after the property value is set.

• PreGet — triggered just before a property value query is serviced,
before calling its get access method.

• PostGet — triggered just after returning the property value to the
query

See “Defining Events and Listeners — Syntax and Techniques” for more
information.

Arguments

Hsource
Handle of the object that is the source of the event, or an array
of source handles.

EventName
Name of the event, which is triggered by the source objects.

callback
Function handle referencing a function to execute when the event
is triggered.

property
Character string that can be:

2-117

addlistener (handle)

• the name of the property

• a cell array of strings where each string is the name of a
property that exists in object array Hsource

• a meta.property object or an array of meta.property objects

• a cell array of meta.property objects

If Hsource is a scalar, then any of the properties can be dynamic
properties. If Hsource is non-scalar, then the properties must
belong to the class of Hsource and can not include dynamic
properties (which are not part of the class definition).

For more information, see the following sections:

• The GetObservable and SetObservable property attributes in
the “Property Attributes” table.

• “Creating Property Listeners”

• “Dynamic Properties — Adding Properties to an Instance”

lh
Handle of the event.listener object returned by addlistener.

Removing a Listener

To remove a listener, delete the listener object returned by addlistener.
For example,

delete(lh)

calls the handle class delete method to delete the object from the
workspace and remove the listener.

See Also delete (handle), handle, notify (handle)

2-118

addOptional (inputParser)

Purpose Add optional argument to inputParser schema

Syntax p.addOptional(argname, default, validator)
addOptional(p, argname, default, validator)

Description p.addOptional(argname, default, validator) updates the schema
for inputParser object p by adding an optional argument, argname.
Specify the argument name in a string enclosed within single quotation
marks. The default input specifies the value to use when the optional
argument argname is not present in the actual inputs to the function.
The optional validator input is a handle to a function that the
MATLAB software uses during parsing to validate the input arguments.
If the validator function returns false or errors, the parsing fails and
MATLAB throws an error.

MATLAB parses parameter-value arguments after required arguments
and optional arguments.

addOptional(p, argname, default, validator) is functionally the
same as the syntax above.

For more information on the inputParser class, see “Parsing Inputs
with inputParser”in the MATLAB Programming Fundamentals
documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class.

There are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these three syntaxes, you can see that there is one required
argument (script), one optional argument (format), and some number
of optional arguments that are specified as parameter-value pairs
(options).

2-119

addOptional (inputParser)

Begin writing the example publish_ip M-file by entering the following
two statements. The second statement calls the class constructor for
inputParser to create an instance of the class. This class instance, or
object, gives you access to all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

Following the constructor, add this block of code to the M-file.
This code uses the addRequired(inputParser), addOptional, and
addParamValue(inputParser) methods to define the input arguments
to the function:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)'

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

2-120

addOptional (inputParser)

See Also inputParser, addRequired(inputParser),
addParamValue(inputParser), parse(inputParser),
createCopy(inputParser)

2-121

addParamValue (inputParser)

Purpose Add parameter-value argument to inputParser schema

Syntax p.addParamValue(argname, default, validator)
addParamValue(p, argname, default, validator)

Description p.addParamValue(argname, default, validator) updates the
schema for inputParser object p by adding a parameter-value
argument, argname. Specify the argument name in a string enclosed
within single quotation marks. The default input specifies the value
to use when the optional argument name is not present in the actual
inputs to the function. The optional validator is a handle to a function
that the MATLAB software uses during parsing to validate the input
arguments. If the validator function returns false or errors, the
parsing fails and MATLAB throws an error.

MATLAB parses parameter-value arguments after required arguments
and optional arguments.

addParamValue(p, argname, default, validator) is functionally
the same as the syntax above.

For more information on the inputParser class, see “Parsing Inputs
with inputParser”in the MATLAB Programming Fundamentals
documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class. There
are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these calling syntaxes, you can see that there is one required
argument (script), one optional argument (format), and a number
of optional arguments that are specified as parameter-value pairs
(options).

2-122

addParamValue (inputParser)

Begin writing the example publish_ip M-file by entering the following
two statements. Call the class constructor for inputParser to create an
instance of the class. This class instance, or object, gives you access to
all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

After calling the constructor, add the following lines to the
M-file. This code uses the addRequired(inputParser),
addOptional(inputParser), and addParamValue methods to define the
input arguments to the function:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)'

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

2-123

addParamValue (inputParser)

See Also inputParser, addRequired(inputParser),
addOptional(inputParser), parse(inputParser),
createCopy(inputParser)

2-124

addpath

Purpose Add directories to search path

GUI
Alternatives

As an alternative to the addpath function, use the Set Path dialog box.

Syntax addpath('directory')
addpath('dir','dir2','dir3' ...)
addpath('dir','dir2','dir3' ...'-flag')
addpath dir1 dir2 dir3 ... -flag

Description addpath('directory') adds the specified directory to the top (also
called front) of the current MATLAB search path. Use the full
pathname for directory.

addpath('dir','dir2','dir3' ...) adds all the specified directories
to the top of the path. Use the full pathname for each dir.

addpath('dir','dir2','dir3' ...'-flag') adds the specified
directories to either the top or bottom of the path, depending on the
value of flag.

flag Argument Result

0 or begin Add specified directories to the top of the path
1 or end Add specified directories to the bottom (also

called end) of the path

addpath dir1 dir2 dir3 ... -flag is the unquoted form of the
syntax.

Remarks To recursively add subdirectories of your directory in addition to the
directory itself, run

addpath(genpath('directory'))

Use addpath statements in your startup.m file to use the modified path
in future sessions. For details, see “Automatically Modifying the Search

2-125

addpath

Path at Startup” in the MATLAB Desktop Tools and Development
Environment Documentation.

Examples For the current path, viewed by running path,

MATLABPATH
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

you can add c:/matlab/mymfiles to the front of the path by running

addpath('c:/matlab/mymfiles')

Verify that the files were added to the path by running

path

and MATLAB returns

MATLABPATH
c:\matlab\mymfiles
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

You can also use genpath in conjunction with addpath to add
subdirectories to the path. For example, to add /control and its
subdirectories to the path, use

addpath(genpath(fullfile(matlabroot,'toolbox/control')))

See Also genpath, path, pathsep, pathtool, rehash, restoredefaultpath,
rmpath, savepath, startup

“Search Path” in the MATLAB Desktop Tools and Development
Environment Documentation

2-126

addpref

Purpose Add preference

Syntax addpref('group','pref',val)
addpref('group',{'pref1','pref2',...'prefn'},{val1,val2,

...valn})

Description addpref('group','pref',val) creates the preference specified by
group and pref and sets its value to val. It is an error to add a
preference that already exists.

group labels a related collection of preferences. You can choose any
name that is a legal variable name, and is descriptive enough to be
unique, e.g. 'ApplicationOnePrefs'. The input argument pref
identifies an individual preference in that group, and must be a legal
variable name.

addpref('group',{'pref1','pref2',...'prefn'},{val1,val2,...valn})
creates the preferences specified by the cell array of names 'pref1',
'pref2',...,'prefn', setting each to the corresponding value.

Note Preference values are persistent and maintain their values
between MATLAB sessions. Where they are stored is system dependent.

Examples This example adds a preference called version to the mytoolbox group
of preferences and sets its value to the string 1.0.

addpref('mytoolbox','version','1.0')

See Also getpref, ispref, rmpref, setpref, uigetpref, uisetpref

2-127

addprop (dynamicprops)

Purpose Add dynamic property

Syntax P = addprop(Hobj,'PropName')

Description P = addprop(Hobj,'PropName') adds a property named PropName
to each object in array Hobj. The class definition is not affected by
the addition of dynamic properties. Note that you can add dynamic
properties only to objects derived from the dynamicprops class. You
can set and retrieve the data in dynamic properties as you would any
property.

The output argument P is an array the same size as Hobj of
meta.DynamicProperty objects, which you can use to assign SetMethod
and GetMethod functions to the property. These functions operate just
like property set and get access methods.

See “Dynamic Properties — Adding Properties to an Instance” for more
information and examples.

See Also handle, dynamicprops

2-128

addproperty

Purpose Add custom property to COM object

Syntax h.addproperty('propertyname')
addproperty(h, 'propertyname')

Description h.addproperty('propertyname') adds the custom property specified
in the string, propertyname, to the object or interface, h. Use set to
assign a value to the property.

addproperty(h, 'propertyname') is an alternate syntax for the same
operation.

Remarks COM functions are available on Microsoft Windows systems only.

Examples Create an mwsamp control and display its properties:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get

MATLAB software displays:

Label: 'Label'
Radius: 20

Add a new property named Position to the control. Assign an array
value to the property:

h.addproperty('Position');
h.Position = [200 120];
h.get

MATLAB displays (in part):

Label: 'Label'
Radius: 20

Position: [200 120]

2-129

addproperty

Delete the custom Position property:

h.deleteproperty('Position');
h.get

MATLAB displays:

Label: 'Label'
Radius: 20

Create an mwsamp control and add a new property named Position to
it. Assign an array value to the property:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get

Label: 'Label'
Radius: 20

h.addproperty('Position');
h.Position = [200 120];
h.get

Label: 'Label'
Radius: 20

Position: [200 120]

h.get('Position')
ans =

200 120

Delete the custom Position property:

h.deleteproperty('Position');
h.get

Label: 'Label'
Radius: 20

See Also deleteproperty, get (COM), set (COM), inspect

2-130

addRequired (inputParser)

Purpose Add required argument to inputParser schema

Syntax p.addRequired(argname, validator)
addRequired(p, argname, validator)

Description p.addRequired(argname, validator) updates the schema for
inputParser object p by adding a required argument, argname. Specify
the argument name in a string enclosed within single quotation marks.
The optional validator is a handle to a function that the MATLAB
software uses during parsing to validate the input arguments. If
the validator function returns false or errors, the parsing fails and
MATLAB throws an error.

MATLAB parses required arguments before optional or parameter-value
arguments.

addRequired(p, argname, validator) is functionally the same as
the syntax above.

Note For more information on the inputParser class, see “Parsing
Inputs with inputParser”in the MATLAB Programming Fundamentals
documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class. There
are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these calling syntaxes, you can see that there is one required
argument (script), one optional argument (format), and a number
of optional arguments that are specified as parameter-value pairs
(options).

2-131

addRequired (inputParser)

Begin writing the example publish_ip M-file by entering the following
two statements. Call the class constructor for inputParser to create an
instance of the class. This class instance, or object, gives you access to
all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

After calling the constructor, add the following lines to the M-file.
This code uses the addRequired, addOptional(inputParser), and
addParamValue(inputParser) methods to define the input arguments
to the function:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)'

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

2-132

addRequired (inputParser)

See Also inputParser, addOptional(inputParser),
addParamValue(inputParser), parse(inputParser),
createCopy(inputParser)

2-133

addsample

Purpose Add data sample to timeseries object

Syntax ts = addsample(ts,'Field1',Value1,'Field2',Value2,...)
ts = addsample(ts,s)

Description ts = addsample(ts,'Field1',Value1,'Field2',Value2,...) adds
one or more data samples to the timeseries object ts, where one field
must specify Time and another must specify Data. You can also specify
the following optional property-value pairs:

• 'Quality' — Array of data quality codes

• 'OverwriteFlag'— Logical value that controls whether to overwrite
a data sample at the same time with the new sample you are adding
to your timeseries object. When set to true, the new sample
overwrites the old sample at the same time.

ts = addsample(ts,s) adds one or more new samples stored in a
structure s to the timeseries object ts. You must define the fields
of the structure s before passing it as an argument to addsample by
assigning values to the following optional s fields:

• s.data

• s.time

• s.quality

• s.overwriteflag

Remarks A time-series data sample consists of one or more values recorded at a
specific time. The number of data samples in a time series is the same
as the length of the time vector.

The Time value must be a valid time vector.

Suppose that N is the number of samples. The sample size of each
time series is given by SampleSize = getsamplesize(ts). When

2-134

addsample

ts.IsTimeFirst is true, the size of the data is N-by-SampleSize. When
ts.IsTimeFirst is false, the size of the data is SampleSize-by-N.

Examples Add a data value of 420 at time 3.

ts = ts.addsample('Time',3,'Data',420);

Add a data value of 420 at time 3 and specify quality code 1 for this data
value. Set the flag to overwrite an existing value at time 3.

ts = ts.addsample('Data',3.2,'Quality',1,'OverwriteFlag',...
true,'Time',3);

See Also delsample, getdatasamplesize, tsprops

2-135

addsampletocollection

Purpose Add sample to tscollection object

Syntax tsc = addsampletocollection(tsc,'time',Time,TS1Name,TS1Data,
TSnName,TSnData)

Description tsc =
addsampletocollection(tsc,'time',Time,TS1Name,TS1Data,
TSnName,TSnData) adds data samples TSnData to the collection
member TSnName in the tscollection object tsc at one or more Time
values. Here, TSnName is the string that represents the name of a time
series in tsc, and TSnData is an array containing data samples.

Remarks If you do not specify data samples for a time-series member in tsc,
that time-series member will contain missing data at the times given
by Time (for numerical time-series data), NaN values, or (for logical
time-series data) false values.

When a time-series member requires Quality values, you can specify
data quality codes together with the data samples by using the following
syntax:

tsc = addsampletocollection(tsc,'time',time,TS1Name,...
ts1cellarray,TS2Name,ts2cellarray,...)

Specify data in the first cell array element and Quality in the second
cell array element.

Note If a time-series member already has Quality values but you only
provide data samples, 0s are added to the existing Quality array at
the times given by Time.

Examples The following example shows how to create a tscollection that
consists of two timeseries objects, where one timeseries does not
have quality codes and the other does. The final step of the example
adds a sample to the tscollection.

2-136

addsampletocollection

1 Create two timeseries objects, ts1 and ts2.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0],1:5,...
'name','acceleration');

ts2 = timeseries([3.2 4.2 6.2 8.5 1.1],1:5,...
'name','speed');

2 Define a dictionary of quality codes and descriptions for ts2.

ts2.QualityInfo.Code = [0 1];
ts2.QualityInfo.Description = {'bad','good'};

3 Assign a quality of code of 1, which is equivalent to 'good', to each
data value in ts2.

ts2.Quality = ones(5,1);

4 Create a time-series collection tsc, which includes time series ts1
and ts2.

tsc = tscollection({ts1,ts2});

5 Add a data sample to the collection tsc at 3.5 seconds.

tsc = addsampletocollection(tsc,'time',3.5,'acceleration',10,
'speed',{5 1});

The cell array for the timeseries object 'speed' specifies both the
data value 5 and the quality code 1.

Note If you do not specify a quality code when adding a data sample
to a time series that has quality codes, then the lowest quality code is
assigned to the new sample by default.

See Also delsamplefromcollection, tscollection, tsprops

2-137

addtodate

Purpose Modify date number by field

Syntax R = addtodate(D, Q, F)

Description R = addtodate(D, Q, F) adds quantity Q to the indicated date field F
of a scalar serial date number D, returning the updated date number R.

The quantity Q to be added must be a double scalar whole number, and
can be either positive or negative. The date field F must be a 1-by-N
character array equal to one of the following: 'year', 'month', 'day',
'hour', 'minute', 'second', or 'millisecond'.

If the addition to the date field causes the field to roll over, the MATLAB
software adjusts the next more significant fields accordingly. Adding a
negative quantity to the indicated date field rolls back the calender on
the indicated field. If the addition causes the field to roll back, MATLAB
adjusts the next less significant fields accordingly.

Examples Modify the hours, days, and minutes of a given date:

t = datenum('07-Apr-2008 23:00:00');
datestr(t)
ans =

07-Apr-2008 23:00:00

t= addtodate(t, 2, 'hour');
datestr(t)
ans =

08-Apr-2008 01:00:00

t= addtodate(t, -7, 'day');
datestr(t)
ans =

01-Apr-2008 01:00:00

t= addtodate(t, 59, 'minute');
datestr(t)
ans =

2-138

addtodate

01-Apr-2008 01:59:00

Adding 20 days to the given date in late December causes the calendar
to roll over to January of the next year:

R = addtodate(datenum('12/24/2007 12:45'), 20, 'day');

datestr(R)
ans =

13-Jan-1985 12:45:00

See Also date, datenum, datestr, datevec

2-139

addts

Purpose Add timeseries object to tscollection object

Syntax tsc = addts(tsc,ts)
tsc = addts(tsc,ts)
tsc = addts(tsc,ts,Name)
tsc = addts(tsc,Data,Name)

Description tsc = addts(tsc,ts) adds the timeseries object ts to tscollection
object tsc.

tsc = addts(tsc,ts) adds a cell array of timeseries objects ts to
the tscollection tsc.

tsc = addts(tsc,ts,Name) adds a cell array of timeseries objects
ts to tscollection tsc. Name is a cell array of strings that gives the
names of the timeseries objects in ts.

tsc = addts(tsc,Data,Name) creates a new timeseries object from
Data with the name Name and adds it to the tscollection object tsc.
Data is a numerical array and Name is a string.

Remarks The timeseries objects you add to the collection must have the same
time vector as the collection. That is, the time vectors must have the
same time values and units.

Suppose that the time vector of a timeseries object is associated with
calendar dates. When you add this timeseries to a collection with a
time vector without calendar dates, the time vectors are compared based
on the units and the values relative to the StartDate property. For
more information about properties, see the timeseries reference page.

Examples The following example shows how to add a time series to a time-series
collection:

1 Create two timeseries objects, ts1 and ts2.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0],1:5,...
'name','acceleration');

2-140

addts

ts2 = timeseries([3.2 4.2 6.2 8.5 1.1],1:5,...
'name','speed');

2 Create a time-series collection tsc, which includes ts1.

tsc = tscollection(ts1);

3 Add ts2 to the tsc collection.

tsc = addts(tsc, ts2);

4 To view the members of tsc, type

tsc

at the MATLAB prompt. the response is

Time Series Collection Object: unnamed

Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:

acceleration
speed

The members of tsc are listed by name at the bottom: acceleration
and speed. These are the Name properties of the timeseries objects
ts1 and ts2, respectively.

See Also removets, tscollection

2-141

airy

Purpose Airy functions

Syntax W = airy(Z)
W = airy(k,Z)
[W,ierr] = airy(k,Z)

Definition The Airy functions form a pair of linearly independent solutions to

The relationship between the Airy and modified Bessel functions is

where

Description W = airy(Z) returns the Airy function, , for each element of
the complex array Z.

W = airy(k,Z) returns different results depending on the value of k.

k Returns

0 The same result as airy(Z)
1 The derivative,
2 The Airy function of the second kind,
3 The derivative,

2-142

airy

[W,ierr] = airy(k,Z) also returns completion flags in an array the
same size as W.

ierr Description

0 airy successfully computed the Airy function
for this element.

1 Illegal arguments
2 Overflow. Returns Inf
3 Some loss of accuracy in argument reduction
4 Unacceptable loss of accuracy, Z too large
5 No convergence. Returns NaN

See Also besseli, besselj, besselk, bessely

References [1] Amos, D. E., “A Subroutine Package for Bessel Functions of
a Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-143

align

Purpose Align user interface controls (uicontrols) and axes

Syntax align(HandleList,'HorizontalAlignment','VerticalAlignment')
Positions = align(HandleList,'HorizontalAlignment’,

’VerticalAlignment’)
Positions = align(CurPositions,'HorizontalAlignment’,

’VerticalAlignment’)

Description align(HandleList,'HorizontalAlignment','VerticalAlignment')
aligns the uicontrol and axes objects in HandleList, a vector
of handles, according to the options HorizontalAlignment and
VerticalAlignment. The following table shows the possible values for
HorizontalAlignment and VerticalAlignment.

HorizontalAlignment Definition

None No horizontal alignment is made
Left Shifts the objects’ left edges to that of the

first object selected
Center Shifts objects to center their positions to

the average of the extreme x-values of the
group

Right Shifts the objects’ right edges to that of
the first object selected

Distribute Equalizes x-distances between all objects
within the span of the extreme x-values

Fixed Spaces objects to have a specified number
of points between them in the y-direction

VerticalAlignment Definition

None No vertical alignment is made

2-144

align

VerticalAlignment Definition

Top Shifts the objects’ top edges to that of the
first object selected

Middle Shifts objects to center their positions to
the average of the extreme y-values of the
group

Bottom Shifts the objects’ bottom edges to that of
the first object selected

Distribute Equalizes y-distances between all objects
within the span of the extreme y-values

Fixed Spaces objects to have a specified number
of points between them in the x-direction

Aligning objects does not change their absolute sizes. All alignment
options align the objects within the bounding box that encloses the
objects. Distribute and Fixed align objects to the bottom left of the
bounding box. Distribute evenly distributes the objects while Fixed
distributes the objects with a fixed distance (in points) between them.
When you specify both horizontal and vertical distance together, the
keywords ’HorizontalAlignment’ and ’VerticalAlignment’ are not
necessary.

If you use Fixed for Horizontal Alignment or Vertical Alignment,
then you must specify the distance, in points, as an extra argument.
These are some examples:

align(HandleList,'Fixed',Distance,'VerticalAlignment')

distributes the specified components Distance points horizontally and
aligns them vertically as specified.

align(HandleList,'HorizontalAlignment','Fixed',Distance)

aligns the specified components horizontally as specified and distributes
them Distance points vertically.

2-145

align

align(HandleList,'Fixed',HorizontalDistance,...
'Fixed',VerticalDistance)

distributes the specified components HorizontalDistance points
horizontally and distributes them VerticalDistance points vertically.

Note 72 points equals 1 inch.

Positions = align(HandleList,'HorizontalAlignment’,
’VerticalAlignment’) returns updated positions for the specified
objects as a vector of Position vectors. The position of the objects on
the figure does not change.

Positions = align(CurPositions,'HorizontalAlignment’,
’VerticalAlignment’) returns updated positions for the objects whose
positions are contained in CurPositions, where CurPositions is a
vector of Position vectors. The position of the objects on the figure
does not change.

Examples Create a GUI with three buttons and use align to line up the buttons.

Create a figure window and one button object.

f=figure;
u1 = uicontrol('Style','push', 'parent', f,'pos',...
[20 100 100 100],'string','button1');

2-146

align

Create two more button objects, not aligned with each other or any
part of the figure window.

u2 = uicontrol('Style','push', 'parent', f,'pos',...
[150 250 100 100],'string','button2');
u3 = uicontrol('Style','push', 'parent', f,'pos',...
[250 100 100 100],'string','button3');

2-147

align

Align the button objects with the bottom of the first button object,
equalizing the distance between the objects within the span of the
extreme x-values.

align([u1 u2 u3],'distribute','bottom');

2-148

align

See Also uicontrol, uistack

2-149

alim

Purpose Set or query axes alpha limits

Syntax alpha_limits = alim
alim([amin amax])
alim_mode = alim('mode')
alim('alim_mode')
alim(axes_handle,...)

Description alpha_limits = alim returns the alpha limits (the axes ALim property)
of the current axes.

alim([amin amax]) sets the alpha limits to the specified values. amin
is the value of the data mapped to the first alpha value in the alphamap,
and amax is the value of the data mapped to the last alpha value in the
alphamap. Data values in between are linearly interpolated across the
alphamap, while data values outside are clamped to either the first or
last alphamap value, whichever is closest.

alim_mode = alim('mode') returns the alpha limits mode (the axes
ALimMode property) of the current axes.

alim('alim_mode') sets the alpha limits mode on the current axes.
alim_mode can be

• auto — The MATLAB software automatically sets the alpha limits
based on the alpha data of the objects in the axes.

• manual — MATLAB does not change the alpha limits.

alim(axes_handle,...) operates on the specified axes.

See Also alpha, alphamap, caxis

Axes ALim and ALimMode properties

Patch FaceVertexAlphaData property

Image and surface AlphaData properties

Transparency for related functions

2-150

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ALim
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ALimMode
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ALim
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ALimMode
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceVertexAlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AlphaData

alim

“Transparency” in 3-D Visualization for examples

2-151

all

Purpose Determine whether all array elements are nonzero

Syntax B = all(A)
B = all(A, dim)

Description B = all(A) tests whether all the elements along various dimensions of
an array are nonzero or logical 1 (true).

If A is a vector, all(A) returns logical 1 (true) if all the elements are
nonzero and returns logical 0 (false) if one or more elements are zero.

If A is a matrix, all(A) treats the columns of A as vectors, returning a
row vector of logical 1’s and 0’s.

If A is a multidimensional array, all(A) treats the values along the
first nonsingleton dimension as vectors, returning a logical condition
for each vector.

B = all(A, dim) tests along the dimension of A specified by scalar dim.

Examples Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical 1 (true) only where A is less than
one half:

0 0 1 1 1 1 0

The all function reduces such a vector of logical conditions to a single
condition. In this case, all(B) yields 0.

2-152

all

This makes all particularly useful in if statements:

if all(A < 0.5)
do something

end

where code is executed depending on a single condition, not a vector
of possibly conflicting conditions.

Applying the all function twice to a matrix, as in all(all(A)), always
reduces it to a scalar condition.

all(all(eye(3)))
ans =

0

See Also any, logical operators (elementwise and short-circuit), relational
operators, colon

Other functions that collapse an array’s dimensions include max, mean,
median, min, prod, std, sum, and trapz.

2-153

allchild

Purpose Find all children of specified objects

Syntax child_handles = allchild(handle_list)

Description child_handles = allchild(handle_list) returns the list of all
children (including ones with hidden handles) for each handle. If
handle_list is a single element, allchild returns the output in a
vector. If handle_list is a vector of handles, the output is a cell array.

Examples Compare the results returned by these two statements.

get(gca,'Children')
allchild(gca)

See Also findall, findobj

2-154

alpha

Purpose Set transparency properties for objects in current axes

Syntax alpha
alpha(face_alpha)
alpha(alpha_data)
alpha(alpha_data)
alpha(alpha_data)
alpha(alpha_data_mapping)
alpha(object_handle,value)

Description alpha sets one of three transparency properties, depending on what
arguments you specify with the call to this function.

FaceAlpha

alpha(face_alpha) sets the FaceAlpha property of all image, patch,
and surface objects in the current axes. You can set face_alpha to

• A scalar — Set the FaceAlpha property to the specified value (for
images, set the AlphaData property to the specified value).

• 'flat' — Set the FaceAlpha property to flat.

• 'interp' — Set the FaceAlpha property to interp.

• 'texture'— Set the FaceAlpha property to texture.

• 'opaque' — Set the FaceAlpha property to 1.

• 'clear' — Set the FaceAlpha property to 0.

See for more information.

AlphaData (Surface Objects)

alpha(alpha_data) sets the AlphaData property of all surface objects
in the current axes. You can set alpha_data to

• A matrix the same size as CData — Set the AlphaData property to
the specified values.

• 'x'— Set the AlphaData property to be the same as XData.

2-155

alpha

• 'y'— Set the AlphaData property to be the same as YData.

• 'z'— Set the AlphaData property to be the same as ZData.

• 'color'— Set the AlphaData property to be the same as CData.

• 'rand'— Set the AlphaData property to a matrix of random values
equal in size to CData.

AlphaData (Image Objects)

alpha(alpha_data) sets the AlphaData property of all image objects in
the current axes. You can set alpha_data to

• A matrix the same size as CData — Set the AlphaData property to
the specified value.

• 'x' — Ignored.

• 'y' — Ignored.

• 'z' — Ignored.

• 'color'— Set the AlphaData property to be the same as CData.

• 'rand'— Set the AlphaData property to a matrix of random values
equal in size to CData.

FaceVertexAlphaData (Patch Objects)

alpha(alpha_data) sets the FaceVertexAlphaData property of all
patch objects in the current axes. You can set alpha_data to

• A matrix the same size as FaceVertexCData — Set the
FaceVertexAlphaData property to the specified value.

• 'x' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,1).

• 'y' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,2).

• 'z' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,3).

2-156

alpha

• 'color'— Set the FaceVertexAlphaData property to be the same as
FaceVertexCData.

• 'rand'— Set the FaceVertexAlphaData property to random values.

See Mapping Data to Transparency for more information.

AlphaDataMapping

alpha(alpha_data_mapping) sets the AlphaDataMapping property of
all image, patch, and surface objects in the current axes. You can set
alpha_data_mapping to

• 'scaled'— Set the AlphaDataMapping property to scaled.

• 'direct'— Set the AlphaDataMapping property to direct.

• 'none'— Set the AlphaDataMapping property to none.

alpha(object_handle,value) sets the transparency property only on
the object identified by object_handle.

See Also alim, alphamap

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

“Transparency” in 3-D Visualization for examples

2-157

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/image_props.html%23AlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/image_props.html%23AlphaDataMapping
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceAlpha
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceVertexAlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23AlphaDataMapping
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23FaceAlpha
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AlphaDataMapping

alphamap

Purpose Specify figure alphamap (transparency)

Syntax alphamap
alphamap(alpha_map)
alphamap('parameter')
alphamap('parameter',length)
alphamap('parameter',delta)
alphamap(figure_handle,...)
alpha_map = alphamap
alpha_map = alphamap(figure_handle)
alpha_map = alphamap('parameter')

Description alphamap enables you to set or modify a figure’s Alphamap property.
Unless you specify a figure handle as the first argument, alphamap
operates on the current figure.

alphamap(alpha_map) sets the AlphaMap of the current figure to the
specified m-by-1 array of alpha values.

alphamap('parameter') creates a new alphamap or modifies the
current alphamap. You can specify the following parameters:

• default — Set the AlphaMap property to the figure’s default
alphamap.

• rampup— Create a linear alphamap with increasing opacity (default
length equals the current alphamap length).

• rampdown — Create a linear alphamap with decreasing opacity
(default length equals the current alphamap length).

• vup— Create an alphamap that is opaque in the center and becomes
more transparent linearly towards the beginning and end (default
length equals the current alphamap length).

• vdown — Create an alphamap that is transparent in the center
and becomes more opaque linearly towards the beginning and end
(default length equals the current alphamap length).

2-158

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/figure_props.html%23Alphamap

alphamap

• increase — Modify the alphamap making it more opaque (default
delta is .1, which is added to the current values).

• decrease — Modify the alphamap making it more transparent
(default delta is .1, which is subtracted from the current values).

• spin — Rotate the current alphamap (default delta is 1; note that
delta must be an integer).

alphamap('parameter',length) creates a new alphamap with the
length specified by length (used with parameters rampup, rampdown,
vup, vdown).

alphamap('parameter',delta) modifies the existing alphamap
using the value specified by delta (used with parameters increase,
decrease, spin).

alphamap(figure_handle,...) performs the operation on the
alphamap of the figure identified by figure_handle.

alpha_map = alphamap returns the current alphamap.

alpha_map = alphamap(figure_handle) returns the current
alphamap from the figure identified by figure_handle.

alpha_map = alphamap('parameter') returns the alphamap modified
by the parameter, but does not set the AlphaMap property.

See Also alim, alpha

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

“Transparency” in 3-D Visualization for examples

2-159

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/image_props.html%23AlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/image_props.html%23AlphaDataMapping
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceAlpha
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceVertexAlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23AlphaDataMapping
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23FaceAlpha
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AlphaDataMapping

amd

Purpose Approximate minimum degree permutation

Syntax P = amd(A)
P = amd(A,opts)

Description P = amd(A) returns the approximate minimum degree permutation
vector for the sparse matrix C = A + A'. The Cholesky factorization
of C(P,P) or A(P,P) tends to be sparser than that of C or A. The amd
function tends to be faster than symamd, and also tends to return better
orderings than symamd. Matrix A must be square. If A is a full matrix,
then amd(A) is equivalent to amd(sparse(A)).

P = amd(A,opts) allows additional options for the reordering. The
opts input is a structure with the two fields shown below. You only
need to set the fields of interest:

• dense — A nonnegative scalar value that indicates what is
considered to be dense. If A is n-by-n, then rows and columns
with more than max(16,(dense*sqrt(n))) entries in A + A' are
considered to be "dense" and are ignored during the ordering.
MATLAB software places these rows and columns last in the output
permutation. The default value for this field is 10.0 if this option
is not present.

• aggressive — A scalar value controlling aggressive absorption. If
this field is set to a nonzero value, then aggressive absorption is
performed. This is the default if this option is not present.

MATLAB software performs an assembly tree post-ordering, which
is typically the same as an elimination tree post-ordering. It is not
always identical because of the approximate degree update used, and
because “dense” rows and columns do not take part in the post-order. It
well-suited for a subsequent chol operation, however, If you require a
precise elimination tree post-ordering, you can use the following code:

P = amd(S);
C = spones(S)+spones(S'); % Skip this line if S is already symmetric
[ignore, Q] = etree(C(P,P));

2-160

amd

P = P(Q);

Examples This example constructs a sparse matrix and computes a two Cholesky
factors: one of the original matrix and one of the original matrix
preordered by amd. Note how much sparser the Cholesky factor of the
preordered matrix is compared to the factor of the matrix in its natural
ordering:

A = gallery('wathen',50,50);
p = amd(A);
L = chol(A,'lower');
Lp = chol(A(p,p),'lower');

figure;
subplot(2,2,1); spy(A);
title('Sparsity structure of A');

subplot(2,2,2); spy(A(p,p));
title('Sparsity structure of AMD ordered A');

subplot(2,2,3); spy(L);
title('Sparsity structure of Cholesky factor of A');

subplot(2,2,4); spy(Lp);
title('Sparsity structure of Cholesky factor of AMD ordered A');

set(gcf,'Position',[100 100 800 700]);

See Also colamd, colperm, symamd, symrcm, /

References AMD Version 1.2 is written and copyrighted by Timothy A.
Davis, Patrick R. Amestoy, and Iain S. Duff. It is available at
http://www.cise.ufl.edu/research/sparse/amd.

The authors of the code for symamd are Stefan I. Larimore and
Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,

2-161

http://www.cise.ufl.edu/research/sparse/amd

amd

Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

2-162

http://www.cise.ufl.edu/research/sparse/

ancestor

Purpose Ancestor of graphics object

Syntax p = ancestor(h,type)
p = ancestor(h,type,'toplevel')

Description p = ancestor(h,type) returns the handle of the closest ancestor of
h, if the ancestor is one of the types of graphics objects specified by
type. type can be:

• a string that is the name of a single type of object. For example,
'figure'

• a cell array containing the names of multiple objects. For example,
{'hgtransform','hggroup','axes'}

If the MATLAB software cannot find an ancestor of h that is one of the
specified types, then ancestor returns p as empty.

Note that ancestor returns p as empty but does not issue an error if h
is not the handle of a Handle Graphics object.

p = ancestor(h,type,'toplevel') returns the highest-level ancestor
of h, if this type appears in the type argument.

Examples Create some line objects and parent them to an hggroup object.

hgg = hggroup;
hgl = line(randn(5),randn(5),'Parent',hgg);

Now get the ancestor of the lines.

p = ancestor(hgg,{'figure','axes','hggroup'});
get(p,'Type')
ans =

hggroup

Now get the top-level ancestor

2-163

ancestor

p=ancestor(hgg,{'figure','axes','hggroup'},'toplevel');
get(p,'type')
ans =

figure

See Also findobj

2-164

and

Purpose Find logical AND of array or scalar inputs

Syntax A & B & ...
and(A, B)

Description A & B & ... performs a logical AND of all input arrays A, B, etc., and
returns an array containing elements set to either logical 1 (true)
or logical 0 (false). An element of the output array is set to 1 if all
input arrays contain a nonzero element at that same array location.
Otherwise, that element is set to 0.

Each input of the expression can be an array or can be a scalar value.
All nonscalar input arrays must have equal dimensions. If one or more
inputs are an array, then the output is an array of the same dimensions.
If all inputs are scalar, then the output is scalar.

If the expression contains both scalar and nonscalar inputs, then
each scalar input is treated as if it were an array having the same
dimensions as the other input arrays. In other words, if input A is a
3-by-5 matrix and input B is the number 1, then B is treated as if it
were a 3-by-5 matrix of ones.

and(A, B) is called for the syntax A & B when either A or B is an object.

Note The symbols & and && perform different operations in the
MATLAB software. The element-wise AND operator described here is
&. The short-circuit AND operator is &&.

Examples If matrix A is

0.4235 0.5798 0 0.7942 0
0.5155 0 0.7833 0.0592 0.8744
0.3340 0 0 0 0.0150
0.4329 0.6405 0.6808 0.0503 0

and matrix B is

2-165

and

0 1 0 1 0
1 1 1 0 1
0 1 1 1 0
0 1 0 0 1

then

A & B
ans =

0 1 0 1 0
1 0 1 0 1
0 0 0 0 0
0 1 0 0 0

See Also bitand, or, xor, not, any, all, logical operators, logical types, bitwise
functions

2-166

angle

Purpose Phase angle

Syntax P = angle(Z)

Description P = angle(Z) returns the phase angles, in radians, for each element of
complex array Z. The angles lie between .

For complex Z, the magnitude R and phase angle theta are given by

R = abs(Z)
theta = angle(Z)

and the statement

Z = R.*exp(i*theta)

converts back to the original complex Z.

Examples Z = [1 - 1i 2 + 1i 3 - 1i 4 + 1i
1 + 2i 2 - 2i 3 + 2i 4 - 2i
1 - 3i 2 + 3i 3 - 3i 4 + 3i
1 + 4i 2 - 4i 3 + 4i 4 - 4i]

P = angle(Z)

P =
-0.7854 0.4636 -0.3218 0.2450
1.1071 -0.7854 0.5880 -0.4636

-1.2490 0.9828 -0.7854 0.6435
1.3258 -1.1071 0.9273 -0.7854

Algorithm The angle function can be expressed as angle(z) = imag(log(z)) =
atan2(imag(z),real(z)).

See Also abs, atan2, unwrap

2-167

annotation

Purpose Create annotation objects

GUI
Alternatives

Create several types of annotations with the Figure Palette and modify
annotations with the Property Editor, components of the plotting tools.
Directly manipulate annotations in plot edit mode. For details, see
“How to Annotate Graphs” and “Working in Plot Edit Mode” in the
MATLAB Graphics documentation.

Syntax annotation(annotation_type)
annotation('line',x,y)
annotation('arrow',x,y)
annotation('doublearrow',x,y)
annotation('textarrow',x,y)
annotation('textbox',[x y w h])
annotation('ellipse',[x y w h])
annotation('rectangle',[x y w h])
annotation(figure_handle,...)
annotation(...,'PropertyName',PropertyValue,...)
anno_obj_handle = annotation(...)

Description annotation(annotation_type) creates the specified annotation type
using default values for all properties. annotation_type can be one of
the following strings:

• 'line'

• 'arrow'

• 'doublearrow' (two-headed arrow),

• 'textarrow' (arrow with attached text box),

• 'textbox'

• 'ellipse'

• 'rectangle'

2-168

annotation

annotation('line',x,y) creates a line annotation object that extends
from the point defined by x(1),y(1) to the point defined by x(2),y(2),
specified in normalized figure units.

annotation('arrow',x,y) creates an arrow annotation object that
extends from the point defined by x(1),y(1) to the point defined by
x(2),y(2), specified in normalized figure units.

annotation('doublearrow',x,y) creates a two-headed annotation
object that extends from the point defined by x(1),y(1) to the point
defined by x(2),y(2), specified in normalized figure units.

annotation('textarrow',x,y) creates a textarrow annotation object
that extends from the point defined by x(1),y(1) to the point defined
by x(2),y(2), specified in normalized figure units. The tail end of the
arrow is attached to an editable text box.

annotation('textbox',[x y w h]) creates an editable text box
annotation with its lower left corner at the point x,y, a width w, and a
height h, specified in normalized figure units. Specify x, y, w, and h in
a single vector.

To type in the text box, enable plot edit mode (plotedit) and
double-click within the box.

annotation('ellipse',[x y w h]) creates an ellipse annotation with
the lower left corner of the bounding rectangle at the point x,y, a width
w, and a height h, specified in normalized figure units. Specify x, y,
w, and h in a single vector.

annotation('rectangle',[x y w h]) creates a rectangle annotation
with the lower left corner of the rectangle at the point x,y, a width w,
and a height h, specified in normalized figure units. Specify x, y, w, and
h in a single vector.

annotation(figure_handle,...) creates the annotation in the
specified figure.

annotation(...,'PropertyName',PropertyValue,...) creates the
annotation and sets the specified properties to the specified values.

2-169

annotation

anno_obj_handle = annotation(...) returns the handle to the
annotation object that is created.

Annotation
Layer

All annotation objects are displayed in an overlay axes that covers the
figure. This layer is designed to display only annotation objects. You
should not parent objects to this axes nor set any properties of this axes.
See the See Also section for information on the properties of annotation
objects that you can set.

Objects in the Plotting Axes

You can create lines, text, rectangles, and ellipses in data coordinates
in the axes of a graph using the line, text, and rectangle functions.
These objects are not placed in the annotation axes and must be located
inside their parent axes.

Deleting Annotations

Existing annotations persist on a plot when you replace its data. This
might not be what you want to do. If it is not, or if you want to remove
annotation objects for any reason, you can do so manually, or sometimes
programmatically, in several ways:

• To manually delete, click the Edit Plot tool or invoke plottools,
select the annotation(s) you want to remove, and do one of the
following:

- Press the Delete key.

- Press the Backspace key.

- Select Clear from the Edit menu.

- Select Delete from the context menu (one annotation at a time).

• If you obtained a handle for the annotation when you created it, use
the delete function:

delete(anno_obj_handle)

There is no reliable way to obtain handles for annotations from a
figure’s property set; you must keep track of them yourself.

2-170

annotation

• To delete all annotations at once (as well as all plot contents), type

clf

Normalized Coordinates

By default, annotation objects use normalized coordinates to specify
locations within the figure. In normalized coordinates, the point 0,0
is always the lower left corner and the point 1,1 is always the upper
right corner of the figure window, regardless of the figure size and
proportions. Set the Units property of annotation objects to change
their coordinates from normalized to inches, centimeters, points,
pixels, or characters.

When their Units property is other than normalized, annotation
objects have absolute positions with respect to the figure’s origin, and
fixed sizes. Therefore, they will shift position with respect to axes when
you resize figures. When units are normalized, annotations shrink and
grow when you resize figures; this can cause lines of text in textbox
annotations to wrap. However, if you set the FontUnits property of an
annotation textbox object to normalized, the text changes size rather
than wraps if the textbox size changes.

You can use either the set command or the Inspector to change a
selected annotation object’s Units property:

set(gco,'Units','inches') % or
inspect(gco)

For more information see “Positioning Annotations in Data Space” in
the MATLAB Graphics documentation.

See Also Properties for the annotation objects Annotation Arrow Properties,
Annotation Doublearrow Properties, Annotation Ellipse
Properties, Annotation Line Properties, Annotation Rectangle
Properties, Annotation Textarrow Properties, Annotation
Textbox Properties

See “Annotating Graphs” and “Annotation Objects” for more
information.

2-171

Annotation Arrow Properties

Purpose Define annotation arrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Annotation
Arrow
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation arrow
object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

HeadLength
scalar value in points

Length of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadWidth.

HeadStyle
select string from list

Style of the arrowhead. Specify this property as one of the strings
from the following table.

2-172

Annotation Arrow Properties

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

cback1 deltoid

cback2

cback3

HeadWidth
scalar value in points

Width of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadLength.

LineStyle
{-} | – | : | -. | none

2-173

Annotation Arrow Properties

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line
none No line

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the

2-174

Annotation Arrow Properties

size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-175

Annotation Doublearrow Properties

Purpose Define annotation doublearrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Annotation
Doublearrow
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
doublearrow object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

Head1Length
scalar value in points

Length of the first arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Width.

The first arrowhead is located at the end defined by the point
x(1), y(1). See also the X and Y properties.

Head2Length
scalar value in points

Length of the second arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Width.

2-176

Annotation Doublearrow Properties

The first arrowhead is located at the end defined by the point
x(end), y(end). See also the X and Y properties.

Head1Style
select string from list

Style of the first arrowhead. Specify this property as one of the
strings from the following table

Head2Style
select string from list

Style of the second arrowhead. Specify this property as one of the
strings from the following table.

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

cback1 deltoid

2-177

Annotation Doublearrow Properties

Head Style
String Head

Head Style
String Head

cback2

cback3

Head1Width
scalar value in points

Width of the first arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Length.

Head2Width
scalar value in points

Width of the second arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head2Length.

LineStyle
{-} | – | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line
none No line

2-178

Annotation Doublearrow Properties

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

Y
vector [Ybegin Yend]

2-179

Annotation Doublearrow Properties

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-180

Annotation Ellipse Properties

Purpose Define annotation ellipse properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Annotation
Ellipse
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation ellipse
object.

EdgeColor
ColorSpec {[0 0 0]} | none |

Color of the object’s edges. A three-element RGB vector or one of
the MATLAB predefined names, specifying the edge color.

See the ColorSpec reference page for more information on
specifying color.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

2-181

Annotation Ellipse Properties

See the ColorSpec reference page for more information on
specifying color.

LineStyle
{-} | – | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line
none No line

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

2-182

Annotation Ellipse Properties

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-183

Annotation Line Properties

Purpose Define annotation line properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Annotation
Line
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation line
object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

LineStyle
{-} | – | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line

2-184

Annotation Line Properties

Specifier
String Line Style

-. Dash-dot line
none No line

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify

2-185

Annotation Line Properties

the beginning and ending points of the line, units normalized to
the figure.

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-186

Annotation Rectangle Properties

Purpose Define annotation rectangle properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Annotation
Rectangle
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
rectangle object.

EdgeColor
ColorSpec {[0 0 0]} | none |

Color of the object’s edges. A three-element RGB vector or one of
the MATLAB predefined names, specifying the edge color.

See the ColorSpec reference page for more information on
specifying color.

FaceAlpha
Scalar alpha value in range [0 1]

Transparency of object background. This property defines the
degree to which the object’s background color is transparent. A
value of 1 (the default) makes to color opaque, a value of 0 makes
the background completely transparent (i.e., invisible). The
default FaceAlpha is 1.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

2-187

Annotation Rectangle Properties

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

LineStyle
{-} | – | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line
none No line

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

2-188

Annotation Rectangle Properties

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-189

Annotation Textarrow Properties

Purpose Define annotation textarrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Annotation
Textarrow
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
textarrow object.

Color
ColorSpec Default: [0 0 0]

Color of the arrow, text and text border. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
color of the arrow, the color of the text (TextColor property), and
the rectangle enclosing the text (TextEdgeColor property).

Setting the Color property also sets the TextColor and
TextEdgeColor properties to the same color. However, if the
value of the TextEdgeColor is none, it remains none and the text
box is not displayed. You can set TextColor or TextEdgeColor
independently without affecting other properties.

For example, if you want to create a textarrow with a red arrow
and black text in a black box, you must

1 Set the Color property to red — set(h,'Color','r')

2 Set the TextColor to black — set(h,'TextColor','k')

3 Set the TextEdgeColor to black .—
set(h,'TextEdgeColor','k')

2-190

Annotation Textarrow Properties

If you do not want display the text box, set the TextEdgeColor
to none.

See the ColorSpec reference page for more information on
specifying color.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
A name, such as Helvetica

Font family. A string specifying the name of the font to use for the
text. To display and print properly, this font must be supported
on your system. The default font is Helvetica.

FontSize
size in points

Approximate size of text characters. A value specifying the font
size to use in points. The default size is 10 (1 point = 1/72 inch).

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

2-191

Annotation Textarrow Properties

Weight of text characters. MATLAB uses this property to select a
font from those available on your system. Generally, setting this
property to bold or demi causes MATLAB to use a bold font.

HeadLength
scalar value in points

Length of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadWidth.

HeadStyle
select string from list

Style of the arrowhead. Specify this property as one of the strings
from the following table.

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

cback1 deltoid

2-192

Annotation Textarrow Properties

Head Style
String Head

Head Style
String Head

cback2

cback3

HeadWidth
scalar value in points

Width of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadLength.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. This property specifies the
horizontal justification of the text string. It determines where
MATLAB places the string with regard to the point specified
by the Position property. The following picture illustrates the
alignment options.

See the Extent property for related information.

Interpreter
latex | {tex} | none

2-193

Annotation Textarrow Properties

Interpret TEX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TEX instructions (default) or displays all characters literally.
The options are:

• latex— Supports the full LATEX markup language.

• tex — Supports a subset of plain TEX markup language. See
the String property for a list of supported TEX instructions.

• none — Displays literal characters.

LineStyle
{-} | – | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line
none No line

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

2-194

Annotation Textarrow Properties

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

String
string

The text string. Specify this property as a quoted string for
single-line strings, or as a cell array of strings, or a padded string
matrix for multiline strings. MATLAB displays this string at the
specified location. Vertical slash characters are not interpreted
as line breaks in text strings, and are drawn as part of the text
string. See Mathematical Symbols, Greek Letters, and TeX
Characters for an example.

When the text Interpreter property is set to Tex (the default),
you can use a subset of TeX commands embedded in the
string to produce special characters such as Greek letters and
mathematical symbols. The following table lists these characters
and the character sequences used to define them.

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~
\beta β \phi Φ \leq ≤
\gamma γ \chi χ \infty ∞
\delta δ \psi ψ \clubsuit ♣
\epsilon ε \omega ω \diamondsuit ♦
\zeta ζ \Gamma Γ \heartsuit ♥

\eta η \Delta Δ \spadesuit ♠

2-195

Annotation Textarrow Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\theta Θ \Theta Θ \leftrightarrow ↔

\vartheta \Lambda Λ \leftarrow ←

\iota ι \Xi Ξ \uparrow ↑
\kappa κ \Pi Π \rightarrow →
\lambda λ \Sigma Σ \downarrow ↓
\mu µ \Upsilon \circ º
\nu ν \Phi Φ \pm ±
\xi ξ \Psi Ψ \geq ≥
\pi π \Omega Ω \propto ∝

\rho ρ \forall ∀ \partial ∂
\sigma σ \exists ∃ \bullet •
\varsigma ς \ni ∋ \div ÷
\tau τ \cong \neq ≠
\equiv ≡ \approx ≈ \aleph

\Im ℑ \Re ℜ \wp ℘

\otimes ⊗ \oplus ⊕ \oslash ∅

\cap ∩ \cup ∪ \supseteq ⊇

\supset ⊃ \subseteq ⊆ \subset ⊂

\int ∫ \in \o ο

\rfloor � \lceil � \nabla ∇

\lfloor � \cdot · \ldots ...

\perp ⊥ \neg ¬ \prime ´

2-196

Annotation Textarrow Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\wedge ∧ \times x \0 ∅

\rceil � \surd √ \mid |

\vee ∨ \varpi ϖ \copyright ©
\langle ∠ \rangle ∠

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,
you can use \fontname in combination with one of the other
modifiers:

TextBackgroundColor
ColorSpec Default: none

Color of text background rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color.

TextColor
ColorSpec Default: [0 0 0]

Color of text. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

TextEdgeColor
ColorSpec or none Default: none

2-197

Annotation Textarrow Properties

Color of edge of text rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the color of the
rectangle that encloses the text.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

TextLineWidth
width in points

The width of the text rectangle edge. Specify this value in points (1
point = 1/72 inch). The default TextLineWidth is 0.5 points.

TextMargin
dimension in pixels default: 5

Space around text. Specify a value in pixels that defines the space
around the text string, but within the rectangle.

TextRotation
rotation angle in degrees (default = 0)

Text orientation. This property determines the orientation of the
text string. Specify values of rotation in degrees (positive angles
cause counterclockwise rotation). Angles are absolute and not
relative to previous rotations; a rotation of 0 degrees is always
horizontal.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-198

Annotation Textarrow Properties

VerticalAlignment
top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical
justification of the text string. It determines where MATLAB
places the string with regard to the value of the Position
property. The possible values mean

• top — Place the top of the string’ s Extent rectangle at the
specified y-position.

• cap — Place the string so that the top of a capital letter is at
the specified y-position.

• middle — Place the middle of the string at the specified
y-position.

• baseline— Place font baseline at the specified y-position.

• bottom— Place the bottom of the string’s Extent rectangle at
the specified y-position.

The following picture illustrates the alignment options.

2-199

Annotation Textarrow Properties

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-200

Annotation Textbox Properties

Purpose Define annotation textbox properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Annotation
Textbox
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
textbox object.

BackgroundColor
ColorSpec Default: none

Color of text background rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color.

Color
ColorSpec Default: [0 0 0]

Color of text. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

EdgeColor
ColorSpec or none Default: none

2-201

Annotation Textbox Properties

Color of edge of text rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the color of the
rectangle that encloses the text.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

FaceAlpha
Scalar alpha value in range [0 1]

Transparency of object background. This property defines the
degree to which the object’s background color is transparent. A
value of 1 (the default) makes to color opaque, a value of 0 makes
the background completely transparent (i.e., invisible). The
default FaceAlpha is 1.

FitBoxToText
on | off

Automatically adjust text box width and height to fit text. When
this property is on (the default), MATLAB automatically resizes
textboxes to fit the x-extents and y-extents of the text strings they
contain. When it is off, text strings are wrapped to fit the width
of their textboxes, which can cause them to extend below the
bottom of the box.

If you resize a textbox in plot edit mode or change the width or
height of its position property directly, MATLAB sets the object’s
FitBoxToText property to 'off'. You can toggle this property
with set, with the Property Inspector, or in plot edit mode via
the object’s context menu.

FitHeightToText
on | off

Automatically adjust text box width and height to fit text.
MATLAB automatically wraps text strings to fit the width of the

2-202

Annotation Textbox Properties

text box. However, if the text string is long enough, it can extend
beyond the bottom of the text box.

Note The FitHeightToText property is obsolete. To control line
wrapping behavior in textboxes, use fitBoxToText instead.

When you set this mode to on, MATLAB automatically adjusts
the height of the text box to accommodate the string, doing so
as you create or edit the string.

The fit-size-to-text behavior turns off if you resize the text box
programmatically or manually in plot edit mode.

2-203

Annotation Textbox Properties

However, if you resize the text box from any other handles, the
position you set is honored without regard to how the text fits
the box.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
A name, such as Helvetica

Font family. A string specifying the name of the font to use for the
text. To display and print properly, this font must be supported
on your system. The default font is Helvetica.

2-204

Annotation Textbox Properties

FontSize
size in points

Approximate size of text characters. A value specifying the font
size to use in points. The default size is 10 (1 point = 1/72 inch).

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a
font from those available on your system. Generally, setting this
property to bold or demi causes MATLAB to use a bold font.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. This property specifies the
horizontal justification of the text string. It determines where
MATLAB places the string with regard to the point specified
by the Position property. The following picture illustrates the
alignment options.

2-205

Annotation Textbox Properties

See the Extent property for related information.

Interpreter
latex | {tex} | none

Interpret TEX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TEX instructions (default) or displays all characters literally.
The options are:

• latex— Supports the full LATEX markup language.

• tex — Supports a subset of plain TEX markup language. See
the String property for a list of supported TEX instructions.

• none — Displays literal characters.

LineStyle
{-} | – | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line
none No line

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

2-206

Annotation Textbox Properties

Margin
dimension in pixels default: 5

Space around text. Specify a value in pixels that defines the space
around the text string, but within the rectangle.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

String
string

The text string. Specify this property as a quoted string for
single-line strings, or as a cell array of strings, or a padded string
matrix for multiline strings. MATLAB displays this string at the
specified location. Vertical slash characters are not interpreted
as line breaks in text strings, and are drawn as part of the text
string. See Mathematical Symbols, Greek Letters, and TeX
Characters for an example.

When the text Interpreter property is set to Tex (the default),
you can use a subset of TeX commands embedded in the
string to produce special characters such as Greek letters and
mathematical symbols. The following table lists these characters
and the character sequences used to define them.

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~
\beta β \phi Φ \leq ≤

2-207

Annotation Textbox Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\gamma γ \chi χ \infty ∞
\delta δ \psi ψ \clubsuit ♣
\epsilon ε \omega ω \diamondsuit ♦
\zeta ζ \Gamma Γ \heartsuit ♥

\eta η \Delta Δ \spadesuit ♠
\theta Θ \Theta Θ \leftrightarrow ↔

\vartheta \Lambda Λ \leftarrow ←

\iota ι \Xi Ξ \uparrow ↑
\kappa κ \Pi Π \rightarrow →
\lambda λ \Sigma Σ \downarrow ↓
\mu µ \Upsilon \circ º
\nu ν \Phi Φ \pm ±
\xi ξ \Psi Ψ \geq ≥
\pi π \Omega Ω \propto ∝

\rho ρ \forall ∀ \partial ∂
\sigma σ \exists ∃ \bullet •
\varsigma ς \ni ∋ \div ÷
\tau τ \cong \neq ≠
\equiv ≡ \approx ≈ \aleph

\Im ℑ \Re ℜ \wp ℘

\otimes ⊗ \oplus ⊕ \oslash ∅

\cap ∩ \cup ∪ \supseteq ⊇

2-208

Annotation Textbox Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\supset ⊃ \subseteq ⊆ \subset ⊂

\int ∫ \in \o ο

\rfloor � \lceil � \nabla ∇

\lfloor � \cdot · \ldots ...

\perp ⊥ \neg ¬ \prime ´
\wedge ∧ \times x \0 ∅

\rceil � \surd √ \mid |

\vee ∨ \varpi ϖ \copyright ©
\langle ∠ \rangle ∠

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,
you can use \fontname in combination with one of the other
modifiers:

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

VerticalAlignment
top | cap | {middle} | baseline |
bottom

2-209

Annotation Textbox Properties

Vertical alignment of text. This property specifies the vertical
justification of the text string. It determines where MATLAB
places the string with regard to the value of the Position
property. The possible values mean

• top — Place the top of the string’ s Extent rectangle at the
specified y-position.

• cap — Place the string so that the top of a capital letter is at
the specified y-position.

• middle — Place the middle of the string at the specified
y-position.

• baseline— Place font baseline at the specified y-position.

• bottom— Place the bottom of the string’s Extent rectangle at
the specified y-position.

The following picture illustrates the alignment options.

2-210

ans

Purpose Most recent answer

Syntax ans

Description The MATLAB software creates the ans variable automatically when
you specify no output argument.

Examples The statement

2+2

is the same as

ans = 2+2

See Also display

2-211

any

Purpose Determine whether any array elements are nonzero

Syntax B = any(A)
B = any(A,dim)

Description B = any(A) tests whether any of the elements along various dimensions
of an array is a nonzero number or is logical 1 (true). any ignores
entries that are NaN (Not a Number).

If A is a vector, any(A) returns logical 1 (true) if any of the elements
of A is a nonzero number or is logical 1 (true), and returns logical 0
(false) if all the elements are zero.

If A is a matrix, any(A) treats the columns of A as vectors, returning a
row vector of logical 1’s and 0’s.

If A is a multidimensional array, any(A) treats the values along the
first nonsingleton dimension as vectors, returning a logical condition
for each vector.

B = any(A,dim) tests along the dimension of A specified by scalar dim.

Examples Example 1 – Reducing a Logical Vector to a Scalar Condition

Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical 1 (true) only where A is less than
one half:

0 0 1 1 1 1 0

2-212

any

The any function reduces such a vector of logical conditions to a single
condition. In this case, any(B) yields logical 1.

This makes any particularly useful in if statements:

if any(A < 0.5)do something
end

where code is executed depending on a single condition, not a vector
of possibly conflicting conditions.

Example 2– Reducing a Logical Matrix to a Scalar Condition

Applying the any function twice to a matrix, as in any(any(A)), always
reduces it to a scalar condition.

any(any(eye(3)))
ans =

1

Example 3 – Testing Arrays of Any Dimension

You can use the following type of statement on an array of any
dimensions. This example tests a 3-D array to see if any of its elements
are greater than 3:

x = rand(3,7,5) * 5;

any(x(:) > 3)
ans =

1

or less than zero:

any(x(:) < 0)
ans =

0

See Also all, logical operators (elementwise and short-circuit), relational
operators, colon

2-213

any

Other functions that collapse an array’s dimensions include max, mean,
median, min, prod, std, sum, and trapz.

2-214

area

Purpose Filled area 2-D plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

Syntax area(Y)
area(X,Y)
area(...,basevalue)
area(...,'PropertyName',PropertyValue,...)
area(axes_handle,...)
h = area(...)
hpatches = area('v6',...)

Description An area graph displays elements in Y as one or more curves and fills the
area beneath each curve. When Y is a matrix, the curves are stacked
showing the relative contribution of each row element to the total height
of the curve at each x interval.

area(Y) plots the vector Y or the sum of each column in matrix Y. The
x-axis automatically scales to 1:size(Y,1).

area(X,Y) For vectors X and Y, area(X,Y) is the same as plot(X,Y)
except that the area between 0 and Y is filled. When Y is a matrix,
area(X,Y) plots the columns of Y as filled areas. For each X, the net
result is the sum of corresponding values from the columns of Y.

If X is a vector, length(X) must equal length(Y). If X is a matrix,
size(X) must equal size(Y).

2-215

area

area(...,basevalue) specifies the base value for the area fill.
The default basevalue is 0. See the BaseValue property for more
information.

area(...,'PropertyName',PropertyValue,...) specifies property
name and property value pairs for the patch graphics object created
by area.

area(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = area(...) returns handles of areaseries graphics objects.

Backward-Compatible Version

hpatches = area('v6',...) returns the handles of patch objects
instead of areaseries objects for compatibility with MATLAB 6.5 and
earlier.

Note The v6 option enables users of MATLAB Version 7.x of to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Areaseries
Objects

Creating an area graph of an m-by-n matrix creates n areaseries objects
(i.e., one per column), whereas a 1-by-n vector creates one area object.

Some areaseries object properties that you set on an individual
areaseries object set the values for all areaseries objects in the graph.
See the property descriptions for information on specific properties.

Examples Stacked Area Graph

This example plots the data in the variable Y as an area graph. Each
subsequent column of Y is stacked on top of the previous data. The figure
colormap controls the coloring of the individual areas. You can explicitly
set the color of an area using the EdgeColor and FaceColor properties.

2-216

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/areaseriesproperties.html

area

Y = [1, 5, 3;
3, 2, 7;
1, 5, 3;
2, 6, 1];

area(Y)
grid on
colormap summer
set(gca,'Layer','top')
title 'Stacked Area Plot'

Adjusting the Base Value

The area function uses a y-axis value of 0 as the base of the filled areas.
You can change this value by setting the area BaseValue property.
For example, negate one of the values of Y from the previous example
and replot the data.

2-217

area

Y(3,1) = -1; % Was 1
h = area(Y);
set(gca,'Layer','top')
grid on
colormap summer

The area graph now looks like this:

Adjusting the BaseValue property improves the appearance of the
graph:

set(h,'BaseValue',-2)

Setting the BaseValue property on one areaseries object sets the values
of all objects.

2-218

area

Specifying Colors and Line Styles

You can specify the colors of the filled areas and the type of lines used to
separate them.

h = area(Y,-2); % Set BaseValue via argument
set(h(1),'FaceColor',[.5 0 0])
set(h(2),'FaceColor',[.7 0 0])
set(h(3),'FaceColor',[1 0 0])
set(h,'LineStyle',':','LineWidth',2) % Set
all to same value

2-219

area

See Also bar, plot, sort

“Area, Bar, and Pie Plots” on page 1-92 for related functions

“Area Graphs” for more examples

Areaseries Properties for property descriptions

2-220

Areaseries Properties

Purpose Define areaseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See “Plot Objects” for more information on areaseries objects.

Areaseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of areaseries objects in legends. The
Annotation property enables you to specify whether this
areaseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the areaseries
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the areaseries object in a legend as
one entry, but not its children objects

off Do not include the areaseries or its children
in a legend (default)

children Include only the children of the areaseries as
separate entries in the legend

2-221

Areaseries Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BaseValue
double: y-axis value

Value where filled area base is drawn. Specify the value along the
y-axis at which the MATLAB software draws the baseline of the
bottommost filled area.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

2-222

Areaseries Properties

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

2-223

Areaseries Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

2-224

Areaseries Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this areaseries object. The legend
function uses the string defined by the DisplayName property to
label this areaseries object in the legend.

2-225

Areaseries Properties

• If you specify string arguments with the legend function,
DisplayName is set to this areaseries object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeColor
{[0 0 0]} | none | ColorSpec

Color of line that separates filled areas. You can set the color of
the edges of filled areas to a three-element RGB vector or one of
the MATLAB predefined names, including the string none. The
default edge color is black. See ColorSpec for more information
on specifying color.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

2-226

Areaseries Properties

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

2-227

Areaseries Properties

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on—Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions

2-228

Areaseries Properties

invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

2-229

Areaseries Properties

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select areaseries object on filled area or extent of graph. This
property enables you to select areaseries objects in two ways:

• Select by clicking bars (default).

• Select by clicking anywhere in the extent of the area plot.

When HitTestArea is off, you must click the bars to select the
bar object. When HitTestArea is on, you can select the bar
object by clicking anywhere within the extent of the bar graph
(i.e., anywhere within a rectangle that encloses all the bars).

Interruptible
{on} | off

2-230

Areaseries Properties

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | – | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line
none No line

LineWidth
scalar

2-231

Areaseries Properties

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is

2-232

Areaseries Properties

particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For areaseries objects,
Type is ’hggroup’.

The following statement finds all the hggroup objects in the
current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

2-233

Areaseries Properties

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
vector or matrix

The x-axis values for a graph. The x-axis values for graphs
are specified by the X input argument. If XData is a vector,
length(XData) must equal length(YData) and must be
monotonic. If XData is a matrix, size(XData) must equal
size(YData) and each column must be monotonic.

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped. See for
more information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the

2-234

Areaseries Properties

column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector or matrix

Area plot data. YData contains the data plotted as filled areas (the
Y input argument). If YData is a vector, area creates a single filled
area whose upper boundary is defined by the elements of YData.
If YData is a matrix, area creates one filled area per column,
stacking each on the previous plot.

2-235

Areaseries Properties

The input argument Y in the area function calling syntax assigns
values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-236

arrayfun

Purpose Apply function to each element of array

Syntax A = arrayfun(fun, S)
A = arrayfun(fun, S, T, ...)
[A, B, ...] = arrayfun(fun, S, ...)
[A, ...] = arrayfun(fun, S, ..., 'param1', value1, ...)

Description A = arrayfun(fun, S) applies the function specified by fun to each
element of array S, and returns the results in array A. The value A
returned by arrayfun is the same size as S, and the (I,J,...)th
element of A is equal to fun(S(I,J,...)). The first input argument
fun is a function handle to a function that takes one input argument
and returns a scalar value. fun must return values of the same class
each time it is called.

If fun is bound to more than one built-in or M-file (that is, if it
represents a set of overloaded functions), then the class of the values
that arrayfun actually provides as input arguments to fun determines
which functions are executed.

The order in which arrayfun computes elements of A is not specified
and should not be relied upon.

A = arrayfun(fun, S, T, ...) evaluates fun using elements of the
arrays S, T, ... as input arguments. The (I,J,...)th element of A is
equal to fun(S(I,J,...), T(I,J,...), ...). All input arguments
must be of the same size.

[A, B, ...] = arrayfun(fun, S, ...) evaluates fun, which is a
function handle to a function that returns multiple outputs, and returns
arrays A, B, ..., each corresponding to one of the output arguments
of fun. arrayfun calls fun each time with as many outputs as there
are in the call to arrayfun. fun can return output arguments having
different classes, but the class of each output must be the same each
time fun is called.

[A, ...] = arrayfun(fun, S, ..., 'param1', value1, ...)
enables you to specify optional parameter name and value pairs.

2-237

arrayfun

Parameters recognized by arrayfun are shown below. Enclose each
parameter name with single quotes.

Parameter Name Parameter Value

UniformOutput A logical 1 (true) or 0 (false), indicating
whether or not the outputs of fun can be
returned without encapsulation in a cell
array.

If true (the default), fun must return
scalar values that can be concatenated
into an array. These values can also be a
cell array. If false, arrayfun returns a
cell array (or multiple cell arrays), where
the (I,J,...)th cell contains the value
fun(S(I,J,...), ...).

ErrorHandler A function handle, specifying the
function that arrayfun is to call if the
call to fun fails. If an error handler is not
specified, arrayfun rethrows the error
from the call to fun.

Remarks The MATLAB software provides two functions that are similar to
arrayfun; these are structfun and cellfun. With structfun, you
can apply a given function to all fields of one or more structures. With
cellfun, you apply the function to all cells of one or more cell arrays.

Examples Example 1 — Operating on a Single Input.

Create a 1-by-15 structure array with fields f1 and f2, each field
containing an array of a different size. Make each f1 field be unequal to
the f2 field at that same array index:

for k=1:15
s(k).f1 = rand(k+3,k+7) * 10;
s(k).f2 = rand(k+3,k+7) * 10;

2-238

arrayfun

end

Set three f1 fields to be equal to the f2 field at that array index:

s(3).f2 = s(3).f1;
s(9).f2 = s(9).f1;
s(12).f2 = s(12).f1;

Use arrayfun to compare the fields at each array index. This compares
the array of s(1).f1 with that of s(1).f2, the array of s(2).f1 with
that of s(2).f2, and so on through the entire structure array.

The first argument in the call to arrayfun is an anonymous function.
Anonymous functions return a function handle, which is the required
first input to arrayfun:

z = arrayfun(@(x)isequal(x.f1, x.f2), s)
z =

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

Example 2 — Operating on Multiple Inputs.

This example performs the same array comparison as in the previous
example, except that it compares the same field of more than one
structure array rather than different fields of the same structure array.
This shows how you can use more than one array input with arrayfun.

Make copies of array s, created in the last example, to arrays t and u.

t = s; u = s;

Make one element of structure array t unequal to the same element of
s. Do the same with structure array u:

t(4).f1(12)=0;
u(14).f1(6)=0;

Compare field f1 of the three arrays s, t, and u:

z = arrayfun(@(a,b,c)isequal(a.f1, b.f1, c.f1), s, t, u)
z =

2-239

arrayfun

1 1 1 0 1 1 1 1 1 1 1 1 1 0 1

Example 3 — Generating Nonuniform Output.

Generate a 1-by-3 structure array s having random matrices in field f1:

rand('state', 0);
s(1).f1 = rand(7,4) * 10;
s(2).f1 = rand(3,7) * 10;
s(3).f1 = rand(5,5) * 10;

Find the maximum for each f1 vector. Because the output is nonscalar,
specify the UniformOutput option as false:

sMax = arrayfun(@(x) max(x.f1), s, 'UniformOutput', false)
sMax =

[1x4 double] [1x7 double] [1x5 double]

sMax{:}
ans =

9.5013 9.2181 9.3547 8.1317
ans =

2.7219 9.3181 8.4622 6.7214 8.3812 8.318 7.0947
ans =

6.8222 8.6001 8.9977 8.1797 8.385

Find the mean for each f1 vector:

sMean = arrayfun(@(x) mean(x.f1), s, ...
'UniformOutput', false)

sMean =
[1x4 double] [1x7 double] [1x5 double]

sMean{:}
ans =

6.2628 6.2171 5.4231 3.3144
ans =

1.6209 7.079 5.7696 4.6665 5.1301 5.7136 4.8099
ans =

2-240

arrayfun

3.8195 5.8816 6.9128 4.9022 5.9541

Example 4 — Assigning to More Than One Output Variable.

The next example uses the lu function on the same structure array,
returning three outputs from arrayfun:

[l u p] = arrayfun(@(x)lu(x.f1), s, 'UniformOutput', false)
l =

[7x4 double] [3x3 double] [5x5 double]
u =

[4x4 double] [3x7 double] [5x5 double]
p =

[7x7 double] [3x3 double] [5x5 double]

l{3}
ans =

1 0 0 0 0
0.44379 1 0 0 0
0.79398 0.79936 1 0 0
0.27799 0.066014 -0.77517 1 0
0.28353 0.85338 0.29223 0.67036 1

u{3}
ans =

6.8222 3.7837 8.9977 3.4197 3.0929
0 6.9209 4.2232 1.3796 7.0124
0 0 -4.0708 -0.40607 -2.3804
0 0 0 6.8232 2.1729
0 0 0 0 -0.35098

p{3}
ans =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

2-241

arrayfun

See Also structfun, cellfun, spfun, function_handle, cell2mat

2-242

ascii

Purpose Set FTP transfer type to ASCII

Syntax ascii(f)

Description ascii(f) sets the download and upload FTP mode to ASCII, which
converts new lines, where f was created using ftp. Use this function for
text files only, including HTML pages and Rich Text Format (RTF) files.

Examples Connect to the MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp
function to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: ascii

Note that the FTP object is now set to ASCII mode.

See Also ftp, binary

2-243

asec

Purpose Inverse secant; result in radians

Syntax Y = asec(X)

Description Y = asec(X) returns the inverse secant (arcsecant) for each element
of X.

The asec function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse secant over the domains and .

x1 = -5:0.01:-1;
x2 = 1:0.01:5;
plot(x1,asec(x1),x2,asec(x2)), grid on

2-244

asec

Definition The inverse secant can be defined as

Algorithm asec uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also asecd, asech, sec

2-245

http://www.netlib.org

asecd

Purpose Inverse secant; result in degrees

Syntax Y = asecd(X)

Description Y = asecd(X) is the inverse secant, expressed in degrees, of the
elements of X.

See Also secd, asec

2-246

asech

Purpose Inverse hyperbolic secant

Syntax Y = asech(X)

Description Y = asech(X) returns the inverse hyperbolic secant for each element
of X.

The asech function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic secant over the domain .

x = 0.01:0.001:1;
plot(x,asech(x)), grid on

Definition The hyperbolic inverse secant can be defined as

2-247

asech

Algorithm asech uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also asec, sech

2-248

http://www.netlib.org

asin

Purpose Inverse sine; result in radians

Syntax Y = asin(X)

Description Y = asin(X) returns the inverse sine (arcsine) for each element of X.
For real elements of X in the domain , asin(X) is in the range

. For real elements of x outside the range ,
asin(X) is complex.

The asin function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse sine function over the domain .

x = -1:.01:1;
plot(x,asin(x)), grid on

2-249

asin

Definition The inverse sine can be defined as

Algorithm asin uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also asind, asinh, sin, sind, sinh

2-250

http://www.netlib.org

asind

Purpose Inverse sine; result in degrees

Syntax Y = asind(X)

Description Y = asind(X) is the inverse sine, expressed in degrees, of the elements
of X.

See Also asin, asinh, sin, sind, sinh

2-251

asinh

Purpose Inverse hyperbolic sine

Syntax Y = asinh(X)

Description Y = asinh(X) returns the inverse hyperbolic sine for each element of X.

The asinh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic sine function over the domain .

x = -5:.01:5;
plot(x,asinh(x)), grid on

Definition The hyperbolic inverse sine can be defined as

2-252

asinh

Algorithm asinh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also asin, asind, sin, sinh, sind

2-253

http://www.netlib.org

assert

Purpose Generate error when condition is violated

Syntax assert(expression)
assert(expression, 'errmsg')
assert(expression, 'errmsg', value1, value2, ...)
assert(expression, 'msg_id', 'errmsg', value1, value2, ...)

Description assert(expression) evaluates expression and, if it is false, displays
the error message: Assertion Failed.

assert(expression, 'errmsg') evaluates expression and, if it is
false, displays the string contained in errmsg. This string must be
enclosed in single quotation marks. When errmsg is the last input to
assert, the MATLAB software displays it literally, without performing
any substitutions on the characters in errmsg.

assert(expression, 'errmsg', value1, value2, ...) evaluates
expression and, if it is false, displays the formatted string contained
in errmsg. The errmsg string can include escape sequences such as \t
or \n, as well as any of the C language conversion operators supported
by the sprintf function (e.g., %s or %d). Additional arguments
value1, value2, etc. provide values that correspond to and replace
the conversion operators.

See “Formatting Strings” in the MATLAB Programming Fundamentals
documentation for more detailed information on using string formatting
commands.

MATLAB makes substitutions for escape sequences and conversion
operators in errmsg in the same way that it does for the sprintf
function.

assert(expression, 'msg_id', 'errmsg', value1, value2, ...)
evaluates expression and, if it is false, displays the formatted string
errmsg, also tagging the error with the message identifier msg_id. See
“Message Identifiers” in the MATLAB Programming Fundamentals
documentation for information.

2-254

assert

Examples This function tests input arguments using assert:

function write2file(varargin)
min_inputs = 3;
assert(nargin >= min_inputs, ...

'You must call function %s with at least %d inputs', ...
mfilename, min_inputs)

infile = varargin{1};
assert(ischar(infile), ...

'First argument must be a filename.')
assert(exist(infile)~=0, 'File %s not found.', infile)

fid = fopen(infile, 'w');
assert(fid > 0, 'Cannot open file %s for writing', infile)

fwrite(fid, varargin{2}, varargin{3});

See Also error, eval, sprintf

2-255

assignin

Purpose Assign value to variable in specified workspace

Syntax assignin(ws, 'var', val)

Description assignin(ws, 'var', val) assigns the value val to the variable var
in the workspace ws. var is created if it doesn’t exist. ws can have a
value of 'base' or 'caller' to denote the MATLAB base workspace or
the workspace of the caller function.

The assignin function is particularly useful for these tasks:

• Exporting data from a function to the MATLAB workspace

• Within a function, changing the value of a variable that is defined
in the workspace of the caller function (such as a variable in the
function argument list)

Remarks The MATLAB base workspace is the workspace that is seen from
the MATLAB command line (when not in the debugger). The caller
workspace is the workspace of the function that called the M-file. Note
that the base and caller workspaces are equivalent in the context of an
M-file that is invoked from the MATLAB command line.

Examples This example creates a dialog box for the image display function,
prompting a user for an image name and a colormap name. The
assignin function is used to export the user-entered values to the
MATLAB workspace variables imfile and cmap.

prompt = {'Enter image name:','Enter colormap name:'};
title = 'Image display - assignin example';
lines = 1;
def = {'my_image','hsv'};
answer = inputdlg(prompt,title,lines,def);
assignin('base','imfile',answer{1});
assignin('base','cmap',answer{2});

2-256

assignin

See Also evalin

2-257

atan

Purpose Inverse tangent; result in radians

Syntax Y = atan(X)

Description Y = atan(X) returns the inverse tangent (arctangent) for each element
of X. For real elements of X, atan(X) is in the range .

The atan function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse tangent function over the domain .

x = -20:0.01:20;
plot(x,atan(x)), grid on

Definition The inverse tangent can be defined as

2-258

atan

Algorithm atan uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also atan2, tan, atand, atanh

2-259

http://www.netlib.org

atan2

Purpose Four-quadrant inverse tangent

Syntax P = atan2(Y,X)

Description P = atan2(Y,X) returns an array P the same size as X and Y containing
the element-by-element, four-quadrant inverse tangent (arctangent) of
the real parts of Y and X. Any imaginary parts of the inputs are ignored.

Elements of P lie in the closed interval [-pi,pi], where pi is the
MATLAB floating-point representation of . atan uses sign(Y) and
sign(X) to determine the specific quadrant.

atan2(Y,X) contrasts with atan(Y/X), whose results are limited to the
interval , or the right side of this diagram.

Examples Any complex number is converted to polar coordinates with

r = abs(z)
theta = atan2(imag(z),real(z))

For example,

z = 4 + 3i;
r = abs(z)
theta = atan2(imag(z),real(z))

2-260

atan2

r =
5

theta =
0.6435

This is a common operation, so MATLAB software provides a function,
angle(z), that computes theta = atan2(imag(z),real(z)).

To convert back to the original complex number

z = r *exp(i *theta)
z =

4.0000 + 3.0000i

Algorithm atan2 uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also angle, atan, atanh

2-261

http://www.netlib.org

atand

Purpose Inverse tangent; result in degrees

Syntax Y = atand(X)

Description Y = atand(X) is the inverse tangent, expressed in degrees, of the
elements of X.

See Also tand, atan

2-262

atanh

Purpose Inverse hyperbolic tangent

Syntax Y = atanh(X)

Description The atanh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = atanh(X) returns the inverse hyperbolic tangent for each element
of X.

Examples Graph the inverse hyperbolic tangent function over the domain
.

x = -0.99:0.01:0.99;
plot(x,atanh(x)), grid on

Definition The hyperbolic inverse tangent can be defined as

2-263

atanh

Algorithm atanh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also atan2, atan, tanh

2-264

http://www.netlib.org

audioplayer

Purpose Create audio player object

Syntax player = audioplayer(Y, Fs)
player = audioplayer(Y, Fs, nBits)
player = audioplayer(Y, Fs, nBits, ID)
player = audioplayer(R)
player = audioplayer(R, ID)

Description
Note To use all of the features of the audio player object, your system
needs a properly installed and configured sound card with 8- and 16-bit
I/O, two channels, and support for sampling rates of up to 48 kHz.

player = audioplayer(Y, Fs) creates an audio player object for
signal Y, using sample rate Fs. The function returns player, a handle
to the audio player object. The audio player object supports methods
and properties that you can use to control how the audio data is played.

The input signal Y can be a vector or two-dimensional array containing
single, double, int8, uint8, or int16 MATLAB data types. Fs is the
sampling rate in Hz to use for playback. Valid values for Fs depend on
the specific audio hardware installed. Typical values supported by most
sound cards are 8000, 11025, 22050, and 44100 Hz.

player = audioplayer(Y, Fs, nBits) creates an audio player object
and uses nBits bits per sample for floating point signal Y. Valid values
for nBits are 8, 16, and 24 on Windows operating systems, 8 and 16 on
UNIX operating systems. The default number of bits per sample for
floating point signals is 16.

player = audioplayer(Y, Fs, nBits, ID) creates an audio player
object using audio device identifier ID for output. If ID equals -1, the
default output device will be used. This option is only available on
Windows operating systems.

player = audioplayer(R) creates an audio player object using audio
recorder object R.

2-265

audioplayer

player = audioplayer(R, ID) creates an audio player object from
audio recorder object R using audio device identifier ID for output. This
option is only available on Windows operating systems.

Remarks

The value range of the input sample depends on the MATLAB data
type. The following table lists these ranges.

Data Type Input Sample Value Range

int8 -128 to 127
uint8 0 to 255
int16 -32768 to 32767
single -1 to 1
double -1 to 1

Example Load a sample audio file of Handel’s Hallelujah Chorus, create an audio
player object, and play back only the first three seconds. y contains
the audio samples and Fs is the sampling rate. You can use any of the
audioplayer functions listed above on the player:

load handel;
player = audioplayer(y, Fs);
play(player,[1 (get(player, 'SampleRate')*3)]);

To stop the playback, use this command:

stop(player); % Equivalent to player.stop

Methods After you create an audio player object, you can use the methods listed
below on that object. player represents a handle to the audio player
object.

2-266

audioplayer

Method Description

play(player)

play(player, start)

play(player, [start stop])

play(player, range)

Starts playback from the beginning
and plays to the end of audio player
object player.
Play audio from the sample
indicated by start to the end, or
from the sample indicated by start
up to the sample indicated by stop.
The values of start and stop can
also be specified in a two-element
vector range.

playblocking(player)

playblocking(player,
start)

playblocking(player,
[start stop])

playblocking(player,
range)

Same as play, but does not return
control until playback completes.

stop(player) Stops playback.
pause(player) Pauses playback.
resume(player) Restarts playback from where

playback was paused.
isplaying(player) Indicates whether playback is in

progress. If 0, playback is not
in progress. If 1, playback is in
progress.

display(player)

disp(player)

get(player)

Displays all property information
about audio player player.

2-267

audioplayer

Properties Audio player objects have the properties listed below. To set a
user-settable property, use this syntax:

set(player, 'property1', value,'property2',value,...)

To view a read-only property,

get(player,'property') % Displays 'property' setting.

Property Description Type

Type Name of the object’s class. Read-only
SampleRate Sampling frequency in Hz. User-settable
BitsPerSample Number of bits per sample. Read-only
NumberOfChannels Number of channels. Read-only
TotalSamples Total length, in samples, of the

audio data.
Read-only

Running Status of the audio player
('on' or 'off').

Read-only

CurrentSample Current sample being played
by the audio output device (if it
is not playing, CurrentSample
is the next sample to be played
with play or resume).

Read-only

UserData User data of any type. User-settable
Tag User-specified object label

string.
User-settable

For information on using the following four properties, see “Creating
and Executing Callback Functions” in the MATLAB documentation.
Note that for audio player object callbacks, eventStruct(event) is
currently empty ([]).

2-268

audioplayer

Property Description Type

TimerFcn Handle to a user-specified
callback function that is
executed repeatedly (at
TimerPeriod intervals) during
playback.

User-settable

TimerPeriod Time, in seconds, between
TimerFcn callbacks.

User-settable

StartFcn Handle to a user-specified
callback function that is
executed once when playback
starts.

User-settable

StopFcn Handle to a user-specified
callback function that is
executed once when playback
stops.

User-settable

See Also audiorecorder, sound, wavplay, wavwrite, wavread, get, set, methods

2-269

audiorecorder

Purpose Create audio recorder object

Syntax y = audiorecorder
y = audiorecorder(Fs, nbits, nchans)
y = audiorecorder(Fs, nbits, channels, id)

Description
Note To use all of the features of the audiorecorder object, your system
must have a properly installed and configured sound card with 8- and
16-bit I/O and support for sampling rates of up to 48 kHz.

y = audiorecorder creates an 8000 Hz, 8-bit, 1 channel audiorecorder
object. y is a handle to the object. The audiorecorder object supports
methods and properties that you can use to record audio data.

y = audiorecorder(Fs, nbits, nchans) creates an audiorecorder
object using the sampling rate Fs (in Hz), the sample size nbits, and
the number of channelsnchans. Fs can be any sampling rate supported
by the audio hardware. Common sampling rates are 8000, 11025,
22050, and 44100 (only 44100 on Macintosh® operating systems). The
value of nbits must be 8, 16, or 24, on Microsoft Windows operating
systems, and 8 or 16 on UNIX operating systems. The number of
channels, nchans must be 1 (mono) or 2 (stereo).

y = audiorecorder(Fs, nbits, channels, id) creates an
audiorecorder object using the audio device specified by its id for input.
If id equals -1, the default input device will be used. This option is only
available on Windows operating systems.

Examples Using a microphone, record your voice, using a sample rate of 44100 Hz,
16 bits per sample, and one channel. Speak into the microphone, then
pause the recording. Play back what you have recorded so far. Record
some more, then stop the recording. Finally, return the recorded data
to the MATLAB workspace as an int16 array.

r = audiorecorder(44100, 16, 1);
record(r); % speak into microphone...

2-270

audiorecorder

pause(r);
p = play(r); % listen
resume(r); % speak again
stop(r);
p = play(r); % listen to complete recording
mySpeech = getaudiodata(r, 'int16'); % get data as int16 array

Remarks The current implementation of audiorecorder is not intended for long,
high-sample-rate recording because it uses system memory for storage
and does not use disk buffering. When large recordings are attempted,
MATLAB performance may degrade.

Methods After you create an audiorecorder object, you can use the methods
listed below on that object. y represents the name of the returned
audiorecorder object

Method Description

record(y)

record(y,length)

Starts recording.

Records for length number of seconds.
recordblocking(y,length) Same as record, but does not return

control until recording completes.
stop(y) Stops recording.
pause(y) Pauses recording.
resume(y) Restarts recording from where

recording was paused.
isrecording(y) Indicates the status of recording. If

0, recording is not in progress. If 1,
recording is in progress.

play(y) Creates an audioplayer, plays the
recorded audio data, and returns a
handle to the created audioplayer.

2-271

audiorecorder

Method Description

getplayer(y) Creates an audioplayer and returns a
handle to the created audioplayer.

getaudiodata(y)

getaudiodata(y,'type')

Returns the recorded audio data to
the MATLAB workspace. type is a
string containing the desired data
type. Supported data types are double,
single, int16, int8, or uint8. If type
is omitted, it defaults to 'double'.
For double and single, the array
contains values between -1 and 1. For
int8, values are between -128 to 127.
For uint8, values are from 0 to 255.
For int16, values are from -32768 to
32767. If the recording is in mono, the
returned array has one column. If it is
in stereo, the array has two columns,
one for each channel.

display(y)

disp(y)

get(y)

Displays all property information
about audio recorder y.

Properties Audio recorder objects have the properties listed below. To set a
user-settable property, use this syntax:

set(y, 'property1', value,'property2',value,...)

To view a read-only property,

get(y,'property') %displays 'property' setting.

Property Description Type

Type Name of the object’s class. Read-only

2-272

audiorecorder

Property Description Type

SampleRate Sampling frequency in Hz. Read-only
BitsPerSample Number of bits per recorded

sample.
Read-only

NumberOfChannels Number of channels of
recorded audio.

Read-only

TotalSamples Total length, in samples, of
the recording.

Read-only

Running Status of the audio recorder
('on' or 'off').

Read-only

CurrentSample Current sample being
recorded by the audio
output device (if it is not
recording, currentsample
is the next sample to be
recorded with record or
resume).

Read-only

UserData User data of any type. User-settable
For information on using the following four properties, see “Creating
and Executing Callback Functions” in the MATLAB documentation.
Note that for audio object callbacks, eventStruct(event) is currently
empty ([]).
TimerFcn Handle to a user-specified

callback function that is
executed repeatedly (at
TimerPeriod intervals)
during recording.

User-settable

TimerPeriod Time, in seconds, between
TimerFcn callbacks.

User-settable

2-273

audiorecorder

Property Description Type

StartFcn Handle to a user-specified
callback function that
is executed once when
recording starts.

User-settable

StopFcn Handle to a user-specified
callback function that
is executed once when
recording stops.

User-settable

NumberOfBuffers Number of buffers used
for recording (you should
adjust this only if you have
skips, dropouts, etc., in your
recording).

User-settable

BufferLength Length in seconds of buffer
(you should adjust this only
if you have skips, dropouts,
etc., in your recording).

User-settable

Tag User-specified object label
string.

User-settable

See Also audioplayer, wavread, wavrecord, wavwrite, get, set, methods

2-274

aufinfo

Purpose Information about NeXT/SUN (.au) sound file

Syntax [m d] = aufinfo(aufile)

Description [m d] = aufinfo(aufile) returns information about the contents of
the AU sound file specified by the string aufile.

m is the string 'Sound (AU) file', if filename is an AU file.
Otherwise, it contains an empty string ('').

d is a string that reports the number of samples in the file and the
number of channels of audio data. If filename is not an AU file, it
contains the string 'Not an AU file'.

See Also auread

2-275

auread

Purpose Read NeXT/SUN (.au) sound file

Graphical
Interface

As an alternative to auread, use the Import Wizard. To activate the
Import Wizard, select Import data from the File menu.

Syntax y = auread('aufile')
[y,Fs,bits] = auread('aufile')
[...] = auread('aufile',N)
[...] = auread('aufile',[N1 N2])
siz = auread('aufile','size')

Description y = auread('aufile') loads a sound file specified by the string
aufile, returning the sampled data in y. The .au extension is appended
if no extension is given. Amplitude values are in the range [-1,+1].
auread supports multichannel data in the following formats:

• 8-bit mu-law

• 8-, 16-, and 32-bit linear

• Floating-point

[y,Fs,bits] = auread('aufile') returns the sample rate (Fs) in
Hertz and the number of bits per sample (bits) used to encode the
data in the file.

[...] = auread('aufile',N) returns only the first N samples from
each channel in the file.

[...] = auread('aufile',[N1 N2]) returns only samples N1
through N2 from each channel in the file.

siz = auread('aufile','size') returns the size of the audio data
contained in the file in place of the actual audio data, returning the
vector siz = [samples channels].

See Also auwrite, wavread

2-276

auwrite

Purpose Write NeXT/SUN (.au) sound file

Syntax auwrite(y,'aufile')
auwrite(y,Fs,'aufile')
auwrite(y,Fs,N,'aufile')
auwrite(y,Fs,N,'method','aufile')

Description auwrite(y,'aufile') writes a sound file specified by the string
aufile. The data should be arranged with one channel per column.
Amplitude values outside the range [-1,+1] are clipped prior to
writing. auwrite supports multichannel data for 8-bit mu-law and 8-
and 16-bit linear formats.

auwrite(y,Fs,'aufile') specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N,'aufile') selects the number of bits in the encoder.
Allowable settings are N = 8 and N = 16.

auwrite(y,Fs,N,'method','aufile') allows selection of the encoding
method, which can be either mu or linear. Note that mu-law files must
be 8-bit. By default, method = 'mu'.

See Also auread, wavwrite

2-277

avifile

Purpose Create new Audio/Video Interleaved (AVI) file

Syntax aviobj = avifile(filename)
aviobj = avifile(filename, 'Param1', Val1, 'Param2', Val2,

...)

Description aviobj = avifile(filename) creates an avifile object, giving it
the name specified in filename, using default values for all avifile
object properties. AVI is a file format for storing audio and video data.
If filename does not include an extension, avifile appends .avi to the
file name. To close all open AVI files, use the clear mex command.

avifile returns a handle to an AVI file object aviobj. Use this object
to refer to the AVI file in other functions. An AVI file object supports
properties and methods that control aspects of the AVI file created.

aviobj = avifile(filename, 'Param1', Val1, 'Param2',
Val2,...) creates an avifile object with the property values specified
by parameter/value pairs. This table lists available parameters.

Parameter Value Default

'colormap' An m-by-3 matrix defining the colormap to be used
for indexed AVI movies, where m must be no greater
than 256 (236 if using Indeo compression). You
must set this parameter before calling addframe,
unless you are using addframe with the MATLAB
movie syntax.

This parameter can be specified only when the
'compression' parameter is set to 'MSVC', 'RLE',
or 'None'

There is no
default colormap.

2-278

avifile

Parameter Value Default

'compression' A text string specifying the compression codec to use.

On Microsoft Windows operating systems:

• 'Indeo3'

• 'Indeo5'

• 'Cinepak'

• 'MSVC'

• 'RLE'

• 'None'

• To use a custom compression codec on Windows
systems, specify the four-character code that
identifies the codec (typically included in the
codec documentation). The addframe function
reports an error if it cannot find the specified
custom compressor.

On UNIX operating systems:

• 'None'

'Indeo5'
on Windows
systems.

'None' on UNIX
systems.

'fps' A scalar value specifying the speed of the AVI movie
in frames per second (fps).

15 fps

'keyframe' For compressors that support temporal compression,
this is the number of key frames per second.

2.1429 key
frames per
second.

2-279

avifile

Parameter Value Default

'quality' A number between 0 and 100. This parameter has
no effect on uncompressed movies. Higher quality
numbers result in higher video quality and larger
file sizes. Lower quality numbers result in lower
video quality and smaller file sizes. You must
set this parameter before calling addframe. This
parameter has no effect on uncompressed movies.

75

'videoname' A descriptive name for the video stream. This
parameter must be no greater than 64 characters
long and must be set before using addframe.

The default is the
filename.

You can also use structure syntax (also called dot notation) to set
avifile object properties. The property name must be typed in full,
however, it is not case sensitive. For example, to set the quality
property to 100, use the following syntax:

aviobj = avifile('myavifile');
aviobj.quality = 100;

All the field names of an avifile object are the same as the parameter
names listed in the table, except for the keyframe parameter. To set
this property using dot notation, specify the KeyFramePerSec property.
For example, to change the value of keyframe to 2.5, type

aviobj.KeyFramePerSec = 2.5;

Example This example uses the avifile function to create the AVI file
example.avi.

t = linspace(0,2.5*pi,40);
fact = 10*sin(t);
fig=figure;
aviobj = avifile('example.avi')
[x,y,z] = peaks;
for k=1:length(fact)

h = surf(x,y,fact(k)*z);

2-280

avifile

axis([-3 3 -3 3 -80 80])
axis off
caxis([-90 90])
F = getframe(fig);
aviobj = addframe(aviobj,F);

end
close(fig)
aviobj = close(aviobj);

See Also addframe, close, movie2avi

2-281

aviinfo

Purpose Information about Audio/Video Interleaved (AVI) file

Syntax fileinfo = aviinfo(filename)

Description fileinfo = aviinfo(filename) returns a structure whose fields
contain information about the AVI file specified in the string filename.
If filename does not include an extension, then .avi is used. The
file must be in the current working directory or in a directory on the
MATLAB path.

The set of fields in the fileinfo structure is shown below.

Field Name Description

AudioFormat String containing the name of the format
used to store the audio data, if audio data
is present

AudioRate Integer indicating the sample rate in
Hertz of the audio stream, if audio data
is present

Filename String specifying the name of the file
FileModDate String containing the modification date of

the file
FileSize Integer indicating the size of the file in

bytes
FramesPerSecond Integer indicating the desired frames per

second
Height Integer indicating the height of the AVI

movie in pixels
ImageType String indicating the type of image. Either

'truecolor' for a truecolor (RGB) image,
or 'indexed' for an indexed image.

2-282

aviinfo

Field Name Description

NumAudioChannels Integer indicating the number of channels
in the audio stream, if audio data is
present

NumFrames Integer indicating the total number of
frames in the movie

NumColormapEntries Integer specifying the number of colormap
entries. For a truecolor image, this value
is 0 (zero).

Quality Number between 0 and 100 indicating
the video quality in the AVI file. Higher
quality numbers indicate higher video
quality; lower quality numbers indicate
lower video quality. This value is not
always set in AVI files and therefore can
be inaccurate.

VideoCompression String containing the compressor used to
compress the AVI file. If the compressor
is not Microsoft Video 1, Run Length
Encoding (RLE), Cinepak, or Intel® Indeo,
aviinfo returns the four-character code
that identifies the compressor.

Width Integer indicating the width of the AVI
movie in pixels

See also avifile, aviread

2-283

aviread

Purpose Read Audio/Video Interleaved (AVI) file

Syntax mov = aviread(filename)
mov = aviread(filename, index)

Description mov = aviread(filename) reads the AVI movie filename into the
MATLAB movie structure mov. If filename does not include an
extension, then .avi is used. Use the movie function to view the movie
mov. On UNIX platforms, filename must be an uncompressed AVI file.

mov has two fields, cdata and colormap. The content of these fields
varies depending on the type of image.

Image Type cdata Field colormap Field

Truecolor Height-by-width-by-3
array of uint8 values

Empty

Indexed Height-by-width
array of uint8 values

m-by-3 array of
double values

aviread supports 8-bit frames, for indexed and grayscale images, 16-bit
grayscale images, or 24-bit truecolor images. Note, however, that movie
only accepts 8-bit image frames; it does not accept 16-bit grayscale
image frames.

mov = aviread(filename, index) reads only the frames specified by
index. index can be a single index or an array of indices into the video
stream. In AVI files, the first frame has the index value 1, the second
frame has the index value 2, and so on.

Note If you are using MATLAB on a Windows platform, consider using
the new mmreader function, which adds support for more video formats
and codecs.

See also avifile, aviinfo, mmreader, movie

2-284

axes

Purpose Create axes graphics object

GUI
Alternatives

To create a figure select New > Figure from the MATLAB Desktop
or a figure’s File menu. To add an axes to a figure, click one of the
New Subplots icons in the Figure Palette, and slide right to select an
arrangement of new axes. For details, see “Plotting Tools — Interactive
Plotting” in the MATLAB Graphics documentation.

Syntax axes
axes('PropertyName',propertyvalue,...)
axes(h)
h = axes(...)

Description axes is the low-level function for creating axes graphics objects.

axes creates an axes graphics object in the current figure using default
property values.

axes('PropertyName',propertyvalue,...) creates an axes object
having the specified property values. MATLAB uses default values for
any properties that you do not explicitly define as arguments.

axes(h) makes existing axes h the current axes and brings the figure
containing it into focus. It also makes h the first axes listed in the
figure’s Children property and sets the figure’s CurrentAxes property
to h. The current axes is the target for functions that draw image, line,
patch, rectangle, surface, and text graphics objects.

If you want to make an axes the current axes without changing the
state of the parent figure, set the CurrentAxes property of the figure
containing the axes:

set(figure_handle,'CurrentAxes',axes_handle)

2-285

axes

This is useful if you want a figure to remain minimized or stacked below
other figures, but want to specify the current axes.

h = axes(...) returns the handle of the created axes object.

Remarks MATLAB automatically creates an axes, if one does not already exist,
when you issue a command that creates a graph.

The axes function accepts property name/property value pairs,
structure arrays, and cell arrays as input arguments (see the set
and get commands for examples of how to specify these data types).
These properties, which control various aspects of the axes object, are
described in the Axes Properties section.

Use the set function to modify the properties of an existing axes or the
get function to query the current values of axes properties. Use the gca
command to obtain the handle of the current axes.

The axis (not axes) function provides simplified access to commonly
used properties that control the scaling and appearance of axes.

While the basic purpose of an axes object is to provide a coordinate
system for plotted data, axes properties provide considerable control
over the way MATLAB displays data.

Stretch-to-Fill

By default, MATLAB stretches the axes to fill the axes position
rectangle (the rectangle defined by the last two elements in the
Position property). This results in graphs that use the available space
in the rectangle. However, some 3-D graphs (such as a sphere) appear
distorted because of this stretching, and are better viewed with a
specific three-dimensional aspect ratio.

Stretch-to-fill is active when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto (the default). However, stretch-to-fill is turned off when the
DataAspectRatio, PlotBoxAspectRatio, or CameraViewAngle is
user-specified, or when one or more of the corresponding modes is set to
manual (which happens automatically when you set the corresponding
property value).

2-286

axes

This picture shows the same sphere displayed both with and without
the stretch-to-fill. The dotted lines show the axes rectangle.

When stretch-to-fill is disabled, MATLAB sets the size of the axes to be
as large as possible within the constraints imposed by the Position
rectangle without introducing distortion. In the picture above, the
height of the rectangle constrains the axes size.

Examples Zooming

Zoom in using aspect ratio and limits:

sphere
set(gca,'DataAspectRatio',[1 1 1],...

'PlotBoxAspectRatio',[1 1 1],'ZLim',[-0.6 0.6])

Zoom in and out using the CameraViewAngle:

sphere
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')-5)
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')+5)

Note that both examples disable the MATLAB stretch-to-fill behavior.

2-287

axes

Positioning the Axes

The axes Position property enables you to define the location of the
axes within the figure window. For example,

h = axes('Position',position_rectangle)

creates an axes object at the specified position within the current figure
and returns a handle to it. Specify the location and size of the axes with
a rectangle defined by a four-element vector,

position_rectangle = [left, bottom, width, height];

The left and bottom elements of this vector define the distance from
the lower left corner of the figure to the lower left corner of the rectangle.
The width and height elements define the dimensions of the rectangle.
You specify these values in units determined by the Units property. By
default, MATLAB uses normalized units where (0,0) is the lower left
corner and (1.0,1.0) is the upper right corner of the figure window.

You can define multiple axes in a single figure window:

axes('position',[.1 .1 .8 .6])
mesh(peaks(20));
axes('position',[.1 .7 .8 .2])
pcolor([1:10;1:10]);

In this example, the first plot occupies the bottom two-thirds of the
figure, and the second occupies the top third.

2-288

axes

Setting
Default
Properties

You can set default axes properties on the figureand root objectlevels:

set(0,'DefaultAxesPropertyName',PropertyValue,...)
set(gcf,'DefaultAxesPropertyName',PropertyValue,...)

where PropertyName is the name of the axes property and
PropertyValue is the value you are specifying. Use set and get to
access axes properties.

See Also axis, cla, clf, figure, gca, grid, subplot, title, xlabel, ylabel,
zlabel, view

“Axes Operations” on page 1-100 for related functions

“Axes Properties” for more examples

2-289

axes

See “Types of Graphics Objects” for information on core, group, plot, and
annotation objects.

2-290

Axes Properties

Purpose Modify axes properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• “The Property Editor” is an interactive tool that enables you to see
and change object property values.

• The set and get commands let you set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values” in the Handle Graphics Objects documentation.

Axes
Property
Descriptions

This section lists property names along with the types of values each
accepts. Curly braces { } enclose default values.

ActivePositionProperty
{outerposition} | position

Use OuterPosition or Position property for resize.
ActivePositionProperty specifies which property MATLAB
uses to determine the size of the axes when you resize the figure
(interactively or during a printing or exporting operation).

See OuterPosition and Position for related properties.

See Automatic Axes Resize for a discussion of how to use axes
positioning properties.

ALim
[amin, amax]

Alpha axis limits. A two-element vector that determines how
MATLAB maps the AlphaData values of surface, patch, and
image objects to the figure’s alphamap. amin is the value of the
data mapped to the first alpha value in the alphamap, and amax
is the value of the data mapped to the last alpha value in the
alphamap. MATLAB linearly interpolates data values in between

2-291

Axes Properties

across the alphamap and clamps data values outside to either the
first or last alphamap value, whichever is closest.

If the axes contains multiple graphics objects, MATLAB
sets ALim to span the range of all objects’ AlphaData (or
FaceVertexAlphaData for patch objects).

See the alpha function reference page for additional information.

ALimMode
{auto} | manual

Alpha axis limits mode. In auto mode, MATLAB sets the ALim
property to span the AlphaData limits of the graphics objects
displayed in the axes. If ALimMode is manual, MATLAB does not
change the value of ALim when the AlphaData limits of axes
children change. Setting the ALim property sets ALimMode to
manual.

AmbientLightColor
ColorSpec

The background light in a scene. Ambient light is a directionless
light that shines uniformly on all objects in the axes. However, if
there are no visible light objects in the axes, MATLAB does not
use AmbientLightColor. If there are light objects in the axes, the
AmbientLightColor is added to the other light sources.

AspectRatio
(Obsolete)

This property produces a warning message when
queried or changed. The DataAspectRatio[Mode] and
PlotBoxAspectRatio[Mode] properties have superseded it.

BeingDeleted
on | {off}

2-292

Axes Properties

This object is being deleted. The BeingDeleted property provides
a mechanism to determine if objects are in the process of being
deleted. MATLAB sets the BeingDeleted property to on when
the object’s delete function callback is called (see the DeleteFcn
property). It remains set to on while the delete function executes,
after which the object no longer exists.

For example, an object’s delete function might call other
functions that act on a number of different objects. These
functions might not need to perform actions on objects if the
objects are going to be deleted, and therefore, can check the
object’s BeingDeleted property before acting.

See the close and delete function reference pages for related
information.

Box
on | {off}

Axes box mode. This property specifies whether to enclose the
axes extent in a box for 2-D views or a cube for 3-D views. The
default is to not display the box.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property lets you
control how MATLAB handles events that potentially interrupt
executing callbacks. If there is a callback executing, callbacks
invoked subsequently always attempt to interrupt it. If the
Interruptible property of the object whose callback is executing
is set to on (the default), then interruption occurs at the next
point where the event queue is processed.

If the Interruptible property is off, the BusyAction property
(of the object owning the executing callback) determines how
MATLAB handles the event. The choices are as follows:

2-293

Axes Properties

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
function handle, cell array containing function handle
and additional arguments, or string (not recommended)

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is within the axes, but
not over another graphics object parented to the axes. For 3-D
views, the active area is a rectangle that encloses the axes.

See the figure’s SelectionType property to determine whether
modifier keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of axes associated with the button down event and an event
structure, which is empty for this property).

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

Some Plotting Functions Reset the ButtonDownFcn

Most MATLAB plotting functions clear the axes and reset a
number of axes properties, including the ButtonDownFcn before
plotting data. To create an interface that lets users plot data
interactively, consider using a control device such as a push
button (uicontrol), which plotting functions do not affect. See
“Example — Using Function Handles in GUIs” for an example.

If you must use the axes ButtonDownFcn to plot data, then you
should use low-level functions such as line, patch, and surface

2-294

Axes Properties

and manage the process with the figure and axes NextPlot
properties.

See “High-Level Versus Low-Level Functions” for information on
how plotting functions behave.

See “Preparing Figures and Axes for Graphics” for more
information.

Camera Properties

See View Control with the Camera Toolbar for information related to
the Camera properties

CameraPosition
[x, y, z] axes coordinates

The location of the camera. This property defines the position
from which the camera views the scene. Specify the point in axes
coordinates.

If you fix CameraViewAngle, you can zoom in and out on the
scene by changing the CameraPosition, moving the camera
closer to the CameraTarget to zoom in and farther away
from the CameraTarget to zoom out. As you change the
CameraPosition, the amount of perspective also changes, if
Projection is perspective. You can also zoom by changing the
CameraViewAngle; however, this does not change the amount of
perspective in the scene.

CameraPositionMode
{auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB
automatically calculates the CameraPosition such that the
camera lies a fixed distance from the CameraTarget along the
azimuth and elevation specified by view. Setting a value for
CameraPosition sets this property to manual.

2-295

Axes Properties

CameraTarget
[x, y, z] axes coordinates

Camera aiming point. This property specifies the location in
the axes that the camera points to. The CameraTarget and the
CameraPosition define the vector (the view axis) along which
the camera looks.

CameraTargetMode
{auto} | manual

Auto or manual CameraTarget placement. When this property is
auto, MATLAB automatically positions the CameraTarget at the
centroid of the axes plot box. Specifying a value for CameraTarget
sets this property to manual.

CameraUpVector
[x, y, z] axes coordinates

Camera rotation. This property specifies the rotation of the
camera around the viewing axis defined by the CameraTarget
and the CameraPosition properties. Specify CameraUpVector
as a three-element array containing the x, y, and z components
of the vector. For example, [0 1 0] specifies the positive y-axis
as the up direction.

The default CameraUpVector is [0 0 1], which defines the
positive z-axis as the up direction.

CameraUpVectorMode
auto} | manual

Default or user-specified up vector. When CameraUpVectorMode
is auto, MATLAB uses a value of [0 0 1] (positive z-direction
is up) for 3-D views and [0 1 0] (positive y-direction is up) for
2-D views. Setting a value for CameraUpVector sets this property
to manual.

2-296

Axes Properties

CameraViewAngle
scalar greater than 0 and less than or equal to 180 (angle in
degrees)

The field of view. This property determines the camera field of
view. Changing this value affects the size of graphics objects
displayed in the axes, but does not affect the degree of perspective
distortion. The greater the angle, the larger the field of view, and
the smaller objects appear in the scene.

CameraViewAngleMode
{auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB
sets CameraViewAngle to the minimum angle that captures the
entire scene (up to 180°).

The following table summarizes MATLAB camera behavior
using various combinations of CameraViewAngleMode,
CameraTargetMode, and CameraPositionMode:

CameraViewAngleMode CameraTargetMode CameraPositionMode Behavior

auto auto auto

CameraTarget is set
to plot box centroid,
CameraViewAngle
is set to capture
entire scene,
CameraPosition
is set along the view
axis.

auto auto manual

CameraTarget is set
to plot box centroid,
CameraViewAngle is
set to capture entire
scene.

2-297

Axes Properties

CameraViewAngleMode CameraTargetMode CameraPositionMode Behavior

auto manual auto

CameraViewAngle
is set to capture
entire scene,
CameraPosition
is set along the view
axis.

auto manual manual
CameraViewAngle is
set to capture entire
scene.

manual auto auto

CameraTarget is set
to plot box centroid,
CameraPosition is
set along the view
axis.

manual auto manual
CameraTarget is set
to plot box centroid

manual manual auto
CameraPosition is
set along the view
axis.

manual manual manual
User specifies all
camera properties.

Children
vector of graphics object handles

A vector containing the handles of all graphics objects rendered
within the axes (whether visible or not). The graphics objects that
can be children of axes are image, light, line, patch, rectangle,
surface, and text. Change the order of the handles to change the
stacking of the objects on the display.

The text objects used to label the x-, y-, and z-axes and the title are
also children of axes, but their HandleVisibility properties are

2-298

Axes Properties

set to off. This means their handles do not show up in the axes
Children property unless you set the Root ShowHiddenHandles
property to on.

When an object’s HandleVisibility property is set to off, its
parent’s Children property does not list it. See HandleVisibility
for more information.

CLim
[cmin, cmax]

Color axis limits. A two-element vector that determines how
MATLAB maps the CData values of surface and patch objects
to the figure’s colormap. cmin is the value of the data mapped
to the first color in the colormap, and cmax is the value of the
data mapped to the last color in the colormap. MATLAB linearly
interpolates data values in between across the colormapand
clamps data values outside to either the first or last alphamap
colormap color, whichever is closest.

When CLimMode is auto (the default), MATLAB assigns cmin the
minimum data value and cmax the maximum data value in the
graphics object’s CData. This maps CData elements with minimum
data value to the first colormap entry and with maximum data
value to the last colormap entry.

If the axes contains multiple graphics objects, MATLAB sets CLim
to span the range of all objects’ CData.

See the caxis function reference page for related information.

CLimMode
{auto} | manual

Color axis limits mode. In auto mode, MATLAB sets the CLim
property to span the CData limits of the graphics objects displayed
in the axes. If CLimMode is manual, MATLAB does not change

2-299

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23HandleVisibility

Axes Properties

the value of CLim when the CData limits of axes children change.
Setting the CLim property sets this property to manual.

Clipping
{on} | off

This property has no effect on axes.

Color
{none} | ColorSpec

Color of the axes back planes. Setting this property to none means
the axes is transparent and the figure color shows through. A
ColorSpec is a three-element RGB vector or one of the MATLAB
predefined names. Note that while the default value is none, the
matlabrc.m file may set the axes color to a specific color.

ColorOrder
m-by-3 matrix of RGB values

Colors to use for multiline plots. ColorOrder is an m-by-3 matrix
of RGB values that define the colors used by the plot and plot3
functions to color each line plotted. If you do not specify a line
color with plot and plot3, these functions cycle through the
ColorOrder to obtain the color for each line plotted. To obtain
the current ColorOrder, which may be set during startup, get
the property value:

get(gca,'ColorOrder')

Note that if the axes NextPlot property is set to replace (the
default), high-level functions like plot reset the ColorOrder
property before determining the colors to use. If you want
MATLAB to use a ColorOrder that is different from the default,
set NextPlot to replacechildren. You can also specify your own
default ColorOrder.

2-300

Axes Properties

CreateFcn
function handle, cell array containing function handle
and additional arguments, or string (not recommended)

Callback function executed during object creation. A callback
function that executes when MATLAB creates an axes object.
You must define this property as a default value for axes. For
example, the statement

set(0,'DefaultAxesCreateFcn',@ax_create)

defines a default value on the Root level that sets axes properties
whenever you (or MATLAB) create an axes.

function ax_create(src,evnt)
set(src,'Color','b',...
'XLim',[1 10],...
'YLim',[0 100])

end

MATLAB executes this function after setting all properties for the
axes. Setting the CreateFcn property on an existing axes object
has no effect.

MATLAB passes the handle of the object whose CreateFcn is
being executed as the first argument to the callback function and
is also accessible through the Root CallbackObject property,
which can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

CurrentPoint
2-by-3 matrix

Location of last button click, in axes data units. A 2-by-3 matrix
containing the coordinates of two points defined by the location

2-301

Axes Properties

of the pointer at the last mouse click. MATLAB returns the
coordinates with respect to the requested axes.

Clicking Within the Axes — Orthogonal Projection

The two points lie on the line that is perpendicular to the plane of
the screen and passes through the pointer. This is true for both
2-D and 3-D views.

The 3-D coordinates are the points, in the axes coordinate system,
where this line intersects the front and back surfaces of the axes
volume (which is defined by the axes x, y, and z limits).

The returned matrix is of the form:

where front defines the point nearest to the camera position.
Therefore, if the CurrentPoint property returns the cp matrix ,
then the first row,

cp(1,:)

specifies the point nearest the viewer and the second row,

cp(2,:)

specifies the point furthest from the viewer.

Clicking Outside the Axes — Orthogonal Projection

When you click outside the axes volume, but within the figure,
the returned values are:

• Back point — a point in the plane of the camera target (which
is perpendicular to the viewing axis).

2-302

Axes Properties

• Front point — a point in the camera position plane (which is
perpendicular to the viewing axis).

These points lie on a line that passes through the pointer and is
perpendicular to the camera target and camera position planes.

Clicking Within the Axes — Perspective Projection

The values of the current point when using perspective project
can be different from the same point in orthographic projection
because the shape of the axes volume can be different.

Clicking Outside the Axes — Perspective Projection

Clicking outside of the axes volume returns the front point as the
current camera position at all times. Only the back point updates
with the coordinates of a point that lies on a line extending from
the camera position through the pointer and intersecting the
camera target at the point.

Related Information

See Defining Scenes with Camera Graphics for information on
the camera properties.

See View Projection Types for information on orthogonal and
perspective projections.

See the figure CurrentPoint property for more information.

DataAspectRatio
[dx dy dz]

Relative scaling of data units. A three-element vector controlling
the relative scaling of data units in the x, y, and z directions. For
example, setting this property to [1 2 1] causes the length of one

2-303

Axes Properties

unit of data in the x-direction to be the same length as two units
of data in the y-direction and one unit of data in the z-direction.

Note that the DataAspectRatio property interacts with the
PlotBoxAspectRatio, XLimMode, YLimMode, and ZLimMode
properties to control how MATLAB scales the x-, y-, and z-axis.
Setting the DataAspectRatio will disable the stretch-to-fill
behavior if DataAspectRatioMode, PlotBoxAspectRatioMode,
and CameraViewAngleMode are all auto. The following table
describes the interaction between properties when you disable
stretch-to-fill behavior.

X-, Y-,
Z-LimitModes DataAspectRatio PlotBoxAspectRatio Behavior

auto auto auto Limits chosen to
span data range in
all dimensions.

auto auto manual Limits chosen to
span data range
in all dimensions.
MATLAB modifies
DataAspectRatio
to achieve
the requested
PlotBoxAspectRatio
within the limits the
software selected.

2-304

Axes Properties

X-, Y-,
Z-LimitModes DataAspectRatio PlotBoxAspectRatio Behavior

auto manual auto Limits chosen to
span data range
in all dimensions.
MATLAB modifies
PlotBoxAspectRatio
to achieve
the requested
DataAspectRatio
within the limits the
software selected.

auto manual manual Limits chosen to
completely fit and
center the plot
within the requested
PlotBoxAspectRatio
given the requested
DataAspectRatio
(this may produce
empty space
around 2 of the 3
dimensions).

manual auto auto MATLAB honors
limits and
modifies the
DataAspectRatio
and
PlotBoxAspectRatio
as necessary.

2-305

Axes Properties

X-, Y-,
Z-LimitModes DataAspectRatio PlotBoxAspectRatio Behavior

manual auto manual MATLAB honors
limits and
PlotBoxAspectRatio
and modifies
DataAspectRatio as
necessary.

manual manual auto MATLAB honors
limits and
DataAspectRatio
and modifies the
PlotBoxAspectRatio
as necessary.

1 manual

2 auto

manual manual MATLAB selects
the 2 automatic
limits to honor the
specified aspect
ratios and limit. See
"Examples."

2 or 3 manual manual manual MATLAB honors
limits and
DataAspectRatio
while
ignoringPlotBoxAspectRatio.

See “Understanding Axes Aspect Ratio” for more information.

DataAspectRatioMode
{auto} | manual

User or MATLAB controlled data scaling. This property controls
whether the values of the DataAspectRatio property are
user-defined or selected automatically by MATLAB. Setting
values for the DataAspectRatio property automatically sets this

2-306

Axes Properties

property to manual. Changing DataAspectRatioMode to manual
disables the stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto.

DeleteFcn
function handle, cell array containing function handle
and additional arguments, or string (not recommended)

Delete axes callback function. A callback function that executes
when you delete the axes object (e.g., when you issue a delete or
clf command). MATLAB executes the routine before destroying
the object’s properties so the callback can query these values.

MATLAB passes the handle of the object whose DeleteFcn is
executing as the first argument to the callback function. The
handle is also accessible through the Root CallbackObject
property, which can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DrawMode
{normal} | fast

Rendering mode. This property controls the way MATLAB
renders graphics objects displayed in the axes when the figure
Renderer property is painters.

• normal mode draws objects in back to front ordering based on
the current view in order to handle hidden surface elimination
and object intersections.

• fast mode draws objects in the order in which you specify the
drawing commands, without considering the relationships of
the objects in three dimensions. This results in faster rendering
because it requires no sorting of objects according to location
in the view, but can produce undesirable results because it

2-307

Axes Properties

bypasses the hidden surface elimination and object intersection
handling provided by normal DrawMode.

When the figure Renderer is zbuffer, it ignores DrawMode
and always provides hidden surface elimination and object
intersection handling.

FontAngle
{normal} | italic | oblique

Select italic or normal font. This property selects the character
slant for axes text. normal specifies a nonitalic font. italic and
oblique specify italic font.

FontName
A name such as Courier or the string FixedWidth

Font family name. The font family name specifying the font to use
for axes labels. To display and print properly, FontName must
be a font that your system supports. Note that MATLAB does
not display the x-, y-, and z-axis labels in a new font until you
manually reset them (by setting the XLabel, YLabel, and ZLabel
properties or by using the xlabel, ylabel, or zlabel command).
Tick mark labels change immediately.

Specifying a Fixed-Width Font

If you want an axes to use a fixed-width font that looks good in
any locale, set FontName to the string FixedWidth:

set(axes_handle,'FontName','FixedWidth')

This eliminates the need to hardcode the name of a fixed-width
font, which might not display text properly on systems that do not
use ASCII character encoding (such as in Japan, where character
sets can be multibyte). A properly written MATLAB application
that needs to use a fixed-width font should set FontName to
FixedWidth (note that this string is case sensitive) and rely

2-308

Axes Properties

on FixedWidthFontName to be set correctly in the end user’s
environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes
an immediate update of the display to use the new font.

FontSize
Font size specified in FontUnits

Font size. An integer specifying the font size to use for axes labels
and titles, in units determined by the FontUnits property. The
default point size is 12 and the maximum allowable font size
depends on your OS. MATLAB does not display x-, y-, and z-axis
text labels in a new font size until you manually reset them (by
setting the XLabel, YLabel, or ZLabel properties or by using the
xlabel, ylabel, or zlabel command). Tick mark labels change
immediately.

FontUnits
{points} | normalized | inches | centimeters | pixels

Units used to interpret the FontSize property. When set to
normalized, MATLAB interprets the value of FontSize as a
fraction of the height of the axes. For example, a normalized
FontSize of 0.1 sets the text characters to a font whose height
is one tenth of the axes’ height. The default units (points), are
equal to 1/72 of an inch.

Note that if you set both the FontSize and the FontUnits in one
function call, you must set the FontUnits property first so that
MATLAB can correctly interpret the specified FontSize.

FontWeight
{normal} | bold | light | demi

2-309

Axes Properties

Select bold or normal font. The character weight for axes text.
MATLAB does not display the x-, y-, and z-axis text labels in bold
until you manually reset them (by setting the XLabel, YLabel,
and ZLabel properties or by using the xlabel, ylabel, or zlabel
commands). Tick mark labels change immediately.

GridLineStyle
- | - -| {:} | -. | none

Line style used to draw grid lines. The line style is a string
consisting of a character, in quotes, specifying solid lines (-),
dashed lines (–), dotted lines(:), or dash-dot lines (-.). The default
grid line style is dotted. To turn on grid lines, use the grid
command.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as

2-310

Axes Properties

evaluating a user-typed string) and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children,
functions that obtain handles by searching the object hierarchy or
querying handle properties cannot return it. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close.

When you restrict a handle’s visibility by using callback or
off, the object’s handle does not appear in its parent’s Children
property, figures do not appear in the Root’s CurrentFigure
property, objects do not appear in the Root’s CallbackObject
property or in the figure’s CurrentObject property, and axes do
not appear in their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the axes can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the axes. If HitTest is off, clicking the axes selects the object
below it (which is usually the figure containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible
property controls whether an axes callback routine can be

2-311

Axes Properties

interrupted by subsequently invoked callback routines. The
Interruptible property only affects callback routines defined
for the ButtonDownFcn . MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow,
figure, getframe, or pause command in the routine. See the
BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
routine to interrupt callback routines originating from an axes
property. Note that MATLAB does not save the state of variables
or the display (e.g., the handle returned by the gca or gcf
command) when an interruption occurs.

Layer
{bottom} | top

Draw axis lines below or above graphics objects. This property
determines whether to draw axis lines and tick marks on top or
below axes children objects for any 2-D view (i.e., when you are
looking along the x-, y-, or z-axis). This is useful for placing grid
lines and tick marks on top of images.

LineStyleOrder
LineSpec {a solid line '-'}

Order of line styles and markers used in a plot. This property
specifies which line styles and markers to use and in what order
when creating multiple-line plots. For example:

set(gca,'LineStyleOrder', '-*|:|o')

sets LineStyleOrder to solid line with asterisk marker, dotted
line, and hollow circle marker. The default is (-), which specifies a
solid line for all data plotted. Alternatively, you can create a cell
array of character strings to define the line styles:

set(gca,'LineStyleOrder',{'-*',':','o'})

2-312

Axes Properties

MATLAB supports four line styles, which you can specify any
number of times in any order. MATLAB cycles through the
line styles only after using all colors defined by the ColorOrder
property. For example, the first eight lines plotted use the
different colors defined by ColorOrder with the first line style.
MATLAB then cycles through the colors again, using the second
line style specified, and so on.

You can also specify line style and color directly with the plot
and plot3 functions or by altering the properties of the line or
lineseries objects after creating the graph.

High-Level Functions and LineStyleOrder

Note that, if the axes NextPlot property is set to replace (the
default), high-level functions like plot reset the LineStyleOrder
property before determining the line style to use. If you want
MATLAB to use a LineStyleOrder that is different from the
default, set NextPlot to replacechildren.

Specifying a Default LineStyleOrder

You can also specify your own default LineStyleOrder. For
example:

set(0,'DefaultAxesLineStyleOrder',{'-*',':','o'})

creates a default value for the axes LineStyleOrder that
high-level plotting functions will not reset.

LineWidth
line width in points

Width of axis lines. This property specifies the width, in points, of
the x-, y-, and z-axis lines. The default line width is 0.5 points (1
point = 1/72 inch).

2-313

Axes Properties

MinorGridLineStyle
- | - -| {:} | -. | none

Line style used to draw minor grid lines. The line style is a string
consisting of one or more characters, in quotes, specifying solid
lines (-), dashed lines (–), dotted lines (:), or dash-dot lines (-.).
The default minor grid line style is dotted. To turn on minor grid
lines, use the grid minor command.

NextPlot
add | {replace} | replacechildren

Where to draw the next plot. This property determines how
high-level plotting functions draw into an existing axes.

• add— Use the existing axes to draw graphics objects.

• replace — Reset all axes properties except Position to their
defaults and delete all axes children before displaying graphics
(equivalent to cla reset).

• replacechildren— Remove all child objects, but do not reset
axes properties (equivalent to cla).

The newplot function simplifies the use of the NextPlot property
and is useful for M-file functions that draw graphs using only
low-level object creation routines. See the M-file pcolor.m for an
example. Note that figure graphics objects also have a NextPlot
property.

OuterPosition
four-element vector

Position of axes including labels, title, and a margin. A
four-element vector specifying a rectangle that locates the outer
bounds of the axes, including axis labels, the title, and a margin.
The vector is as follows:

[left bottom width height]

2-314

Axes Properties

where left and bottom define the distance from the lower-left
corner of the figure window to the lower-left corner of the
rectangle. width and height are the dimensions of the rectangle

The following picture shows the region defined by the
OuterPosition enclosed in a yellow rectangle.

When ActivePositionProperty is set to OuterPosition (the
default), resizing the figure will not clip any of the text. The
default value of [0 0 1 1] (normalized units) includes the
interior of the figure.

The units property specifies all measurement units.

See the TightInset property for related information.

2-315

Axes Properties

See “Automatic Axes Resize” for a discussion of how to use axes
positioning properties.

Parent
figure or uipanel handle

Axes parent. The handle of the axes’ parent object. The parent of
an axes object is the figure which displays it or the uipanel object
that contains it. The utility function gcf returns the handle of
the current axes Parent. You can reparent axes to other figure
or uipanel objects.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

PlotBoxAspectRatio
[px py pz]

Relative scaling of axes plot box. A three-element vector
controlling the relative scaling of the plot box in the x, y, and z
directions. The plot box is a box enclosing the axes data region
as defined by the x-, y-, and z-axis limits.

Note that the PlotBoxAspectRatio property interacts with the
DataAspectRatio, XLimMode, YLimMode, and ZLimMode properties
to control the way MATLAB displays graphics objects. Setting
the PlotBoxAspectRatio disables stretch-to-fill behavior,
if DataAspectRatioMode, PlotBoxAspectRatioMode, and
CameraViewAngleMode are all auto.

PlotBoxAspectRatioMode
{auto} | manual

User or MATLAB controlled axis scaling. This property controls
whether the values of the PlotBoxAspectRatio property are
user-defined or selected automatically by MATLAB. Setting values
for the PlotBoxAspectRatio property automatically sets this
property to manual. Changing the PlotBoxAspectRatioMode to

2-316

Axes Properties

manual disables stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto.

Position
four-element vector

Position of axes. A four-element vector specifying a rectangle that
locates the axes within its parent container (figure or uipanel).
The vector is of the form

[left bottom width height]

where left and bottom define the distance from the lower-left
corner of the container to the lower-left corner of the rectangle.
width and height are the dimensions of the rectangle. The Units
property specifies the units for all measurements.

When you enable axes stretch-to-fill behavior (when
DataAspectRatioMode, PlotBoxAspectRatioMode, and
CameraViewAngleMode are all auto), MATLAB stretches the axes
to fill the Position rectangle. When you disable stretch-to-fill,
MATLAB makes the axes as large as possible, while obeying
all other properties, without extending outside the Position
rectangle.

See the OuterPosition property for related information.

See “Automatic Axes Resize” for a discussion of how to use axes
positioning properties.

Projection
{orthographic} | perspective

Type of projection. This property selects between two projection
types:

• orthographic— This projection maintains the correct relative
dimensions of graphics objects with regard to the distance a

2-317

Axes Properties

given point is from the viewer and draws parallel lines in the
data parallel on the screen.

• perspective — This projection incorporates foreshortening,
which allows you to perceive depth in 2-D representations
of 3-D objects. Perspective projection does not preserve the
relative dimensions of objects; it displays a distant line segment
smaller than a nearer line segment of the same length. Parallel
lines in the data may not appear parallel on screen.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection “handles” at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that the axes has been selected.

SelectionHighlight
{on} | off

Highlights objects when selected. When the Selected property is
on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This
is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines.

For example, suppose you want to direct all graphics output from
an M-file to a particular axes, regardless of user actions that may

2-318

Axes Properties

have changed the current axes. To do this, identify the axes with
a Tag:

axes('Tag','Special Axes')

Then make that axes the current axes before drawing by searching
for the Tag with findobj:

axes(findobj('Tag','Special Axes'))

TickDir
in | out

Direction of tick marks. For 2-D views, the default is to direct tick
marks inward from the axis lines; 3-D views direct tick marks
outward from the axis line.

TickDirMode
{auto} | manual

Automatic tick direction control. In auto mode, MATLAB directs
tick marks inward for 2-D views and outward for 3-D views. When
you specify a setting for TickDir, MATLAB sets TickDirMode to
manual. In manual mode, MATLAB does not change the specified
tick direction.

TickLength
[2DLength 3DLength]

Length of tick marks. A two-element vector specifying the length
of axes tick marks. The first element is the length of tick marks
used for 2-D views and the second element is the length of tick
marks used for 3-D views. Specify tick mark lengths in units
normalized relative to the longest of the visible x-, y-, or z-axis
annotation lines.

TightInset
[left bottom right top] Read only

2-319

Axes Properties

Margins added to Position to include text labels. The values of this
property are the distances between the bounds of the Position
property and the extent of the axes text labels and title. When
added to the Position width and height values, the TightInset
defines the tightest bounding box that encloses the axes and it’s
labels and title.

See “Automatic Axes Resize” for more information.

Title
handle of text object

Axes title. The handle of the text object used for the axes title.
You can use this handle to change the properties of the title text
or you can set Title to the handle of an existing text object. For
example, the following statement changes the color of the current
title to red:

set(get(gca,'Title'),'Color','r')

To create a new title, set this property to the handle of the text
object you want to use:

set(gca,'Title',text('String','New Title','Color','r'))

However, it is generally simpler to use the title command to
create or replace an axes title:

title('New Title','Color','r') % Make text color red
title({'This title','has 2 lines'}) % Two line title

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of graphics object. For axes objects, Type is
always set to 'axes'.

2-320

Axes Properties

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the axes. Assign this property the
handle of a uicontextmenu object created in the axes’ parent
figure. Use the uicontextmenu function to create the context
menu. MATLAB displays the context menu whenever you
right-click over the axes.

Units
inches | centimeters | {normalized} | points | pixels
| characters

Axes position units. The units used to interpret the Position
property. MATLAB measures all units from the lower left corner
of the figure window.

Note The Units property controls the positioning of the axes
within the figure. This property does not affect the data units
used for graphing. See the axes XLim, YLim, and ZLim properties
to set the limits of each axis data units.

• normalized units map the lower left corner of the figure
window to (0,0) and the upper right corner to (1.0, 1.0).

• inches, centimeters, and points are absolute units (one point
equals 1/72 of an inch).

• character uses characters from the default system font to
define units; the width of one character is the width of the letter
x, and the height of one character is the distance between the
baselines of two lines of text.

When specifying the units as property/value pairs during object
creation, you must set the Units property before specifying the
properties that you want to use these units.

2-321

Axes Properties

UserData
matrix

User-specified data. This property can be any data you want
to associate with the axes object. The axes does not use this
property, but you can access it using the set and get functions.

View
Obsolete

The axes camera properties now controls the functionality
provided by the View property — CameraPosition, CameraTarget,
CameraUpVector, and CameraViewAngle. See the view command.

Visible
{on} | off

Visibility of axes. By default, axes are visible. Setting this
property to off prevents axis lines, tick marks, and labels from
being displayed. The Visible property does not affect children
of axes.

XAxisLocation
top | {bottom}

Location of x-axis tick marks and labels. This property controls
where MATLAB displays the x-axis tick marks and labels. Setting
this property to top moves the x-axis to the top of the plot from
its default position at the bottom. This property applies to 2–D
views only.

YAxisLocation
right | {left}

Location of y-axis tick marks and labels. This property controls
where MATLAB displays the y-axis tick marks and labels. Setting
this property to rightmoves the y-axis to the right side of the plot
from its default position on the left side. This property applies

2-322

Axes Properties

to 2–D views only. See the plotyy function for a simple way to
use two y-axes.

Properties That Control the X-, Y-, or Z-Axis

XColor
YColor
ZColor

ColorSpec

Color of axis lines. A three-element vector specifying an RGB
triple, or a predefined MATLAB color string. This property
determines the color of the axis lines, tick marks, tick mark
labels, and the axis grid lines of the respective x-, y-, and z-axis.
The default color axis color is black. SeeColorSpec for details on
specifying colors.

XDir
YDir
ZDir

{normal} | reverse

Direction of increasing values. A mode controlling the direction of
increasing axis values. Axes form a right-hand coordinate system.
By default,

• x-axis values increase from left to right. To reverse the
direction of increasing x values, set this property to reverse.

set(gca,'XDir','reverse')

• y-axis values increase from bottom to top (2-D view) or front to
back (3-D view). To reverse the direction of increasing y values,
set this property to reverse.

set(gca,'YDir','reverse')

2-323

Axes Properties

• z-axis values increase pointing out of the screen (2-D view)
or from bottom to top (3-D view). To reverse the direction of
increasing z values, set this property to reverse.

set(gca,'ZDir','reverse')

XGrid
YGrid
ZGrid

on | {off}

Axis gridline mode. When you set any of these properties to
on, MATLAB draws grid lines perpendicular to the respective
axis (i.e., along lines of constant x, y, or z values). Use the grid
command to set all three properties on or off at once.

set(gca,'XGrid','on')

XLabel
YLabel
ZLabel

handle of text object

Axis labels. The handle of the text object used to label the x-, y-,
or z-axis, respectively. To assign values to any of these properties,
you must obtain the handle to the text string you want to use as a
label. This statement defines a text object and assigns its handle
to the XLabel property:

set(get(gca,'XLabel'),'String','axis label')

MATLAB places the string 'axis label' appropriately for an
x-axis label and moves any text object whose handle you specify as
an XLabel, YLabel, or ZLabel property to the appropriate location
for the respective label.

2-324

Axes Properties

Alternatively, you can use the xlabel, ylabel, and zlabel
functions, which generally provide a simpler means to label axis
lines.

Note that using a bitmapped font (e.g., Courier is usually a
bitmapped font) might cause the labels to rotate improperly. As
a workaround, use a TrueType font (e.g., Courier New) for axis
labels. See your system documentation to determine the types of
fonts installed on your system.

XLim
YLim
ZLim

[minimum maximum]

Axis limits. A two-element vector specifying the minimum and
maximum values of the respective axis. The data you plot
determines these values.

Changing these properties affects the scale of the x-, y-, or
z-dimension as well as the placement of labels and tick marks on
the axis. The default values for these properties are [0 1].

See the axis, datetick, xlim, ylim, and zlim commands to set
these properties.

XLimMode
YLimMode
ZLimMode

{auto} | manual

MATLAB or user-controlled limits. The axis limits mode
determines whether MATLAB calculates axis limits based on
the data plotted (i.e., the XData, YData, or ZData of the axes
children) or uses the values explicitly set with the XLim, YLim, or
ZLim property, in which case, the respective limits mode is set
to manual.

2-325

Axes Properties

XMinorGrid
YMinorGrid
ZMinorGrid

on | {off}

Enable or disable minor gridlines. When set to on, MATLAB
draws gridlines aligned with the minor tick marks of the
respective axis. Note that you do not have to enable minor ticks
to display minor grids.

XMinorTick
YMinorTick
ZMinorTick

on | {off}

Enable or disable minor tick marks. When set to on, MATLAB
draws tick marks between the major tick marks of the respective
axis. MATLAB automatically determines the number of minor
ticks based on the space between the major ticks.

XScale
YScale
ZScale

{linear} | log

Axis scaling. Linear or logarithmic scaling for the respective axis.
See also loglog, semilogx, and semilogy.

XTick
YTick
ZTick

vector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine
the location of tick marks along the respective axis. If you do
not want tick marks displayed, set the respective property to
the empty vector, []. These vectors must contain monotonically
increasing values.

2-326

Axes Properties

XTickLabel
YTickLabel
ZTickLabel

string

Tick labels. A matrix of strings to use as labels for tick marks
along the respective axis. These labels replace the numeric labels
generated by MATLAB. If you do not specify enough text labels
for all the tick marks, MATLAB uses all of the labels specified,
then reuses the specified labels.

For example, the statement

set(gca,'XTickLabel',{'One';'Two';'Three';'Four'})

labels the first four tick marks on the x-axis and then reuses the
labels for the remaining ticks.

Labels can be cell arrays of strings, padded string matrices,
string vectors separated by vertical slash characters, or numeric
vectors (where MATLAB implicitly converts each number to
the equivalent string using num2str). All of the following are
equivalent:

set(gca,'XTickLabel',{'1';'10';'100'})
set(gca,'XTickLabel','1|10|100')
set(gca,'XTickLabel',[1;10;100])
set(gca,'XTickLabel',['1 ';'10 ';'100'])

Note that tick labels do not interpret TeX character sequences
(however, the Title, XLabel, YLabel, and ZLabel properties do).

XTickMode
YTickMode
ZTickMode

{auto} | manual

2-327

Axes Properties

MATLAB or user-controlled tick spacing. The axis tick modes
determine whether MATLAB calculates the tick mark spacing
based on the range of data for the respective axis (auto mode) or
uses the values explicitly set for any of the XTick, YTick, and
ZTick properties (manual mode). Setting values for the XTick,
YTick, or ZTick properties sets the respective axis tick mode to
manual.

XTickLabelMode
YTickLabelMode
ZTickLabelMode

{auto} | manual

MATLAB or user-determined tick labels. The axis tick mark
labeling mode determines whether MATLAB uses numeric tick
mark labels that span the range of the plotted data (auto mode)
or uses the tick mark labels specified with the XTickLabel,
YTickLabel, or ZTickLabel property (manual mode). Setting
values for the XTickLabel, YTickLabel, or ZTickLabel property
sets the respective axis tick label mode to manual.

2-328

axis

Purpose Axis scaling and appearance

Syntax axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax cmin cmax])
v = axis
axis auto
axis manual
axis tight
axis fill
axis ij
axis xy
axis equal
axis image
axis square
axis vis3d
axis normal
axis off
axis on
axis(axes_handles,...)
[mode,visibility,direction] = axis('state')

Description axis manipulates commonly used axes properties. (See Algorithm
section.)

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis
of the current axes.

axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-,
and z-axis limits and the color scaling limits (see caxis) of the current
axes.

v = axis returns a row vector containing scaling factors for the x-, y-,
and z-axis. v has four or six components depending on whether the
current axes is 2-D or 3-D, respectively. The returned values are the
current axes XLim, Ylim, and ZLim properties.

axis auto sets MATLAB default behavior to computie the current axes
limits automatically, based on the minimum and maximum values of
x, y, and z data. You can restrict this automatic behavior to a specific

2-329

axis

axis. For example, axis 'auto x' computes only the x-axis limits
automatically; axis 'auto yz' computes the y- and z-axis limits
automatically.

axis manual and axis(axis) freezes the scaling at the current limits, so
that if hold is on, subsequent plots use the same limits. This sets the
XLimMode, YLimMode, and ZLimMode properties to manual.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits and PlotBoxAspectRatio so that
the axes fill the position rectangle. This option has an effect only if
PlotBoxAspectRatioMode or DataAspectRatioMode is manual.

axis ij places the coordinate system origin in the upper left corner.
The i-axis is vertical, with values increasing from top to bottom. The
j-axis is horizontal with values increasing from left to right.

axis xy draws the graph in the default Cartesian axes format with
the coordinate system origin in the lower left corner. The x-axis is
horizontal with values increasing from left to right. The y-axis is
vertical with values increasing from bottom to top.

axis equal sets the aspect ratio so that the data units are the same
in every direction. The aspect ratio of the x-, y-, and z-axis is adjusted
automatically according to the range of data units in the x, y, and z
directions.

axis image is the same as axis equal except that the plot box fits
tightly around the data.

axis square makes the current axes region square (or cubed when
three-dimensional). This option adjusts the x-axis, y-axis, and z-axis so
that they have equal lengths and adjusts the increments between data
units accordingly.

axis vis3d freezes aspect ratio properties to enable rotation of 3-D
objects and overrides stretch-to-fill.

axis normal automatically adjusts the aspect ratio of the axes and the
relative scaling of the data units so that the plot fits the figure’s shape
as well as possible.

2-330

axis

axis off turns off all axis lines, tick marks, and labels.

axis on turns on all axis lines, tick marks, and labels.

axis(axes_handles,...) applies the axis command to the specified
axes. For example, the following statements

h1 = subplot(221);
h2 = subplot(222);
axis([h1 h2],'square')

set both axes to square.

[mode,visibility,direction] = axis('state') returns three
strings indicating the current setting of axes properties:

Output
Argument Strings Returned

mode 'auto' | 'manual'

visibility 'on' | 'off'

direction 'xy' | 'ij'

mode is auto if XLimMode, YLimMode, and ZLimMode are all set to auto. If
XLimMode, YLimMode, or ZLimMode is manual, mode is manual.

Keywords to axis can be combined, separated by a space (e.g., axis
tight equal). These are evaluated from left to right, so subsequent
keywords can overwrite properties set by prior ones.

Remarks You can create an axes (and a figure for it) if none exists with the axis
command. However, if you specify non-default limits or formatting for
the axes when doing this, such as [4 8 2 9], square, equal, or image,
the property is ignored because there are no axis limits to adjust in the
absence of plotted data. To use axis in this manner, you can set hold
on to keep preset axes limits from being overridden.

2-331

axis

Examples The statements

x = 0:.025:pi/2;
plot(x,tan(x),'-ro')

use the automatic scaling of the y-axis based on ymax = tan(1.57),
which is well over 1000:

The right figure shows a more satisfactory plot after typing

axis([0 pi/2 0 5])

2-332

axis

Algorithm When you specify minimum and maximum values for the x-, y-, and
z-axes, axis sets the XLim, Ylim, and ZLim properties for the current
axes to the respective minimum and maximum values in the argument
list. Additionally, the XLimMode, YLimMode, and ZLimMode properties for
the current axes are set to manual.

axis auto sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'auto'.

axis manual sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'manual'.

The following table shows the values of the axes properties set by axis
equal, axis normal, axis square, and axis image.

2-333

axis

Axes Property or
Behavior axis equal

axis
normal axis square axis image

DataAspectRatio property [1 1 1] not set not set [1 1 1]

DataAspectRatioMode
property

manual auto auto manual

PlotBoxAspectRatio
property

[3 4 4] not set [1 1 1] auto

PlotBoxAspectRatioMode
property

manual auto manual auto

Stretch-to-fill behavior; disabled active disabled disabled

See Also axes, grid, subplot, xlim, ylim, zlim

Properties of axes graphics objects

“Axes Operations” on page 1-100 for related functions

For aspect ratio behavior, see Related Information in the axes properties
reference page.

2-334

balance

Purpose Diagonal scaling to improve eigenvalue accuracy

Syntax [T,B] = balance(A)
[S,P,B] = balance(A)
B = balance(A)
B = balance(A,'noperm')

Description [T,B] = balance(A) returns a similarity transformation T such that
B = T\A*T, and B has, as nearly as possible, approximately equal row
and column norms. T is a permutation of a diagonal matrix whose
elements are integer powers of two to prevent the introduction of
roundoff error. If A is symmetric, then B == A and T is the identity
matrix.

[S,P,B] = balance(A) returns the scaling vector S and the
permutation vector P separately. The transformation T and balanced
matrix B are obtained from A, S, and P by T(:,P) = diag(S) and
B(P,P) = diag(1./S)*A*diag(S).

B = balance(A) returns just the balanced matrix B.

B = balance(A,'noperm') scales A without permuting its rows and
columns.

Remarks Nonsymmetric matrices can have poorly conditioned eigenvalues.
Small perturbations in the matrix, such as roundoff errors, can lead to
large perturbations in the eigenvalues. The condition number of the
eigenvector matrix,

cond(V) = norm(V)*norm(inv(V))

where

[V,T] = eig(A)

relates the size of the matrix perturbation to the size of the eigenvalue
perturbation. Note that the condition number of A itself is irrelevant
to the eigenvalue problem.

2-335

balance

Balancing is an attempt to concentrate any ill conditioning of the
eigenvector matrix into a diagonal scaling. Balancing usually cannot
turn a nonsymmetric matrix into a symmetric matrix; it only attempts
to make the norm of each row equal to the norm of the corresponding
column.

Note The MATLAB eigenvalue function, eig(A), automatically
balances A before computing its eigenvalues. Turn off the balancing
with eig(A,'nobalance').

Examples This example shows the basic idea. The matrix A has large elements
in the upper right and small elements in the lower left. It is far from
being symmetric.

A = [1 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 *
0.0001 0.0100 1.0000
0.0000 0.0001 0.0100
0.0000 0.0000 0.0001

Balancing produces a diagonal matrix T with elements that are powers
of two and a balanced matrix B that is closer to symmetric than A.

[T,B] = balance(A)
T =

1.0e+03 *
2.0480 0 0

0 0.0320 0
0 0 0.0003

B =
1.0000 1.5625 1.2207
0.6400 1.0000 0.7813
0.8192 1.2800 1.0000

2-336

balance

To see the effect on eigenvectors, first compute the eigenvectors of A,
shown here as the columns of V.

[V,E] = eig(A); V
V =

-1.0000 0.9999 0.9937
0.0050 0.0100 -0.1120
0.0000 0.0001 0.0010

Note that all three vectors have the first component the largest. This
indicates V is badly conditioned; in fact cond(V) is 8.7766e+003. Next,
look at the eigenvectors of B.

[V,E] = eig(B); V
V =

-0.8873 0.6933 0.0898
0.2839 0.4437 -0.6482
0.3634 0.5679 -0.7561

Now the eigenvectors are well behaved and cond(V) is 1.4421. The ill
conditioning is concentrated in the scaling matrix; cond(T) is 8192.

This example is small and not really badly scaled, so the computed
eigenvalues of A and B agree within roundoff error; balancing has little
effect on the computed results.

Algorithm Inputs of Type Double

For inputs of type double, balance uses the linear algebra package
(LAPACK) routines DGEBAL (real) and ZGEBAL (complex). If you request
the output T, balance also uses the LAPACK routines DGEBAK (real)
and ZGEBAK (complex).

Inputs of Type Single

For inputs of type single, balance uses the LAPACK routines SGEBAL
(real) and CGEBAL (complex). If you request the output T, balance also
uses the LAPACK routines SGEBAK (real) and CGEBAK (complex).

2-337

balance

Limitations Balancing can destroy the properties of certain matrices; use it with
some care. If a matrix contains small elements that are due to roundoff
error, balancing might scale them up to make them as significant as the
other elements of the original matrix.

See Also eig

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-338

http://www.netlib.org/lapack/lug/lapack_lug.html

bar, barh

Purpose Plot bar graph (vertical and horizontal)

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
“Plotting Tools — Interactive Plotting” in the MATLAB Graphics
documentation and “Creating Plots from the Workspace Browser” in the
MATLAB Desktop Tools and Development Environment documentation.

Syntax bar(Y)
bar(x,Y)
bar(...,width)
bar(...,'style')
bar(...,'bar_color')
bar(...,'PropertyName',PropertyValue,...)
bar(axes_handle,...)
barh(axes_handle,...)
h = bar(...)
barh(...)
h = barh(...)
hpatches = bar('v6',...)
hpatches = barh('v6',...)

Description A bar graph displays the values in a vector or matrix as horizontal
or vertical bars.

bar(Y) draws one bar for each element in Y. If Y is a matrix, bar groups
the bars produced by the elements in each row. The x-axis scale ranges
from 1 up to length(Y) when Y is a vector, and 1 to size(Y,1), which
is the number of rows, when Y is a matrix. The default is to scale the
x-axis to the highest x-tick on the plot, (a multiple of 10, 100, etc.). If

2-339

bar, barh

you want the x-axis scale to end exactly at the last bar, you can use the
default, and then, for example, type

set(gca,'xlim',[1 length(Y)])

at the MATLAB prompt.

bar(x,Y) draws a bar for each element in Y at locations specified in
x, where x is a vector defining the x-axis intervals for the vertical
bars. The x-values can be nonmonotonic, but cannot contain duplicate
values. If Y is a matrix, bar groups the elements of each row in Y at
corresponding locations in x.

bar(...,width) sets the relative bar width and controls the separation
of bars within a group. The default width is 0.8, so if you do not specify
x, the bars within a group have a slight separation. If width is 1, the
bars within a group touch one another.

bar(...,'style') specifies the style of the bars. 'style' is 'grouped'
or 'stacked'. 'group' is the default mode of display.

• 'grouped' displays m groups of n vertical bars, where m is the
number of rows and n is the number of columns in Y. The group
contains one bar per column in Y.

• 'stacked' displays one bar for each row in Y. The bar height is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

• 'histc' displays the graph in histogram format, in which bars touch
one another.

• 'hist' also displays the graph in histogram format, but centers each
bar over the x-ticks, rather than making bars span x-ticks as the
histc option does.

2-340

bar, barh

Note When you use either the hist or histc option, you cannot also
use parameter/value syntax. These two options create graphic objects
that are patches rather than barseries. See “Backward-Compatible
Versions” on page 2-341 for details.

bar(...,'bar_color') displays all bars using the color specified by
the single-letter abbreviation 'r', 'g', 'b', 'c', 'm', 'y', 'k', or 'w'.

bar(...,'PropertyName',PropertyValue,...) set the named
property or properties to the specified values. Properties cannot be
specified when the hist or histc options are used. See the barseries
property descriptions for information on what properties you can set.

bar(axes_handle,...) and barh(axes_handle,...) plot into the
axes with the handle axes_handle instead of into the current axes (gca).

h = bar(...) returns a vector of handles to barseries graphics objects,
one for each created. When Y is a matrix, bar creates one barseries
graphics object per column in Y.

barh(...) and h = barh(...) create horizontal bars. Y determines
the bar length. The vector x is a vector defining the y-axis intervals for
horizontal bars. The x-values can be nonmonotonic, but cannot contain
duplicate values.

Backward-Compatible Versions

hpatches = bar('v6',...) and hpatches = barh('v6',...) return
the handles of patch objects instead of barseries objects for compatibility
with MATLAB 6.5 and earlier. Patch objects are also created when the
hist and histc options are used, even if the V6 option is not. See patch
object properties for a discussion of the properties you can set to control
the appearance of these bar graphs.

2-341

bar, barh

Note The v6 option enables users of MATLAB Version 7.x of to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See

Plot Objects and Backward Compatibility for more information.

Barseries
Objects

Creating a bar graph of anm-by-nmatrix createsm groups of n barseries
objects. Each barseries object contains the data for corresponding x
values of each bar group (as indicated by the coloring of the bars).

Note that some barseries object properties set on an individual barseries
object set the values for all barseries objects in the graph. See the
barseries property descriptions for information on specific properties.

Examples Single Series of Data

This example plots a bell-shaped curve as a bar graph and sets the
colors of the bars to red.

x = -2.9:0.2:2.9;
bar(x,exp(-x.*x),'r')

2-342

bar, barh

Bar Graph Options

This example illustrates some bar graph options.

Y = round(rand(5,3)*10);
subplot(2,2,1)
bar(Y,'group')
title 'Group'
subplot(2,2,2)
bar(Y,'stack')
title 'Stack'
subplot(2,2,3)
barh(Y,'stack')
title 'Stack'
subplot(2,2,4)
bar(Y,1.5)
title 'Width = 1.5'

2-343

bar, barh

Setting Properties with Multiobject Graphs

This example creates a graph that displays three groups of bars and
contains five barseries objects. Since all barseries objects in a graph
share the same baseline, you can set values using any barseries object’s
BaseLine property. This example uses the first handle returned in h.

Y = randn(3,5);
h = bar(Y);
set(get(h(1),'BaseLine'),'LineWidth',2,'LineStyle',':')
colormap summer % Change the color scheme

2-344

bar, barh

See Also bar3, ColorSpec, patch, stairs, hist

“Area, Bar, and Pie Plots” on page 1-92 for related functions

Barseries Properties

“Bar and Area Graphs” for more examples

2-345

bar3, bar3h

Purpose Plot 3-D bar chart

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools and Development Environment documentation.

Syntax bar3(Y)
bar3(x,Y)
bar3(...,width)
bar3(...,'style')
bar3(...,LineSpec)
bar3(axes_handle,...)
h = bar3(...)
bar3h(...)
h = bar3h(...)

Description bar3 and bar3h draw three-dimensional vertical and horizontal bar
charts.

bar3(Y) draws a three-dimensional bar chart, where each element in Y
corresponds to one bar. When Y is a vector, the x-axis scale ranges from
1 to length(Y). When Y is a matrix, the x-axis scale ranges from 1 to
size(Y,2), which is the number of columns, and the elements in each
row are grouped together.

bar3(x,Y) draws a bar chart of the elements in Y at the locations
specified in x, where x is a vector defining the y-axis intervals for
vertical bars. The x-values can be nonmonotonic, but cannot contain
duplicate values. If Y is a matrix, bar3 clusters elements from the

2-346

bar3, bar3h

same row in Y at locations corresponding to an element in x. Values of
elements in each row are grouped together.

bar3(...,width) sets the width of the bars and controls the separation
of bars within a group. The default width is 0.8, so if you do not specify
x, bars within a group have a slight separation. If width is 1, the bars
within a group touch one another.

bar3(...,'style') specifies the style of the bars. 'style' is
'detached', 'grouped', or 'stacked'. 'detached' is the default
mode of display.

• 'detached' displays the elements of each row in Y as separate blocks
behind one another in the x direction.

• 'grouped' displays n groups of m vertical bars, where n is the
number of rows and m is the number of columns in Y. The group
contains one bar per column in Y.

• 'stacked' displays one bar for each row in Y. The bar height is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

bar3(...,LineSpec) displays all bars using the color specified by
LineSpec.

bar3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = bar3(...) returns a vector of handles to patch graphics objects,
one for each created. bar3 creates one patch object per column in Y.
When Y is a matrix, bar3 creates one patch graphics object per column
in Y.

bar3h(...) and h = bar3h(...) create horizontal bars. Y determines
the bar length. The vector x is a vector defining the y-axis intervals
for horizontal bars.

2-347

bar3, bar3h

Examples This example creates six subplots showing the effects of different
arguments for bar3. The data Y is a 7-by-3 matrix generated using
the cool colormap:

Y = cool(7);
subplot(3,2,1)
bar3(Y,'detached')
title('Detached')
subplot(3,2,2)
bar3(Y,0.25,'detached')
title('Width = 0.25')
subplot(3,2,3)
bar3(Y,'grouped')
title('Grouped')
subplot(3,2,4)
bar3(Y,0.5,'grouped')
title('Width = 0.5')
subplot(3,2,5)
bar3(Y,'stacked')
title('Stacked')
subplot(3,2,6)
bar3(Y,0.3,'stacked')
title('Width = 0.3')
colormap([1 0 0;0 1 0;0 0 1])

2-348

bar3, bar3h

2-349

bar3, bar3h

See Also bar, LineSpec, patch

“Area, Bar, and Pie Plots” on page 1-92 for related functions

“Bar and Area Graphs” for more examples

2-350

Barseries Properties

Purpose Define barseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for barseries objects.

See “Plot Objects” for more information on barseries objects.

Barseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of barseries objects in legends. The Annotation
property enables you to specify whether this barseries object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the barseries
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the barseries object in a legend as
one entry, but not its children objects

off Do not include the barseries or its children
in a legend (default)

children Include only the children of the barseries as
separate entries in the legend

2-351

Barseries Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BarLayout
{grouped} | stacked

Specify grouped or stacked bars. Grouped bars display m groups
of n vertical bars, where m is the number of rows and n is the
number of columns in the input argument Y. The group contains
one bar per column in Y.

Stacked bars display one bar for each row in the input argument
Y. The bar height is the sum of the elements in the row. Each bar
is multicolored, with colors corresponding to distinct elements
and showing the relative contribution each row element makes to
the total sum.

BarWidth
scalar in range [0 1]

Width of individual bars. BarWidth specifies the relative bar
width and controls the separation of bars within a group. The
default width is 0.8, so if you do not specify x, the bars within a
group have a slight separation. If width is 1, the bars within a
group touch one another.

BaseLine
handle of baseline

2-352

Barseries Properties

Handle of the baseline object. This property contains the handle of
the line object used as the baseline. You can set the properties of
this line using its handle. For example, the following statements
create a bar graph, obtain the handle of the baseline from the
barseries object, and then set line properties that make the
baseline a dashed, red line.

bar_handle = bar(randn(10,1));
baseline_handle = get(bar_handle,'BaseLine');
set(baseline_handle,'LineStyle','--','Color','red')

BaseValue
double: y-axis value

Value where baseline is drawn. You can specify the value along
the y-axis (vertical bars) or x-axis (horizontal bars) at which the
MATLAB software draws the baseline.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

2-353

Barseries Properties

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

2-354

Barseries Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

2-355

Barseries Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this barseries object. The legend
function uses the string defined by the DisplayName property to
label this barseries object in the legend.

2-356

Barseries Properties

• If you specify string arguments with the legend function,
DisplayName is set to this barseries object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeColor
{[0 0 0]} | none | ColorSpec

Color of line that separates filled areas. You can set the color of
the edges of filled areas to a three-element RGB vector or one of
the MATLAB predefined names, including the string none. The
default edge color is black. See ColorSpec for more information
on specifying color.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

2-357

Barseries Properties

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

2-358

Barseries Properties

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on—Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions

2-359

Barseries Properties

invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

2-360

Barseries Properties

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select barseries object on bars or area of extent. This property
enables you to select barseries objects in two ways:

• Select by clicking bars (default).

• Select by clicking anywhere in the extent of the bar graph.

When HitTestArea is off, you must click the bars to select the
barseries object. When HitTestArea is on, you can select the
barseries object by clicking anywhere within the extent of the bar
graph (i.e., anywhere within a rectangle that encloses all the bars).

Interruptible
{on} | off

2-361

Barseries Properties

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | – | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line
none No line

LineWidth
scalar

2-362

Barseries Properties

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

ShowBaseLine
{on} | off

2-363

Barseries Properties

Turn baseline display on or off. This property determines whether
bar plots display a baseline from which the bars are drawn. By
default, the baseline is displayed.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create a barseries object and set the Tag
property:

t = bar(Y,'Tag','bar1')

When you want to access the barseries object, you can use findobj
to find the barseries object’s handle. The following statement
changes the FaceColor property of the object whose Tag is bar1.

set(findobj('Tag','bar1'),'FaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For barseries objects,
Type is hggroup.

The following statement finds all the hggroup objects in the
current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

2-364

Barseries Properties

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
array

Location of bars. The x-axis intervals for the vertical bars or
y-axis intervals for horizontal bars (as specified by the x input
argument). If YData is a vector, XData must be the same size.
If YData is a matrix, the length of XData must be equal to the
number of rows in YData.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input

2-365

Barseries Properties

argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

2-366

Barseries Properties

Bar plot data. YData contains the data plotted as bars (the Y input
argument). Each value in YData is represented by a bar in the bar
graph. If XYData is a matrix, the bar function creates a "group" or
a "stack" of bars for each column in the matrix. See “Bar Graph
Options” in the bar, barh reference page for examples of grouped
and stacked bar graphs.

The input argument Y in the bar function calling syntax assigns
values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-367

base2dec

Purpose Convert base N number string to decimal number

Syntax d = base2dec('strn', base)

Description d = base2dec('strn', base) converts the string number strn of the
specified base into its decimal (base 10) equivalent. base must be an
integer between 2 and 36. If 'strn' is a character array, each row is
interpreted as a string in the specified base.

Examples The expression base2dec('212',3) converts 2123 to decimal, returning
23.

See Also dec2base

2-368

beep

Purpose Produce beep sound

Syntax beep
beep on
beep off
s = beep

Description beep produces your computer’s default beep sound.

beep on turns the beep on.

beep off turns the beep off.

s = beep returns the current beep mode (on or off).

2-369

bench

Purpose MATLAB Benchmark

Syntax bench
bench(N)
bench(0)
t = bench(N)

Description bench times six different MATLAB tasks and compares the execution
speed with the speed of several other computers. The six tasks are:

Test Description Performance Factors

LU Perform LU of a full matrix Floating-point, regular memory access
FFT Perform FFT of a full vector Floating-point, irregular memory access
ODE Solve van der Pol equation with

ODE45
Data structures and M-files

Sparse Solve a symmetric sparse linear
system

Mixed integer and floating-point

2-D Plot Bernstein polynomial graph 2-D line drawing graphics
3-D Display animated L-shape

membrane logo
3-D animated OpenGL graphics

A final bar chart shows speed, which is inversely proportional to time.
The longer bars represent faster machines, and the shorter bars
represent the slower ones.

bench(N) runs each of the six tasks N times.

bench(0) just displays the results from other machines.

t = bench(N) returns an N-by-6 array with the execution times.

Remarks The comparison data for other computers is stored in the following text
file. Updated versions of this file are available from MATLAB Central:

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=1836&objectType;=file#

2-370

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=1836&objectType;=file#

bench

This benchmark is intended to compare performance of one particular
version of MATLAB on different machines. It does not offer direct
comparisons between different versions of MATLAB. The tasks and
problem sizes change from version to version.

The LU and FFT tasks involve large matrices and long vectors.
Machines with less than 64 megabytes of physical memory or
without optimized Basic Linear Algebra Subprograms may show poor
performance.

The 2-D and 3-D tasks measure graphics performance, including
software or hardware support for OpenGL. The command

OpenGL info

describes the OpenGL support available on a particular machine.

Fluctuations of five or ten percent in the measured times of repeated
runs on a single machine are not uncommon. Your own mileage may
vary.

See Also profile, profsave, mlint, mlintrpt, memory, pack, tic, cputime,
rehash

2-371

besselh

Purpose Bessel function of third kind (Hankel function)

Syntax H = besselh(nu,K,Z)
H = besselh(nu,Z)
H = besselh(nu,K,Z,1)
[H,ierr] = besselh(...)

Definitions The differential equation

where is a nonnegative constant, is called Bessel’s equation, and its
solutions are known as Bessel functions. and form a
fundamental set of solutions of Bessel’s equation for noninteger .

is a second solution of Bessel’s equation – linearly independent
of – defined by

The relationship between the Hankel and Bessel functions is

where is besselj, and is bessely.

Description H = besselh(nu,K,Z) computes the Hankel function , where
K = 1 or 2, for each element of the complex array Z. If nu and Z are
arrays of the same size, the result is also that size. If either input is a
scalar, besselh expands it to the other input’s size. If one input is a row

2-372

besselh

vector and the other is a column vector, the result is a two-dimensional
table of function values.

H = besselh(nu,Z) uses K = 1.

H = besselh(nu,K,Z,1) scales by exp(-i*Z) if K = 1, and by
exp(+i*Z) if K = 2.

[H,ierr] = besselh(...) also returns completion flags in an array
the same size as H.

ierr Description

0 besselh successfully computed the Hankel function for
this element.

1 Illegal arguments.
2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.

Examples This example generates the contour plots of the modulus and phase of

the Hankel function shown on page 359 of [1] Abramowitz and
Stegun, Handbook of Mathematical Functions.

It first generates the modulus contour plot

[X,Y] = meshgrid(-4:0.025:2,-1.5:0.025:1.5);
H = besselh(0,1,X+i*Y);
contour(X,Y,abs(H),0:0.2:3.2), hold on

2-373

besselh

then adds the contour plot of the phase of the same function.

contour(X,Y,(180/pi)*angle(H),-180:10:180); hold off

2-374

besselh

See Also besselj, bessely, besseli, besselk

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965.

2-375

besseli

Purpose Modified Bessel function of first kind

Syntax I = besseli(nu,Z)
I = besseli(nu,Z,1)
[I,ierr] = besseli(...)

Definitions The differential equation

where is a real constant, is called the modified Bessel’s equation, and
its solutions are known as modified Bessel functions.

and form a fundamental set of solutions of the modified
Bessel’s equation for noninteger . is defined by

where is the gamma function.

is a second solution, independent of . It can be computed
using besselk.

Description I = besseli(nu,Z) computes the modified Bessel function of the first
kind, , for each element of the array Z. The order nu need not be
an integer, but must be real. The argument Z can be complex. The
result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

2-376

besseli

I = besseli(nu,Z,1) computes
besseli(nu,Z).*exp(-abs(real(Z))).

[I,ierr] = besseli(...) also returns completion flags in an array
the same size as I.

ierr Description

0 besseli successfully computed the modified Bessel
function for this element.

1 Illegal arguments.
2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.

Examples Example 1

format long
z = (0:0.2:1)';

besseli(1,z)

ans =
0

0.10050083402813
0.20402675573357
0.31370402560492
0.43286480262064
0.56515910399249

Example 2

besseli(3:9,(0:.2,10)',1) generates the entire table on page 423 of
[1] Abramowitz and Stegun, Handbook of Mathematical Functions

2-377

besseli

Algorithm The besseli functions use a Fortran MEX-file to call a library
developed by D.E. Amos [3] [4].

See Also airy, besselh, besselj, besselk, bessely

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-378

besselj

Purpose Bessel function of first kind

Syntax J = besselj(nu,Z)
J = besselj(nu,Z,1)
[J,ierr] = besselj(nu,Z)

Definition The differential equation

where is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions.

and form a fundamental set of solutions of Bessel’s
equation for noninteger . is defined by

where is the gamma function.

is a second solution of Bessel’s equation that is linearly
independent of . It can be computed using bessely.

Description J = besselj(nu,Z) computes the Bessel function of the first kind,
, for each element of the array Z. The order nu need not be an

integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

2-379

besselj

J = besselj(nu,Z,1) computes
besselj(nu,Z).*exp(-abs(imag(Z))).

[J,ierr] = besselj(nu,Z) also returns completion flags in an array
the same size as J.

ierr Description

0 besselj successfully computed the Bessel function
for this element.

1 Illegal arguments.
2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.

Remarks The Bessel functions are related to the Hankel functions, also called
Bessel functions of the third kind,

where is besselh, is besselj, and is bessely.
The Hankel functions also form a fundamental set of solutions to
Bessel’s equation (see besselh).

Examples Example 1

format long
z = (0:0.2:1)';

besselj(1,z)

2-380

besselj

ans =
0

0.09950083263924
0.19602657795532
0.28670098806392
0.36884204609417
0.44005058574493

Example 2

besselj(3:9,(0:.2:10)') generates the entire table on page 398 of [1]
Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselj function uses a Fortran MEX-file to call a library
developed by D.E. Amos [3] [4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

See Also besselh, besseli, besselk, bessely

2-381

besselk

Purpose Modified Bessel function of second kind

Syntax K = besselk(nu,Z)
K = besselk(nu,Z,1)
[K,ierr] = besselk(...)

Definitions The differential equation

where is a real constant, is called the modified Bessel’s equation, and
its solutions are known as modified Bessel functions.

A solution of the second kind can be expressed as

where and form a fundamental set of solutions of the
modified Bessel’s equation for noninteger

and is the gamma function. is independent of .

can be computed using besseli.

Description K = besselk(nu,Z) computes the modified Bessel function of the
second kind, , for each element of the array Z. The order nu need
not be an integer, but must be real. The argument Z can be complex.
The result is real where Z is positive.

2-382

besselk

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

K = besselk(nu,Z,1) computes besselk(nu,Z).*exp(Z).

[K,ierr] = besselk(...) also returns completion flags in an array
the same size as K.

ierr Description

0 besselk successfully computed the modified Bessel
function for this element.

1 Illegal arguments.
2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.

Examples Example 1

format long
z = (0:0.2:1)';

besselk(1,z)

ans =
Inf

4.77597254322047
2.18435442473269
1.30283493976350
0.86178163447218
0.60190723019723

2-383

besselk

Example 2

besselk(3:9,(0:.2:10)',1) generates part of the table on page 424 of
[1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselk function uses a Fortran MEX-file to call a library
developed by D.E. Amos [3][4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

See Also airy, besselh, besseli, besselj, bessely

2-384

bessely

Purpose Bessel function of second kind

Syntax Y = bessely(nu,Z)
Y = bessely(nu,Z,1)
[Y,ierr] = bessely(nu,Z)

Definition The differential equation

where is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions.

A solution of the second kind can be expressed as

where and form a fundamental set of solutions of
Bessel’s equation for noninteger

and is the gamma function. is linearly independent of
.

can be computed using besselj.

Description Y = bessely(nu,Z) computes Bessel functions of the second kind,
, for each element of the array Z. The order nu need not be an

integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

2-385

bessely

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

Y = bessely(nu,Z,1) computes
bessely(nu,Z).*exp(-abs(imag(Z))).

[Y,ierr] = bessely(nu,Z) also returns completion flags in an array
the same size as Y.

ierr Description

0 bessely successfully computed the Bessel function
for this element.

1 Illegal arguments.
2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.

Remarks The Bessel functions are related to the Hankel functions, also called
Bessel functions of the third kind,

where is besselh, is besselj, and is bessely.
The Hankel functions also form a fundamental set of solutions to
Bessel’s equation (see besselh).

2-386

bessely

Examples Example 1

format long
z = (0:0.2:1)';

bessely(1,z)

ans =
-Inf

-3.32382498811185
-1.78087204427005
-1.26039134717739
-0.97814417668336
-0.78121282130029

Example 2

bessely(3:9,(0:.2:10)') generates the entire table on page 399 of [1]
Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The bessely function uses a Fortran MEX-file to call a library
developed by D. E Amos [3] [4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-387

bessely

See Also besselh, besseli, besselj, besselk

2-388

beta

Purpose Beta function

Syntax B = beta(Z,W)

Definition The beta function is

where is the gamma function.

Description B = beta(Z,W) computes the beta function for corresponding elements
of arrays Z and W. The arrays must be real and nonnegative. They must
be the same size, or either can be scalar.

Examples In this example, which uses integer arguments,

beta(n,3)
= (n-1)!*2!/(n+2)!
= 2/(n*(n+1)*(n+2))

is the ratio of fairly small integers, and the rational format is able to
recover the exact result.

format rat
beta((0:10)',3)

ans =

1/0
1/3
1/12
1/30
1/60
1/105
1/168
1/252

2-389

beta

1/360
1/495
1/660

Algorithm beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))

See Also betainc, betaln, gammaln

2-390

betainc

Purpose Incomplete beta function

Syntax I = betainc(X,Z,W)
I = betainc(X,Z,tail)

Definition The incomplete beta function is

where , the beta function, is defined as

and is the gamma function.

Description I = betainc(X,Z,W) computes the incomplete beta function for
corresponding elements of the arrays X, Z, and W. The elements of Xmust
be in the closed interval . The arrays Z and W must be nonnegative
and real. All arrays must be the same size, or any of them can be scalar.

I = betainc(X,Z,tail) specifies the tail of the incomplete beta
function. Choices are:

'lower' (the default) Computes the integral from 0 to x
'upper' Computes the integral from x to 1

These functions are related as follows:

1-betainc(X,Z,W) = betainc(X,Z,W,'upper')

Note that especially when the upper tail value is close to 0, it is more
accurate to use the 'upper' option than to subtract the 'lower' value
from 1.

2-391

betainc

Examples format long
betainc(.5,(0:10)',3)

ans =
1.00000000000000
0.87500000000000
0.68750000000000
0.50000000000000
0.34375000000000
0.22656250000000
0.14453125000000
0.08984375000000
0.05468750000000
0.03271484375000
0.01928710937500

See Also beta, betaln

2-392

betaln

Purpose Logarithm of beta function

Syntax L = betaln(Z,W)

Description L = betaln(Z,W) computes the natural logarithm of the beta function
log(beta(Z,W)), for corresponding elements of arrays Z and W, without
computing beta(Z,W). Since the beta function can range over very large
or very small values, its logarithm is sometimes more useful.

Z and W must be real and nonnegative. They must be the same size, or
either can be scalar.

Examples x = 510
betaln(x,x)

ans =
-708.8616

-708.8616 is slightly less than log(realmin). Computing beta(x,x)
directly would underflow (or be denormal).

Algorithm betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)

See Also beta, betainc, gammaln

2-393

bicg

Purpose Biconjugate gradients method

Syntax x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...)
[x,flag,relres,iter] = bicg(A,b,...)
[x,flag,relres,iter,resvec] = bicg(A,b,...)

Description x = bicg(A,b) attempts to solve the system of linear equations A*x =
b for x. The n-by-n coefficient matrix A must be square and should be
large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x,'notransp') returns A*x
and afun(x,'transp') returns A'*x. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parametrizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function afun, as well as the preconditioner function mfun described
below, if necessary.

If bicg converges, it displays a message to that effect. If bicg fails
to converge after the maximum number of iterations or halts for any
reason, it prints a warning message that includes the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

bicg(A,b,tol) specifies the tolerance of the method. If tol is [], then
bicg uses the default, 1e-6.

bicg(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then bicg uses the default, min(n,20).

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use
the preconditioner M or M = M1*M2 and effectively solve the system

2-394

bicg

inv(M)*A*x = inv(M)*b for x. If M is [] then bicg applies
no preconditioner. M can be a function handle mfun such that
mfun(x,'notransp') returns M\x and mfun(x,'transp') returns M'\x.

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then bicg uses the default, an all-zero vector.

[x,flag] = bicg(A,b,...) also returns a convergence flag.

Flag Convergence

0 bicg converged to the desired tolerance tol within
maxit iterations.

1 bicg iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 bicg stagnated. (Two consecutive iterates were the

same.)
4 One of the scalar quantities calculated during bicg

became too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = bicg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicg(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,...) also returns a
vector of the residual norms at each iteration including norm(b-A*x0).

Examples Example 1

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);

2-395

bicg

b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = bicg(A,b,tol,maxit,M1,M2);

displays this message:

bicg converged at iteration 9 to a solution with relative
residual 5.3e-009

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an
M-file run_bicg that

• Calls bicg with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_bicg
are available to afun.

The following shows the code for run_bicg:

function x1 = run_bicg
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = bicg(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag,'transp') % y = A'*x

2-396

bicg

y = 4 * x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag,'notransp') % y = A*x
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end
end

end

When you enter

x1=run_bicg;

MATLAB software displays the message

bicg converged at iteration 9 to a solution with ...
relative residual
5.3e-009

Example 3

This example demonstrates the use of a preconditioner. Start with A
= west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);

You can accurately solve A*x = b using backslash since A is not so
large.

x = A \ b;
norm(b-A*x) / norm(b)

ans =
8.3154e-017

2-397

bicg

Now try to solve A*x = b with bicg.

[x,flag,relres,iter,resvec] = bicg(A,b)

flag =
1

relres =
1

iter =
0

The value of flag indicates that bicg iterated the default 20 times
without converging. The value of iter shows that the method
behaved so badly that the initial all-zero guess was better than all the
subsequent iterates. The value of relres supports this: relres =
norm(b-A*x)/norm(b) = norm(b)/norm(b) = 1. You can confirm that
the unpreconditioned method oscillates rather wildly by plotting the
relative residuals at each iteration.

semilogy(0:20,resvec/norm(b),'-o')
xlabel('Iteration Number')
ylabel('Relative Residual')

2-398

bicg

Now, try an incomplete LU factorization with a drop tolerance of 1e-5
for the preconditioner.

[L1,U1] = luinc(A,1e-5);
Warning: Incomplete upper triangular factor has 1 zero diagonal.

It cannot be used as a preconditioner for an iterative
method.

nnz(A), nnz(L1), nnz(U1)

ans =
1887

ans =
5562

ans =
4320

2-399

bicg

The zero on the main diagonal of the upper triangular U1 indicates that
U1 is singular. If you try to use it as a preconditioner,

[x,flag,relres,iter,resvec] = bicg(A,b,1e-6,20,L1,U1)

flag =
2

relres =
1

iter =
0

resvec =
7.0557e+005

the method fails in the very first iteration when it tries to solve a system
of equations involving the singular U1 using backslash. bicg is forced to
return the initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.

[L2,U2] = luinc(A,1e-6);

nnz(L2), nnz(U2)

ans =
6231

ans =
4559

This time U2 is nonsingular and may be an appropriate preconditioner.

[x,flag,relres,iter,resvec] = bicg(A,b,1e-15,10,L2,U2)

flag =
0

relres =
2.8664e-016

iter =

2-400

bicg

8

and bicg converges to within the desired tolerance at iteration number
8. Decreasing the value of the drop tolerance increases the fill-in of the
incomplete factors but also increases the accuracy of the approximation
to the original matrix. Thus, the preconditioned system becomes closer
to inv(U)*inv(L)*L*U*x = inv(U)*inv(L)*b, where L and U are the
true LU factors, and closer to being solved within a single iteration.

The next graph shows the progress of bicg using six different
incomplete LU factors as preconditioners. Each line in the graph is
labeled with the drop tolerance of the preconditioner used in bicg.

References [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

2-401

bicg

See Also bicgstab, cgs, gmres, ilu, lsqr, luinc, minres, pcg, qmr, symmlq,
function_handle (@), mldivide (\)

2-402

bicgstab

Purpose Biconjugate gradients stabilized method

Syntax x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstab(A,b,...)
[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

Description x = bicgstab(A,b) attempts to solve the system of linear equations
A*x=b for x. The n-by-n coefficient matrix A must be square and should
be large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x) returns A*x. See “Function
Handles” in the MATLAB Programming documentation for more
information.

, in the MATLAB Mathematics documentation, explains how to
provide additional parameters to the function afun, as well as the
preconditioner function mfun described below, if necessary.

If bicgstab converges, a message to that effect is displayed. If
bicgstab fails to converge after the maximum number of iterations
or halts for any reason, a warning message is printed displaying the
relative residual norm(b-A*x)/norm(b) and the iteration number at
which the method stopped or failed.

bicgstab(A,b,tol) specifies the tolerance of the method. If tol is [],
then bicgstab uses the default, 1e-6.

bicgstab(A,b,tol,maxit) specifies the maximum number of
iterations. If maxit is [], then bicgstab uses the default, min(n,20).

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2)
use preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then bicgstab applies no

2-403

bicgstab

preconditioner. M can be a function handle mfun such that mfun(x)
returns M\x.

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0
is [], then bicgstab uses the default, an all zero vector.

[x,flag] = bicgstab(A,b,...) also returns a convergence flag.

Flag Convergence

0 bicgstab converged to the desired tolerance tol
within maxit iterations.

1 bicgstab iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 bicgstab stagnated. (Two consecutive iterates were

the same.)
4 One of the scalar quantities calculated during

bicgstab became too small or too large to continue
computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = bicgstab(A,b,...) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicgstab(A,b,...) also returns the
iteration number at which xwas computed, where 0 <= iter <= maxit.
iter can be an integer + 0.5, indicating convergence halfway through
an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,...) also returns
a vector of the residual norms at each half iteration, including
norm(b-A*x0).

2-404

bicgstab

Example Example 1

This example first solves Ax = b by providing A and the preconditioner
M1 directly as arguments.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = bicgstab(A,b,tol,maxit,M1);

displays the message

bicgstab converged at iteration 12.5 to a solution with relative
residual 6.7e-014

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun, and the preconditioner M1 with a
handle to a backsolve function mfun. The example is contained in an
M-file run_bicgstab that

• Calls bicgstab with the function handle @afun as its first argument.

• Contains afun and mfun as nested functions, so that all variables in
run_bicgstab are available to afun and mfun.

The following shows the code for run_bicgstab:

function x1 = run_bicgstab
n = 21;
A = gallery('wilk',n);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x1 = bicgstab(@afun,b,tol,maxit,@mfun);

2-405

bicgstab

function y = afun(x)
y = [0; x(1:n-1)] + ...

[((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
[x(2:n); 0];

end

function y = mfun(r)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

end
end

When you enter

x1 = run_bicgstab;

MATLAB software displays the message

bicgstab converged at iteration 12.5 to a solution with relative
residual 6.7e-014

Example 3

This examples demonstrates the use of a preconditioner. Start with A
= west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = bicgstab(A,b)

flag is 1 because bicgstab does not converge to the default tolerance
1e-6 within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = bicgstab(A,b,1e-6,20,L1,U1)

2-406

bicgstab

flag1 is 2 because the upper triangular U1 has a zero on its diagonal.
This causes bicgstab to fail in the first iteration when it tries to solve
a system such as U1*y = r using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,1e-15,10,L2,U2)

flag2 is 0 because bicgstab converges to the tolerance of 3.1757e-016
(the value of relres2) at the sixth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(13) = norm(b-A*x2).
You can follow the progress of bicgstab by plotting the relative
residuals at the halfway point and end of each iteration starting from
the initial estimate (iterate number 0).

semilogy(0:0.5:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

2-407

bicgstab

References [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] van der Vorst, H.A., "BI-CGSTAB: A fast and smoothly converging
variant of BI-CG for the solution of nonsymmetric linear systems,"
SIAM J. Sci. Stat. Comput., March 1992, Vol. 13, No. 2, pp. 631-644.

See Also bicg, cgs, gmres, lsqr, luinc, minres, pcg, qmr, symmlq,
function_handle (@), mldivide (\)

2-408

bin2dec

Purpose Convert binary number string to decimal number

Syntax bin2dec(binarystr)

Description bin2dec(binarystr) interprets the binary string binarystr and
returns the equivalent decimal number.

bin2dec ignores any space (' ') characters in the input string.

Examples Binary 010111 converts to decimal 23:

bin2dec('010111')
ans =

23

Because space characters are ignored, this string yields the same result:

bin2dec(' 010 111 ')
ans =

23

See Also dec2bin

2-409

binary

Purpose Set FTP transfer type to binary

Syntax binary(f)

Description binary(f) sets the FTP download and upload mode to binary, which
does not convert new lines, where f was created using ftp. Use this
function when downloading or uploading any nontext file, such as an
executable or ZIP archive.

Examples Connect to the MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp
function to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: ascii

Note that the FTP object is now set to ASCII mode.

Use the binary function to set the FTP mode to binary, and use the
disp function to display the FTP object.

binary(tmw)

2-410

binary

disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Note that the FTP object’s mode is again set to binary.

See Also ftp, ascii

2-411

bitand

Purpose Bitwise AND

Syntax C = bitand(A, B)

Description C = bitand(A, B) returns the bitwise AND of arguments A and B,
where A and B are unsigned integers or arrays of unsigned integers.

Examples Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise AND on these numbers
yields 01001, or 9:

C = bitand(uint8(13), uint8(27))
C =

9

Example 2

Create a truth table for a logical AND operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitand(A, B)
TT =

0 0
0 1

See Also bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor

2-412

bitcmp

Purpose Bitwise complement

Syntax C = bitcmp(A)
C = bitcmp(A, n)

Description C = bitcmp(A) returns the bitwise complement of A, where A is an
unsigned integer or an array of unsigned integers.

C = bitcmp(A, n) returns the bitwise complement of A as an n-bit
unsigned integer C. Input A may not have any bits set higher than n
(that is, A may not have a value greater than 2^n-1). The value of n can
be no greater than the number of bits in the unsigned integer class of
A. For example, if the class of A is uint32, then n must be a positive
integer less than 32.

Examples Example 1

With eight-bit arithmetic, the one’s complement of 01100011 (decimal
99) is 10011100 (decimal 156):

C = bitcmp(uint8(99))
C =

156

Example 2

The complement of hexadecimal A5 (decimal 165) is 5A:

x = hex2dec('A5')
x =

165

dec2hex(bitcmp(x, 8))
ans =
5A

Next, find the complement of hexadecimal 000000A5:

dec2hex(bitcmp(x, 32))

2-413

bitcmp

ans =
FFFFFF5A

See Also bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor

2-414

bitget

Purpose Bit at specified position

Syntax C = bitget(A, bit)

Description C = bitget(A, bit) returns the value of the bit at position bit in
A. Operand A must be an unsigned integer or an array of unsigned
integers, and bit must be a number between 1 and the number of bits
in the unsigned integer class of A (e.g., 32 for the uint32 class).

Examples Example 1

The dec2bin function converts decimal numbers to binary. However,
you can also use the bitget function to show the binary representation
of a decimal number. Just test successive bits from most to least
significant:

disp(dec2bin(13))
1101

C = bitget(uint8(13), 4:-1:1)
C =

1 1 0 1

Example 2

Prove that intmax sets all the bits to 1:

a = intmax('uint8');
if all(bitget(a, 1:8))

disp('All the bits have value 1.')
end

All the bits have value 1.

See Also bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor

2-415

bitmax

Purpose Maximum double-precision floating-point integer

Syntax bitmax

Description bitmax returns the maximum unsigned double-precision floating-point
integer for your computer. It is the value when all bits are set, namely
the value .

Note Instead of integer-valued double-precision variables, use unsigned
integers for bit manipulations and replace bitmax with intmax.

Examples Display in different formats the largest floating point integer and the
largest 32 bit unsigned integer:

format long e
bitmax
ans =

9.007199254740991e+015

intmax('uint32')
ans =

4294967295

format hex
bitmax
ans =

433fffffffffffff

intmax('uint32')
ans =

ffffffff

In the second bitmax statement, the last 13 hex digits of bitmax
are f, corresponding to 52 1’s (all 1’s) in the mantissa of the binary

2-416

bitmax

representation. The first 3 hex digits correspond to the sign bit 0 and
the 11 bit biased exponent 10000110011 in binary (1075 in decimal),
and the actual exponent is (1075-1023) = 52. Thus the binary value of
bitmax is 1.111...111 x 2^52 with 52 trailing 1’s, or 2^53-1.

See Also bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

2-417

bitor

Purpose Bitwise OR

Syntax C = bitor(A, B)

Description C = bitor(A, B) returns the bitwise OR of arguments A and B, where
A and B are unsigned integers or arrays of unsigned integers.

Examples Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise OR on these numbers
yields 11111, or 31.

C = bitor(uint8(13), uint8(27))
C =

31

Example 2

Create a truth table for a logical OR operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitor(A, B)
TT =

0 1
1 1

See Also bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor

2-418

bitset

Purpose Set bit at specified position

Syntax C = bitset(A, bit)
C = bitset(A, bit, v)

Description C = bitset(A, bit) sets bit position bit in A to 1 (on). A must be an
unsigned integer or an array of unsigned integers, and bit must be a
number between 1 and the number of bits in the unsigned integer class
of A (e.g., 32 for the uint32 class).

C = bitset(A, bit, v) sets the bit at position bit to the value v,
which must be either 0 or 1.

Examples Example 1

Setting the fifth bit in the five-bit binary representation of the integer 9
(01001) yields 11001, or 25:

C = bitset(uint8(9), 5)
C =

25

Example 2

Repeatedly subtract powers of 2 from the largest uint32 value:

a = intmax('uint32')
for k = 1:32

a = bitset(a, 32-k+1, 0)
end

See Also bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor

2-419

bitshift

Purpose Shift bits specified number of places

Syntax C = bitshift(A, k)
C = bitshift(A, k, n)

Description C = bitshift(A, k) returns the value of A shifted by k bits. Input
argument A must be an unsigned integer or an array of unsigned
integers. Shifting by k is the same as multiplication by 2^k. Negative
values of k are allowed and this corresponds to shifting to the right, or
dividing by 2^abs(k) and truncating to an integer. If the shift causes C
to overflow the number of bits in the unsigned integer class of A, then
the overflowing bits are dropped.

C = bitshift(A, k, n) causes any bits that overflow n bits to be
dropped. The value of n must be less than or equal to the length in bits
of the unsigned integer class of A (e.g., n <= 32 for uint32).

Instead of using bitshift(A, k, 8) or another power of 2 for n,
consider using bitshift(uint8(A), k) or the appropriate unsigned
integer class for A.

Examples Example 1

Shifting 1100 (12, decimal) to the left two bits yields 110000 (48,
decimal).

C = bitshift(12, 2)
C =

48

Example 2

Repeatedly shift the bits of an unsigned 16 bit value to the left until all
the nonzero bits overflow. Track the progress in binary:

a = intmax('uint16');
disp(sprintf(...

'Initial uint16 value %5d is %16s in binary', ...
a, dec2bin(a)))

2-420

bitshift

for k = 1:16
a = bitshift(a, 1);
disp(sprintf(...

'Shifted uint16 value %5d is %16s in binary',...
a, dec2bin(a)))

end

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, fix

2-421

bitxor

Purpose Bitwise XOR

Syntax C = bitxor(A, B)

Description C = bitxor(A, B) returns the bitwise XOR of arguments A and B,
where A and B are unsigned integers or arrays of unsigned integers.

Examples Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise XOR on these numbers
yields 10110, or 22.

C = bitxor(uint8(13), uint8(27))
C =

22

Example 2

Create a truth table for a logical XOR operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitxor(A, B)
TT =

0 1
1 0

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift

2-422

blanks

Purpose Create string of blank characters

Syntax blanks(n)

Description blanks(n) is a string of n blanks.

Examples blanks is useful with the display function. For example,

disp(['xxx' blanks(20) 'yyy'])

displays twenty blanks between the strings 'xxx' and 'yyy'.

disp(blanks(n)') moves the cursor down n lines.

See Also clc, format, home

2-423

blkdiag

Purpose Construct block diagonal matrix from input arguments

Syntax out = blkdiag(a,b,c,d,...)

Description out = blkdiag(a,b,c,d,...), where a, b, c, d, ... are matrices,
outputs a block diagonal matrix of the form

The input matrices do not have to be square, nor do they have to be of
equal size.

See Also diag, horzcat, vertcat

2-424

box

Purpose Axes border

Syntax box on
box off
box
box(axes_handle,...)

Description box on displays the boundary of the current axes.

box off does not display the boundary of the current axes.

box toggles the visible state of the current axes boundary.

box(axes_handle,...) uses the axes specified by axes_handle instead
of the current axes.

Algorithm The box function sets the axes Box property to on or off.

See Also axes, grid

“Axes Operations” on page 1-100 for related functions

2-425

break

Purpose Terminate execution of for or while loop

Syntax break

Description break terminates the execution of a for or while loop. Statements in
the loop that appear after the break statement are not executed.

In nested loops, break exits only from the loop in which it occurs.
Control passes to the statement that follows the end of that loop.

Remarks break is not defined outside a for or while loop. Use return in this
context instead.

Examples The example below shows a while loop that reads the contents of the
file fft.m into a MATLAB character array. A break statement is used
to exit the while loop when the first empty line is encountered. The
resulting character array contains the M-file help for the fft program.

fid = fopen('fft.m','r');
s = '';
while ~feof(fid)

line = fgetl(fid);
if isempty(line), break, end
s = strvcat(s,line);

end
disp(s)

See Also for, while, end, continue, return

2-426

brighten

Purpose Brighten or darken colormap

Syntax brighten(beta)
brighten(h,beta)
newmap = brighten(beta)
newmap = brighten(cmap,beta)

Description brighten increases or decreases the color intensities in a colormap.
The modified colormap is brighter if 0 < beta < 1 and darker if 1
< beta < 0.

brighten(beta) replaces the current colormap with a brighter or
darker colormap of essentially the same colors. brighten(beta),
followed by brighten(-beta), where beta < 1, restores the original
map.

brighten(h,beta) brightens all objects that are children of the figure
having the handle h.

newmap = brighten(beta) returns a brighter or darker version of the
current colormap without changing the display.

newmap = brighten(cmap,beta) returns a brighter or darker version
of the colormap cmap without changing the display.

Examples Brighten and then darken the current colormap:

beta = .5; brighten(beta);
beta = -.5; brighten(beta);

Algorithm The values in the colormap are raised to the power of gamma, where
gamma is

brighten has no effect on graphics objects defined with true color.

2-427

brighten

See Also colormap, rgbplot

“Color Operations” on page 1-102 for related functions

“Altering Colormaps” for more information

2-428

brush

Purpose Interactively mark, delete, modify, and save observations in graphs

GUI
Alternatives

To turn data brushing on or off, use the Data Brushing tool in
the figure toolbar, the right side of which drops down as a color palette
for changing the current brushing color. For details, see “Marking
Up Graphs with Data Brushing” in the MATLAB Data Analysis
documentation.

Syntax brush on
brush off
brush
brush color
brush(figure_handle,...)
brushobj = brush(figure_handle)

Description Data brushing is a mode for interacting with graphs in figure windows
in which you can click data points or drag a selection rectangle
around data points to highlight observations in a color of your choice.
Highlighting takes different forms for different types of graphs, and
brushing marks persist—even in other interactive modes—until
removed by deselecting them.

brush on turns on interactive data brushing mode.

brush off turns brushing mode off, leaving any brushed observations
still highlighted.

brush by itself toggles the state of the data brushing tool.

brush color sets the current color used for brushing graphics to the
specified ColorSpec. Changing brush color affects subsequent brushing,
but does not change the color of observations already brushed or the
brush tool’s state.

brush(figure_handle,...) applies the function to the specified figure
handle.

brushobj = brush(figure_handle) returns a brush mode object for
that figure, useful for controlling and customizing the figure’s brushing

2-429

brush

state. The following properties of such objects can be modified using
get and set:

Enable 'on' |
{'off'}

Specifies whether this figure mode is currently
enabled on the figure.

FigureHandle The associated figure handle. This property
supports get only.

Color Specifies the color to be used for brushing.
brush cannot return a brush mode object at the same time you are
calling it to set a brushing option.

Remarks • “Types of Plots You Can Brush” on page 2-430

• “Plot Types You Cannot Brush” on page 2-432

• “Mode Exclusivity and Persistence” on page 2-433

• “How Data Linking Affects Data Brushing” on page 2-434

• “Mouse Gestures for Data Brushing” on page 2-435

Types of Plots You Can Brush

Data brushing places lines and patches on plots to create highlighting,
marking different types of graphs as follows (brushing marks are shown
in red):

Graph Type Brushing Annotation Overlays? Example

lineseries Colored lines slightly wider than
those in the lineseries with a marker
distinct from those on the lineseries
(filled circles if none) to identify
brushed vertices. Only those line
segments that connect brushed
vertices are highlighted

Y

2-430

brush

Graph Type Brushing Annotation Overlays? Example

scattergroup Line with LineStyle 'none' and
a marker with a color distinct from
and slightly larger than the base
scattergroup marker.

Y

stemseries The brushed stems and stem heads
are shaded in the brushing color.

Y

barseries The interior of selected bars is filled
in the brushing color.

N

histogram The bars to which brushed
observations contribute are
proportionately filled from the
bottom up with the brushing color.

N

2-431

brush

Graph Type Brushing Annotation Overlays? Example

areaseries Patches filling the region between
selected points and the x-axis in the
brushing color.

N

surfaceplot Patches with edges slightly wider
than the surfaceplot line width and
with a marker distinct from that of
the surfaceplot (X if none) to identify
brushed vertices. Patches are
plotted only when all four vertices
that define them are brushed. The
brushed observations are the set of
marked vertices, not the patches.

N

When using the linked plots feature, a graph can become brushed
when you brush another graph that displays some of the same data,
potentially brushing the same observations more than once. The
overlaid brushing marks (whether lines or markers) are slightly wider
than the brushing marks that they overlay; this makes multiply
brushed observations visually distinct. The wider brushing marks are
placed under the narrower ones, so that if they happen to have different
colors, you can see all the colors. See the subsection “How Data Linking
Affects Data Brushing” on page 2-434 for more information about
brushing linked figures.

As the above table indicates, only lineseries, scatterseries, and
stemseries brushing marks can be overlaid in this manner. Although
you can brush them, you cannot overlay brushing marks on areaseries,
barseries, histograms, or surfaceplots.

Plot Types You Cannot Brush

Currently, not all plot types enable data brushing. Graph functions
that do not support brushing are:

2-432

brush

• Line plots created with line

• Scatter plots created with spy

• Contour plots created with contour, contourf, or contour3

• Pie charts created with pie or pie3

• Radial graphs created with polar, compass, or rose

• Direction graphs created with feather, quiver, or comet

• Area and image plots created with fill, image, imagesc, or pcolor

• Bar graphs created with pareto or errorbar

• Functional plots created with ezcontour or ezcontourf

• 3-D plot types other than plot3, stem3, scatter3, mesh, meshc,
surf, surfl, and surfc

You can use some of these functions to display base data that do not
need to be brushable. For example, use line to plot mean y-values as
horizontal lines that you do not need or want to brush.

Mode Exclusivity and Persistence

Data brushing mode is exclusive, like zoom, pan, data cursor, or plot edit
mode. However, brush marks created in data brushing mode persist
through all changes in mode. Brush marks that appear in other graphs
while they are linked via linkdata also persist even when data linking
is subsequently turned off. That is, severing connections to a graph’s
data sources does not remove brushing marks from it. The only ways to
remove brushing marks are (in brushing mode):

• Brush an empty area in a brushed graph.

• Right-click and select Clear all brushing from the context menu.

Changing the brushing color for a figure does not recolor brushing marks
on it until you brush it again. If you hold down the Shift key, all existing
brush marks change to the new color. All brush marks that appear on
linked plots in the same or different figure also change to the new color

2-433

brush

if the brushing action affects them. The behavior is the same whether
you select a brushing color from the Brush Tool dropdown palette, set
it by calling brush(colorspec), or by setting the Color property of a
brush mode object (e.g., set(brushobj,'Color',colorspec).

How Data Linking Affects Data Brushing

When you use the Data Linking tool or call the linkdata function,
brushing marks that you make on one plot appear on other plots that
depict the same variable you are brushing—if they are also linked. This
happens even if the affected plot is not in Brushing mode. That is,
brushing marks appear on a linked plot in any mode when you brush
another plot linked to it via a common variable or brush that variable in
the Variable Editor. Two limiting conditions apply, however:

• The graph type must support data brushing (see “Types of Plots
You Can Brush” on page 2-430 and “Plot Types You Cannot Brush”
on page 2-432)

• The graphed variable should not be complex; if you can plot a complex
variable you can brush it, but such graphs do not respond when you
brush the complex variable in another linked plot.

For more information about linking complex variables, see Example 3
in the linkdata reference page.

Brush marks on a an unlinked graph can change color when data
linking is turned on for that figure. They can, in fact, vanish and
be replaced by marks in the same or different color when the plot
enters a linked state. This happens because in the linked state, the
variables (data sources) are brushed, not just the graphics. If different
observations for the same variable on a linked figure are brushed, those
brushed variables override the brushed graphics on the newly linked
plot. In other words, the newly linked graph loses all its previous brush
marks when it “joins the club” of common data sources.

2-434

brush

Mouse Gestures for Data Brushing

You can brush graphs in several ways. The basic operation is to drag
the mouse to highlight all observations within the rectangle you define.
The following table lists data brushing gestures and their effects.

Action Gesture Result

Select data
using a
region of
interest

ROI mouse
drag

Region of interest (ROI) rectangle
(or rectangular prism for 3-D axes)
appears during the gesture and
all brushable observations within
the rectangle are highlighted. All
other brushing marks in the axes
are removed. The ROI rectangle
disappears when the mouse button is
released.

Select a
single point

Single left-click
on a graphic
object that
supports data
brushing

Produces an equivalent result to
ROI rectangle, brushing where the
rectangle encloses only the single
vertex on the graphical object closest
to the mouse. All other brushing
annotations in the figure are removed.

Add a
point to the
selection or
remove a
highlighted
one

Single left-click
on a graphic
object that
supports data
brushing, with
the Shift key
down

Equivalent brushing by dragging
an ROI rectangle that encloses only
the single vertex on the graphic
object closest to the mouse. All other
brushed regions in the figure remain
brushed.

Select
all data
associated
with a
graphic
object

Double
left-click on
a graphic object
that supports
data brushing

All vertices for the graphic object are
brushed.

2-435

brush

Action Gesture Result

Add to or
subtract
from region
of interest

Click or ROI
drag with the
Shift or Ctrl
keys down

Region of interest grows; all
unbrushed vertices within the
rectangle become brushed and all
brushed observations in it become
unbrushed. All brushed vertices
outside the ROI remain brushed.

Copy
brushed
data to
Editor,
Command
Window,
Variable
Editor, or
Workspace
Browser

Drag brushed
data to another
window or to
a program/icon
on the system
desktop

Equivalent to copying brushed data
and pasting into other window or an
existing/new variable.

Examples Example 1

On a scatterplot, drag out a rectangle to brush the graph:

x = rand(20,1);
y = rand(20,1);
scatter(x,y,80,'s')
brush on

2-436

brush

Example 2

Brush observations from -.2 to .2 on a lineseries plot in dark red:

x = [-2*pi:.1:2*pi];
y = sin(x);
plot(x,y);
h = brush;
set(h,'Color',[.6 .2 .1],'Enable','on');

2-437

brush

See Also linkaxes, linkdata, pan, rotate3d, zoom

2-438

bsxfun

Purpose Apply element-by-element binary operation to two arrays with singleton
expansion enabled

Syntax C = bsxfun(fun,A,B)

Description C = bsxfun(fun,A,B) applies an element-by-element binary operation
to arrays A and B, with singleton expansion enabled. fun is a function
handle, and can either be an M-file function or one of the following
built-in functions:

@plus Plus
@minus Minus
@times Array multiply
@rdivide Right array divide
@ldivide Left array divide
@power Array power
@max Binary maximum
@min Binary minimum
@rem Remainder after division
@mod Modulus after division
@atan2 Four quadrant inverse tangent
@hypot Square root of sum of squares
@eq Equal
@ne Not equal
@lt Less than
@le Less than or equal to
@gt Greater than
@ge Greater than or equal to

2-439

bsxfun

@and Element-wise logical AND
@or Element-wise logical OR
@xor Logical exclusive OR

If an M-file function is specified, it must be able to accept either two
column vectors of the same size, or one column vector and one scalar,
and return as output a column vector of the size as the input values.

Each dimension of A and B must either be equal to each other, or equal
to 1. Whenever a dimension of A or B is singleton (equal to 1), the array
is virtually replicated along the dimension to match the other array.
The array may be diminished if the corresponding dimension of the
other array is 0.

The size of the output array C is equal to:
max(size(A),size(B)).*(size(A)>0 & size(B)>0).

Examples In this example, bsxfun is used to subtract the column means from the
corresponding columns of matrix A.

A = magic(5);
A = bsxfun(@minus, A, mean(A))
A =

4 11 -12 -5 2
10 -8 -6 1 3
-9 -7 0 7 9
-3 -1 6 8 -10
-2 5 12 -11 -4

See Also repmat, arrayfun

2-440

builddocsearchdb

Purpose Build searchable documentation database

Syntax builddocsearchdb help_location

Description builddocsearchdb help_location builds a searchable database
of user-added HTML and related help files in the specified help
location. The help_location argument is the full path to the directory
containing the help files. The database enables the Help browser to
search for content within the help files.

builddocsearchdb creates a directory named helpsearch under
help_location. The helpsearch directory contains the search
database files. Add the location of the helpsearch directory to your
info.xml file.

The helpsearch directory works only with the version of MATLAB
software used to create it.

For a full discussion of this process, refer to “Adding HTML Help Files
for Your Own Toolbox”.

Examples Build a search database for the documentation files found at
D:\work\mytoolbox\help.

builddocsearchdb D:\work\mytoolbox\help

See Also doc, help

2-441

builtin

Purpose Execute built-in function from overloaded method

Syntax builtin(function, x1, ..., xn)
[y1, ..., yn] = builtin(function, x1, ..., xn)

Description builtin is used in methods that overload built-in functions to execute
the original built-in function. If function is a string containing the
name of a built-in function, then

builtin(function, x1, ..., xn) evaluates the specified function
at the given arguments x1 through xn. The function argument must
be a string containing a valid function name. function cannot be a
function handle.

[y1, ..., yn] = builtin(function, x1, ..., xn) returns
multiple output arguments.

Remarks builtin(...) is the same as feval(...) except that it calls the original
built-in version of the function even if an overloaded one exists. (For
this to work you must never overload builtin.)

See Also feval

2-442

bvp4c

Purpose Solve boundary value problems for ordinary differential equations

Syntax sol = bvp4c(odefun,bcfun,solinit)
sol = bvp4c(odefun,bcfun,solinit,options)
solinit = bvpinit(x, yinit, params)

Arguments odefun A function handle that evaluates the differential
equations . It can have the form

dydx = odefun(x,y)
dydx = odefun(x,y,parameters)

where x is a scalar corresponding to , and y is a column
vector corresponding to . parameters is a vector of
unknown parameters. The output dydx is a column
vector.

bcfun A function handle that computes the residual in the
boundary conditions. For two-point boundary value
conditions of the form , bcfun can have
the form

res = bcfun(ya,yb)
res = bcfun(ya,yb,parameters)

where ya and yb are column vectors corresponding to
and . parameters is a vector of unknown

parameters. The output res is a column vector.

See “Multipoint Boundary Value Problems” on page
2-446 for a description of bcfun for multipoint boundary
value problems.

solinit A structure containing the initial guess for a solution.
You create solinit using the function bvpinit. solinit
has the following fields.

2-443

bvp4c

x Ordered nodes of the initial mesh.
Boundary conditions are imposed at =
solinit.x(1) and = solinit.x(end).

y Initial guess for the solution such that
solinit.y(:,i) is a guess for the
solution at the node solinit.x(i).

parameters Optional. A vector that provides an
initial guess for unknown parameters.

The structure can have any name, but the fields must be
named x, y, and parameters. You can form solinit with
the helper function bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create
using the bvpset function. See bvpset for details.

Description sol = bvp4c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

on the interval [a,b] subject to two-point boundary value conditions

odefun and bcfun are function handles. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parametrizing Functions” in the MATLAB mathematics
documentation, explains how to provide additional parameters to the
function odefun, as well as the boundary condition function bcfun, if
necessary.

bvp4c can also solve multipoint boundary value problems. See
“Multipoint Boundary Value Problems” on page 2-446. You can use the
function bvpinit to specify the boundary points, which are stored in
the input argument solinit. See the reference page for bvpinit for
more information.

2-444

bvp4c

The bvp4c solver can also find unknown parameters for problems
of the form

where corresponds to parameters. You provide bvp4c an initial
guess for any unknown parameters in solinit.parameters. The
bvp4c solver returns the final values of these unknown parameters
in sol.parameters.

bvp4c produces a solution that is continuous on [a,b] and has a
continuous first derivative there. Use the function deval and the
output sol of bvp4c to evaluate the solution at specific points xint in
the interval [a,b].

sxint = deval(sol,xint)

The structure sol returned by bvp4c has the following fields:

sol.x Mesh selected by bvp4c
sol.y Approximation to at the mesh points of

sol.x

sol.yp Approximation to at the mesh points of
sol.x

sol.parameters Values returned by bvp4c for the unknown
parameters, if any

sol.solver ’bvp4c’

The structure sol can have any name, and bvp4c creates the fields x,
y, yp, parameters, and solver.

sol = bvp4c(odefun,bcfun,solinit,options) solves as above with
default integration properties replaced by the values in options, a
structure created with the bvpset function. See bvpset for details.

2-445

bvp4c

solinit = bvpinit(x, yinit, params) forms the initial guess solinit
with the vector params of guesses for the unknown parameters.

Singular Boundary Value Problems

bvp4c solves a class of singular boundary value problems, including
problems with unknown parameters p, of the form

The interval is required to be [0, b] with b > 0. Often such problems
arise when computing a smooth solution of ODEs that result from
partial differential equations (PDEs) due to cylindrical or spherical
symmetry. For singular problems, you specify the (constant) matrix
S as the value of the 'SingularTerm' option of bvpset, and odefun
evaluates only f(x, y, p). The boundary conditions must be consistent
with the necessary condition and the initial guess should
satisfy this condition.

Multipoint Boundary Value Problems

bvp4c can solve multipoint boundary value problems where
are boundary points in the interval

. The points represent interfaces that divide
into regions. bvp4c enumerates the regions from left to right

(from a to b), with indices starting from 1. In region k, ,
bvp4c evaluates the derivative as

yp = odefun(x, y, k)

In the boundary conditions function

bcfun(yleft, yright)

yleft(:, k) is the solution at the left boundary of . Similarly,
yright(:, k) is the solution at the right boundary of region k. In
particular,

2-446

bvp4c

yleft(:, 1) = y(a)

and

yright(:, end) = y(b)

When you create an initial guess with

solinit = bvpinit(xinit, yinit),

use double entries in xinit for each interface point. See the reference
page for bvpinit for more information.

If yinit is a function, bvpinit calls y = yinit(x, k) to get an initial
guess for the solution at x in region k. In the solution structure sol
returned by bpv4c, sol.x has double entries for each interface point.
The corresponding columns of sol.y contain the left and right solution
at the interface, respectively.

For an example of solving a three-point boundary value problem, type
threebvp at the MATLAB command prompt to run a demonstration.

Note The bvp5c function is used exactly like bvp4c, with the exception
of the meaning of error tolerances between the two solvers. If S(x)
approximates the solution y(x), bvp4c controls the residual |S’(x) -
f(x,S(x))|. This controls indirectly the true error |y(x) - S(x)|. bvp5c
controls the true error directly. bvp5c is more efficient than bvp4c for
small error tolerances.

Examples Example 1

Boundary value problems can have multiple solutions and one purpose
of the initial guess is to indicate which solution you want. The
second-order differential equation

2-447

bvp4c

has exactly two solutions that satisfy the boundary conditions

Prior to solving this problem with bvp4c, you must write the differential
equation as a system of two first-order ODEs

Here and . This system has the required form

The function and the boundary conditions are coded in MATLAB
software as functions twoode and twobc.

function dydx = twoode(x,y)
dydx = [y(2)

-abs(y(1))];

function res = twobc(ya,yb)
res = [ya(1)

yb(1) + 2];

Form a guess structure consisting of an initial mesh of five equally
spaced points in [0,4] and a guess of constant values and

with the command

solinit = bvpinit(linspace(0,4,5),[1 0]);

Now solve the problem with

sol = bvp4c(@twoode,@twobc,solinit);

2-448

bvp4c

Evaluate the numerical solution at 100 equally spaced points and plot
with

x = linspace(0,4);
y = deval(sol,x);
plot(x,y(1,:));

You can obtain the other solution of this problem with the initial guess

solinit = bvpinit(linspace(0,4,5),[-1 0]);

2-449

bvp4c

Example 2

This boundary value problem involves an unknown parameter. The task
is to compute the fourth () eigenvalue of Mathieu’s equation

Because the unknown parameter is present, this second-order
differential equation is subject to three boundary conditions

It is convenient to use subfunctions to place all the functions required
by bvp4c in a single M-file.

function mat4bvp

2-450

bvp4c

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);
sol = bvp4c(@mat4ode,@mat4bc,solinit);

fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
sol.parameters)

xint = linspace(0,pi);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')
% --
function dydx = mat4ode(x,y,lambda)
q = 5;
dydx = [y(2)

-(lambda - 2*q*cos(2*x))*y(1)];
% --
function res = mat4bc(ya,yb,lambda)
res = [ya(2)

yb(2)
ya(1)-1];

% --
function yinit = mat4init(x)
yinit = [cos(4*x)

-4*sin(4*x)];

The differential equation (converted to a first-order system) and the
boundary conditions are coded as subfunctions mat4ode and mat4bc,
respectively. Because unknown parameters are present, these functions
must accept three input arguments, even though some of the arguments
are not used.

The guess structure solinit is formed with bvpinit. An initial guess
for the solution is supplied in the form of a function mat4init. We chose

2-451

bvp4c

because it satisfies the boundary conditions and has the
correct qualitative behavior (the correct number of sign changes). In the
call to bvpinit, the third argument (lambda = 15) provides an initial
guess for the unknown parameter .

After the problem is solved with bvp4c, the field sol.parameters
returns the value , and the plot shows the eigenfunction
associated with this eigenvalue.

Algorithms bvp4c is a finite difference code that implements the three-stage
Lobatto IIIa formula. This is a collocation formula and the collocation
polynomial provides a C1-continuous solution that is fourth-order

2-452

bvp4c

accurate uniformly in [a,b]. Mesh selection and error control are based
on the residual of the continuous solution.

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, “Solving Boundary
Value Problems for Ordinary Differential Equations in MATLAB with
bvp4c,” available at http://www.mathworks.com/bvp_tutorial

See Also function_handle (@), bvp5c,bvpget, bvpinit, bvpset, bvpxtend, deval

2-453

http://www.mathworks.com/bvp_tutorial

bvp5c

Purpose Solve boundary value problems for ordinary differential equations

Syntax sol = bvp5c(odefun,bcfun,solinit)
sol = bvp5c(odefun,bcfun,solinit,options)
solinit = bvpinit(x, yinit, params)

Arguments odefun A function handle that evaluates the differential
equations . It can have the form

dydx = odefun(x,y)
dydx = odefun(x,y,parameters)

where x is a scalar corresponding to , and y is a column
vector corresponding to . parameters is a vector of
unknown parameters. The output dydx is a column
vector.

bcfun A function handle that computes the residual in the
boundary conditions. For two-point boundary value
conditions of the form , bcfun can have
the form

res = bcfun(ya,yb)
res = bcfun(ya,yb,parameters)

where ya and yb are column vectors corresponding to
and . parameters is a vector of unknown

parameters. The output res is a column vector.
solinit A structure containing the initial guess for a solution.

You create solinit using the function bvpinit. solinit
has the following fields.
x Ordered nodes of the initial mesh.

Boundary conditions are imposed at =
solinit.x(1) and = solinit.x(end).

2-454

bvp5c

y Initial guess for the solution such that
solinit.y(:,i) is a guess for the
solution at the node solinit.x(i).

parameters Optional. A vector that provides an
initial guess for unknown parameters.

The structure can have any name, but the fields must be
named x, y, and parameters. You can form solinit with
the helper function bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create
using the bvpset function. See bvpset for details.

Description sol = bvp5c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

on the interval [a,b] subject to two-point boundary value conditions

odefun and bcfun are function handles. See “Function Handles” in the
MATLAB Programming documentation for more information.

in the MATLAB mathematics documentation, explains how to provide
additional parameters to the function odefun, as well as the boundary
condition function bcfun, if necessary. You can use the function bvpinit
to specify the boundary points, which are stored in the input argument
solinit. See the reference page for bvpinit for more information.

The bvp5c solver can also find unknown parameters for problems
of the form

2-455

bvp5c

where corresponds to parameters. You provide bvp5c an initial
guess for any unknown parameters in solinit.parameters. The
bvp5c solver returns the final values of these unknown parameters
in sol.parameters.

bvp5c produces a solution that is continuous on [a,b] and has a
continuous first derivative there. Use the function deval and the
output sol of bvp5c to evaluate the solution at specific points xint in
the interval [a,b].

sxint = deval(sol,xint)

The structure sol returned by bvp5c has the following fields:

sol.x Mesh selected by bvp5c
sol.y Approximation to at the mesh points of

sol.x

sol.parameters Values returned by bvp5c for the unknown
parameters, if any

sol.solver ’bvp5c’

The structure sol can have any name, and bvp5c creates the fields x, y,
parameters, and solver.

sol = bvp5c(odefun,bcfun,solinit,options) solves as above with
default integration properties replaced by the values in options, a
structure created with the bvpset function. See bvpset for details.

solinit = bvpinit(x, yinit, params) forms the initial guess solinit
with the vector params of guesses for the unknown parameters.

Singular Boundary Value Problems

bvp5c solves a class of singular boundary value problems, including
problems with unknown parameters p, of the form

2-456

bvp5c

The interval is required to be [0, b] with b > 0. Often such problems
arise when computing a smooth solution of ODEs that result from
partial differential equations (PDEs) due to cylindrical or spherical
symmetry. For singular problems, you specify the (constant) matrix
S as the value of the 'SingularTerm' option of bvpset, and odefun
evaluates only f(x, y, p). The boundary conditions must be consistent
with the necessary condition and the initial guess should
satisfy this condition.

Multipoint Boundary Value Problems

bvp5c can solve multipoint boundary value problems where
are boundary points in the interval

. The points represent interfaces that divide
into regions. bvp5c enumerates the regions from left to right

(from a to b), with indices starting from 1. In region k, ,
bvp5c evaluates the derivative as

yp = odefun(x, y, k)

In the boundary conditions function

bcfun(yleft, yright)

yleft(:, k) is the solution at the left boundary of . Similarly,
yright(:, k) is the solution at the right boundary of region k. In
particular,

yleft(:, 1) = y(a)

and

yright(:, end) = y(b)

When you create an initial guess with

2-457

bvp5c

solinit = bvpinit(xinit, yinit),

use double entries in xinit for each interface point. See the reference
page for bvpinit for more information.

If yinit is a function, bvpinit calls y = yinit(x, k) to get an initial
guess for the solution at x in region k. In the solution structure sol
returned by bvp5c, sol.x has double entries for each interface point.
The corresponding columns of sol.y contain the left and right solution
at the interface, respectively.

For an example of solving a three-point boundary value problem, type
threebvp at the MATLAB command prompt to run a demonstration.

Algorithms bvp5c is a finite difference code that implements the four-stage
Lobatto IIIa formula. This is a collocation formula and the collocation
polynomial provides a C1-continuous solution that is fifth-order
accurate uniformly in [a,b]. The formula is implemented as an
implicit Runge-Kutta formula. bvp5c solves the algebraic equations
directly; bvp4c uses analytical condensation. bvp4c handles unknown
parameters directly; while bvp5c augments the system with trivial
differential equations for unknown parameters.

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka “Solving Boundary
Value Problems for Ordinary Differential Equations in MATLAB with
bvp4c” http://www.mathworks.com/bvp_tutorial. Note that this
tutorial uses the bvp4c function, however in most cases the solvers can
be used interchangeably.

See Also function_handle (@), bvp4c, bvpget, bvpinit, bvpset, bvpxtend,
deval

2-458

http://www.mathworks.com/bvp_tutorial

bvpget

Purpose Extract properties from options structure created with bvpset

Syntax val = bvpget(options,'name')
val = bvpget(options,'name',default)

Description val = bvpget(options,'name') extracts the value of the named
property from the structure options, returning an empty matrix if
the property value is not specified in options. It is sufficient to type
only the leading characters that uniquely identify the property. Case is
ignored for property names. [] is a valid options argument.

val = bvpget(options,'name',default) extracts the named property
as above, but returns val = default if the named property is not
specified in options. For example,

val = bvpget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also bvp4c, bvp5c, bvpinit, bvpset, deval

2-459

bvpinit

Purpose Form initial guess for bvp4c

Syntax solinit = bvpinit(x,yinit)
solinit = bvpinit(x,yinit,parameters)
solinit = bvpinit(sol,[anew bnew])
solinit = bvpinit(sol,[anew bnew],parameters)

Description solinit = bvpinit(x,yinit) forms the initial guess for the boundary
value problem solver bvp4c.

x is a vector that specifies an initial mesh. If you want to solve the
boundary value problem (BVP) on , then specify x(1) as and
x(end) as . The function bvp4c adapts this mesh to the solution, so a
guess like xb=nlinspace(a,b,10) often suffices. However, in difficult
cases, you should place mesh points where the solution changes rapidly.
The entries of x must be in

• Increasing order if

• Decreasing order if

For two-point boundary value problems, the entries of x must be
distinct. That is, if , the entries must satisfy x(1) < x(2) < ... <
x(end). If , the entries must satisfy x(1) > x(2) > ... > x(end)

For multipoint boundary value problem, you can specify the points in
at which the boundary conditions apply, other than the endpoints

a and b, by repeating their entries in x. For example, if you set

x = [0, 0.5, 1, 1, 1.5, 2];

the boundary conditions apply at three points: the endpoints 0 and
2, and the repeated entry 1. In general, repeated entries represent
boundary points between regions in . In the preceding example,
the repeated entry 1 divides the interval [0,2] into two regions: [0,1]
and [1,2].

yinit is a guess for the solution. It can be either a vector, or a function:

2-460

bvpinit

• Vector – For each component of the solution, bvpinit replicates
the corresponding element of the vector as a constant guess across
all mesh points. That is, yinit(i) is a constant guess for the ith
component yinit(i,:) of the solution at all the mesh points in x.

• Function – For a given mesh point, the guess function must return a
vector whose elements are guesses for the corresponding components
of the solution. The function must be of the form

y = guess(x)

where x is a mesh point and y is a vector whose length is the same as
the number of components in the solution. For example, if the guess
function is an M-file function, bvpinit calls

y(:,j) = guess(x(j))

at each mesh point.

For multipoint boundary value problems, the guess function must
be of the form

y = guess(x, k)

where y an initial guess for the solution at x in region k. The function
must accept the input argument k, which is provided for flexibility
in writing the guess function. However, the function is not required
to use k.

solinit = bvpinit(x,yinit,parameters) indicates that the
boundary value problem involves unknown parameters. Use the vector
parameters to provide a guess for all unknown parameters.

solinit is a structure with the following fields. The structure can have
any name, but the fields must be named x, y, and parameters.

2-461

bvpinit

x Ordered nodes of the initial mesh.
y Initial guess for the solution with solinit.y(:,i)

a guess for the solution at the node solinit.x(i).
parameters Optional. A vector that provides an initial guess

for unknown parameters.

solinit = bvpinit(sol,[anew bnew]) forms an initial guess on
the interval [anew bnew] from a solution sol on an interval .
The new interval must be larger than the previous one, so either
anew <= a < b <= bnew or anew >= a > b >= bnew. The solution sol is
extrapolated to the new interval. If sol contains parameters, they are
copied to solinit.

solinit = bvpinit(sol,[anew bnew],parameters) forms solinit
as described above, but uses parameters as a guess for unknown
parameters in solinit.

See Also @ (function_handle), bvp4c,bvp5c, bvpget, bvpset, bvpxtend, deval

2-462

bvpset

Purpose Create or alter options structure of boundary value problem

Syntax options = bvpset('name1',value1,'name2',value2,...)
options = bvpset(oldopts,'name1',value1,...)
options = bvpset(oldopts,newopts)
bvpset

Description options = bvpset('name1',value1,'name2',value2,...) creates a
structure options that you can supply to the boundary value problem
solver bvp4c, in which the named properties have the specified
values. Any unspecified properties retain their default values. For
all properties, it is sufficient to type only the leading characters that
uniquely identify the property. bvpset ignores case for property names.

options = bvpset(oldopts,'name1',value1,...) alters an existing
options structure oldopts. This overwrites any values in oldopts that
are specified using name/value pairs and returns the modified structure
as the output argument.

options = bvpset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any values
set in newopts overwrite the corresponding values in oldopts.

bvpset with no input arguments displays all property names and their
possible values, indicating defaults with braces {}.

You can use the function bvpget to query the options structure for the
value of a specific property.

BVP
Properties

bvpset enables you to specify properties for the boundary value problem
solver bvp4c. There are several categories of properties that you can set:

• “Error Tolerance Properties” on page 2-464

• “Vectorization” on page 2-465

• “Analytical Partial Derivatives” on page 2-466

• “Singular BVPs” on page 2-469

2-463

bvpset

• “Mesh Size Property” on page 2-469

• “Solution Statistic Property” on page 2-470

Error Tolerance Properties

Because bvp4c uses a collocation formula, the numerical solution
is based on a mesh of points at which the collocation equations are
satisfied. Mesh selection and error control are based on the residual of
this solution, such that the computed solution is the exact solution
of a perturbed problem . On each
subinterval of the mesh, a norm of the residual in the ith component
of the solution, res(i), is estimated and is required to be less than or
equal to a tolerance. This tolerance is a function of the relative and
absolute tolerances, RelTol and AbsTol, defined by the user.

The following table describes the error tolerance properties.

2-464

bvpset

BVP Error Tolerance Properties

Property Value Description

RelTol Positive
scalar
{1e-3}

A relative error tolerance that applies to all
components of the residual vector. It is a
measure of the residual relative to the size
of . The default, 1e-3, corresponds
to 0.1% accuracy.

The computed solution is the exact
solution of .
On each subinterval of the mesh, the
residual satisfies

AbsTol Positive
scalar or
vector
{1e-6}

Absolute error tolerances that apply to the
corresponding components of the residual
vector. AbsTol(i) is a threshold below
which the values of the corresponding
components are unimportant. If a
scalar value is specified, it applies to all
components.

Vectorization

The following table describes the BVP vectorization property.
Vectorization of the ODE function used by bvp4c differs from the
vectorization used by the ODE solvers:

• For bvp4c, the ODE function must be vectorized with respect to the
first argument as well as the second one, so that F([x1 x2 ...],[y1
y2 ...]) returns [F(x1,y1) F(x2,y2)...].

• bvp4c benefits from vectorization even when analytical Jacobians
are provided. For stiff ODE solvers, vectorization is ignored when
analytical Jacobians are used.

2-465

bvpset

Vectorization Properties

Property Value Description

Vectorized on | {off} Set on to inform bvp4c that you have
coded the ODE function F so that
F([x1 x2 ...],[y1 y2 ...]) returns
[F(x1,y1) F(x2,y2) ...]. That
is, your ODE function can pass to
the solver a whole array of column
vectors at once. This enables the
solver to reduce the number of function
evaluations and may significantly
reduce solution time.

With the MATLAB array notation, it
is typically an easy matter to vectorize
an ODE function. In the shockbvp
example shown previously, the
shockODE function has been vectorized
using colon notation into the subscripts
and by using the array multiplication
(.*) operator.

function dydx = shockODE(x,y,e)
pix = pi*x;
dydx = [y(2,:)...
-x/e.*y(2,:)-pi^2*cos(pix)-
pix/e.*sin(pix)];

Analytical Partial Derivatives

By default, the bvp4c solver approximates all partial derivatives with
finite differences. bvp4c can be more efficient if you provide analytical
partial derivatives of the differential equations, and analytical
partial derivatives, and , of the boundary
conditions. If the problem involves unknown parameters, you must

2-466

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/colon.html
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/arithmeticoperators.html

bvpset

also provide partial derivatives, and , with respect
to the parameters.

The following table describes the analytical partial derivatives
properties.

2-467

bvpset

BVP Analytical Partial Derivative Properties

Property Value Description

FJacobian Function
handle

Handle to a function that computes
the analytical partial derivatives
of . When solving

, set this property
to @fjac if dfdy = fjac(x,y)

evaluates the Jacobian .
If the problem involves unknown
parameters , [dfdy,dfdp] =
fjac(x,y,p) must also return
the partial derivative . For
problems with constant partial
derivatives, set this property to
the value of dfdy or to a cell array
{dfdy,dfdp}.

See “Function Handles” in
the MATLAB Programming
documentation for more
information.

BCJacobian Function
handle

Handle to a function that
computes the analytical partial
derivatives of .
For boundary conditions

, set this property
to @bcjac if [dbcdya,dbcdyb]
= bcjac(ya,yb) evaluates the
partial derivatives ,
and . If the problem
involves unknown parameters
, [dbcdya,dbcdyb,dbcdp] =

bcjac(ya,yb,p) must also return
the partial derivative .
For problems with constant partial
derivatives, set this property to
a cell array {dbcdya,dbcdyb} or
{dbcdya,dbcdyb,dbcdp}.

2-468

bvpset

Singular BVPs

bvp4c can solve singular problems of the form

posed on the interval where . For such problems, specify
the constant matrix as the value of SingularTerm. For equations
of this form, odefun evaluates only the term, where
represents unknown parameters, if any.

Singular BVP Property

Property Value Description

SingularTerm Constant
matrix

Singular term of singular BVPs.
Set to the constant matrix for
equations of the form

posed on the interval
where .

Mesh Size Property

bvp4c solves a system of algebraic equations to determine the numerical
solution to a BVP at each of the mesh points. The size of the algebraic
system depends on the number of differential equations (n) and the
number of mesh points in the current mesh (N). When the allowed
number of mesh points is exhausted, the computation stops, bvp4c
displays a warning message and returns the solution it found so far.
This solution does not satisfy the error tolerance, but it may provide an
excellent initial guess for computations restarted with relaxed error
tolerances or an increased value of NMax.

The following table describes the mesh size property.

2-469

bvpset

BVP Mesh Size Property

Property Value Description

NMax positive integer
{floor(1000/n)}

Maximum number of mesh
points allowed when solving
the BVP, where n is the number
of differential equations in the
problem. The default value
of NMax limits the size of the
algebraic system to about 1000
equations. For systems of a
few differential equations, the
default value of NMax should be
sufficient to obtain an accurate
solution.

Solution Statistic Property

The Stats property lets you view solution statistics.

The following table describes the solution statistics property.

2-470

bvpset

BVP Solution Statistic Property

Property Value Description

Stats on | {off} Specifies whether statistics about
the computations are displayed.
If the stats property is on, after
solving the problem, bvp4c displays:

• The number of points in the mesh

• The maximum residual of the
solution

• The number of times it called
the differential equation function
odefun to evaluate

• The number of times it called
the boundary condition
function bcfun to evaluate

Example To create an options structure that changes the relative error tolerance
of bvp4c from the default value of 1e-3 to 1e-4, enter

options = bvpset('RelTol', 1e-4);

To recover the value of 'RelTol' from options, enter

bvpget(options, 'RelTol')

ans =

1.0000e-004

See Also @ (function_handle), bvp4c,bvp5c, bvpget, bvpinit, deval

2-471

bvpxtend

Purpose Form guess structure for extending boundary value solutions

Syntax solinit = bvpxtend(sol,xnew,ynew)
solinit = bvpxtend(sol,xnew,extrap)
solinit = bvpxtend(sol,xnew)
solinit = bvpxtend(sol,xnew,ynew,pnew)
solinit = bvpxtend(sol,xnew,extrap,pnew)

Description solinit = bvpxtend(sol,xnew,ynew) uses solution sol computed on
[a,b] to form a solution guess for the interval extended to xnew. The
extension point xnew must be outside the interval [a,b], but on either
side. The vector ynew provides an initial guess for the solution at xnew.

solinit = bvpxtend(sol,xnew,extrap) forms the guess at xnew by
extrapolating the solution sol. extrap is a string that determines the
extrapolation method. extrap has three possible values:

• 'constant'— ynew is a value nearer to end point of solution in sol.

• 'linear'— ynew is a value at xnew of linear interpolant to the value
and slope at the nearer end point of solution in sol.

• 'solution'— ynew is the value of (cubic) solution in sol at xnew.

The value of extrap is case-insensitive and only the leading, unique
portion needs to be specified.

solinit = bvpxtend(sol,xnew) uses the extrapolating solution where
extrap is 'constant'. If there are unknown parameters, values
present in sol are used as the initial guess for parameters in solinit.

solinit = bvpxtend(sol,xnew,ynew,pnew) specifies a different guess
pnew. pnew can be used with extrapolation, using the syntax solinit
= bvpxtend(sol,xnew,extrap,pnew). To modify parameters without
changing the interval, use [] as place holder for xnew and ynew.

See Also bvp4c, bvp5c, bvpinit

2-472

calendar

Purpose Calendar for specified month

Syntax c = calendar
c = calendar(d)
c = calendar(y, m)

Description c = calendar returns a 6-by-7 matrix containing a calendar for the
current month. The calendar runs Sunday (first column) to Saturday.

c = calendar(d), where d is a serial date number or a date string,
returns a calendar for the specified month.

c = calendar(y, m), where y and m are integers, returns a calendar
for the specified month of the specified year.

Examples The command

calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

Oct 1957
S M Tu W Th F S
0 0 1 2 3 4 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 0 0
0 0 0 0 0 0 0

See Also datenum

2-473

calllib

Purpose Call function in shared library

Syntax [x1, ..., xN] = calllib('libname', 'funcname', arg1, ...,
argN)

Description [x1, ..., xN] = calllib('libname', 'funcname', arg1, ...,
argN) calls the function funcname in library libname, passing input
arguments arg1 through argN. calllib returns output values obtained
from function funcname in x1 through XN.

If you used an alias when initially loading the library, then you must
use that alias for the libname argument.

Ways to Call calllib

The following examples show ways calls to calllib. By using
libfunctionsview, you determined that the addStructByRef function
in the shared library shrlibsample requires a pointer to a c_struct
data type as its argument.

Load the library:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

Create a MATLAB structure:

struct.p1 = 4; struct.p2 = 7.3; struct.p3 = -290;

Use libstruct to create a C structure of the proper type (c_struct):

[res,st] = calllib('shrlibsample','addStructByRef',...
libstruct('c_struct',struct));

Let MATLAB convert struct to the proper type of C structure:

[res,st] = calllib('shrlibsample','addStructByRef',struct);

Pass an empty array to libstruct and assign the values from your
C function:

2-474

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/loadlibrary.html

calllib

[res,st] = calllib('shrlibsample','addStructByRef',...
libstruct('c_struct',[]));

Let MATLAB create the proper type of structure and assign values
from your C function:

[res,st] = calllib('shrlibsample','addStructByRef',[]);

Remove the library from memory:

unloadlibrary shrlibsample

Examples To call functions in the MATLAB libmx library, see “Invoking Library
Functions”.

See Also loadlibrary, libfunctions, libfunctionsview, unloadlibrary

See Passing Arguments for information on defining the correct data
types for library function arguments.

2-475

callSoapService

Purpose Send SOAP message off to endpoint

Syntax callSoapService(endpoint, soapAction, message)

Description callSoapService(endpoint, soapAction, message) sends message,
a Sun Java document object model (DOM), to the soapAction service
at the endpoint.

See Also createClassFromWsdl, CreateSoapMessage, parseSoapResponse

2-476

camdolly

Purpose Move camera position and target

Syntax camdolly(dx,dy,dz)
camdolly(dx,dy,dz,'targetmode')
camdolly(dx,dy,dz,'targetmode','coordsys')
camdolly(axes_handle,...)

Description camdolly moves the camera position and the camera target by the
specified amounts.

camdolly(dx,dy,dz) moves the camera position and the camera target
by the specified amounts (see Coordinate Systems).

camdolly(dx,dy,dz,'targetmode') The targetmode argument can
take on two values that determine how the camera moves:

• movetarget (default) — Move both the camera and the target.

• fixtarget — Move only the camera.

camdolly(dx,dy,dz,'targetmode','coordsys') The coordsys
argument can take on three values that determine how the MATLAB
software interprets dx, dy, and dz:

Coordinate Systems

• camera (default) — Move in the camera’s coordinate system. dx
moves left/right, dy moves down/up, and dz moves along the viewing
axis. The units are normalized to the scene.

For example, setting dx to 1 moves the camera to the right, which
pushes the scene to the left edge of the box formed by the axes
position rectangle. A negative value moves the scene in the other
direction. Setting dz to 0.5 moves the camera to a position halfway
between the camera position and the camera target.

• pixels— Interpret dx and dy as pixel offsets. dz is ignored.

• data— Interpret dx, dy, and dz as offsets in axes data coordinates.

2-477

camdolly

camdolly(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camdolly operates on the current axes.

Remarks camdolly sets the axes CameraPosition andCameraTarget properties,
which in turn causes the CameraPositionMode and CameraTargetMode
properties to be set to manual.

Examples This example moves the camera along the x- and y-axes in a series of
steps.

surf(peaks)
axis vis3d
t = 0:pi/20:2*pi;
dx = sin(t)./40;
dy = cos(t)./40;
for i = 1:length(t);

camdolly(dx(i),dy(i),0)
drawnow

end

See Also axes, campos, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

See “Defining Scenes with Camera Graphics” for more information on
camera properties.

2-478

cameratoolbar

Purpose Control camera toolbar programmatically

Syntax cameratoolbar
cameratoolbar('NoReset')
cameratoolbar('SetMode',mode)
cameratoolbar('SetCoordSys',coordsys)
cameratoolbar('Show')
cameratoolbar('Hide')
cameratoolbar('Toggle')
cameratoolbar('ResetCameraAndSceneLight')
cameratoolbar('ResetCamera')
cameratoolbar('ResetSceneLight')
cameratoolbar('ResetTarget')
mode = cameratoolbar('GetMode')
paxis = cameratoolbar('GetCoordsys')
vis = cameratoolbar('GetVisible')
cameratoolbar(fig,...)
h = cameratoolbar
cameratoolbar('Close')

Description cameratoolbar creates a new toolbar that enables interactive
manipulation of the axes camera and light when users drag the mouse
on the figure window. Several axes camera properties are set when
the toolbar is initialized.

cameratoolbar('NoReset') creates the toolbar without setting any
camera properties.

cameratoolbar('SetMode',mode) sets the toolbar mode (depressed
button). mode can be 'orbit', 'orbitscenelight', 'pan', 'dollyhv',
'dollyfb', 'zoom', 'roll', 'nomode'. For descriptions of the various
modes, see “Camera Toolbar” in the MATLAB 3-D Visualization User’s
Guide. You can also set these modes using the toolbar, by clicking on
the respective buttons.

cameratoolbar('SetCoordSys',coordsys) sets the principal axis of
the camera motion. coordsys can be: 'x', 'y', 'z', 'none'.

cameratoolbar('Show') shows the toolbar on the current figure.

2-479

cameratoolbar

cameratoolbar('Hide') hides the toolbar on the current figure.

cameratoolbar('Toggle') toggles the visibility of the toolbar.

cameratoolbar('ResetCameraAndSceneLight') resets the current
camera and scenelight.

cameratoolbar('ResetCamera') resets the current camera.

cameratoolbar('ResetSceneLight') resets the current scenelight.

cameratoolbar('ResetTarget') resets the current camera target.

mode = cameratoolbar('GetMode') returns the current mode.

paxis = cameratoolbar('GetCoordsys') returns the current
principal axis.

vis = cameratoolbar('GetVisible') returns the visibility of the
toolbar (1 if visible, 0 if not visible).

cameratoolbar(fig,...) specifies the figure to operate on by passing
the figure handle as the first argument.

h = cameratoolbar returns the handle to the toolbar.

cameratoolbar('Close') removes the toolbar from the current figure.

Note that, in general, the use of OpenGL hardware improves rendering
performance.

See Also rotate3d, zoom

“Camera Toolbar”

2-480

camlight

Purpose Create or move light object in camera coordinates

Syntax camlight('headlight')
camlight('right')
camlight('left')
camlight
camlight(az,el)
camlight(...,'style')
camlight(light_handle,...)
light_handle = camlight(...)

Description camlight('headlight') creates a light at the camera position.

camlight('right') creates a light right and up from camera.

camlight('left') creates a light left and up from camera.

camlight with no arguments is the same as camlight('right').

camlight(az,el) creates a light at the specified azimuth (az) and
elevation (el) with respect to the camera position. The camera target is
the center of rotation and az and el are in degrees.

camlight(...,'style') The style argument can take on two values:

• local (default) — The light is a point source that radiates from the
location in all directions.

• infinite — The light shines in parallel rays.

camlight(light_handle,...) uses the light specified in
light_handle.

light_handle = camlight(...) returns the light’s handle.

Remarks camlight sets the light object Position and Style properties. A light
created with camlight will not track the camera. In order for the light
to stay in a constant position relative to the camera, you must call
camlight whenever you move the camera.

2-481

camlight

Examples This example creates a light positioned to the left of the camera and
then repositions the light each time the camera is moved:

surf(peaks)
axis vis3d
h = camlight('left');
for i = 1:20;
camorbit(10,0)
camlight(h,'left')
drawnow;

end

See Also light, lightangle

“Lighting” on page 1-105 for related functions

“Lighting as a Visualization Tool” for more information on using lights

2-482

camlookat

Purpose Position camera to view object or group of objects

Syntax camlookat(object_handles)
camlookat(axes_handle)
camlookat

Description camlookat(object_handles) views the objects identified in the vector
object_handles. The vector can contain the handles of axes children.

camlookat(axes_handle) views the objects that are children of the
axes identified by axes_handle.

camlookat views the objects that are in the current axes.

Remarks camlookat moves the camera position and camera target while
preserving the relative view direction and camera view angle. The
object (or objects) being viewed roughly fill the axes position rectangle.

camlookat sets the axes CameraPosition and CameraTarget properties.

Examples This example creates three spheres at different locations and then
progressively positions the camera so that each sphere is the object
around which the scene is composed:

[x y z] = sphere;
s1 = surf(x,y,z);
hold on
s2 = surf(x+3,y,z+3);
s3 = surf(x,y,z+6);
daspect([1 1 1])
view(30,10)
camproj perspective
camlookat(gca) % Compose the scene around the current axes
pause(2)
camlookat(s1) % Compose the scene around sphere s1
pause(2)
camlookat(s2) % Compose the scene around sphere s2
pause(2)

2-483

camlookat

camlookat(s3) % Compose the scene around sphere s3
pause(2)
camlookat(gca)

See Also campos, camtarget

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-484

camorbit

Purpose Rotate camera position around camera target

Syntax camorbit(dtheta,dphi)
camorbit(dtheta,dphi,'coordsys')
camorbit(dtheta,dphi,'coordsys','direction')
camorbit(axes_handle,...)

Description camorbit(dtheta,dphi) rotates the camera position around the camera
target by the amounts specified in dtheta and dphi (both in degrees).
dtheta is the horizontal rotation and dphi is the vertical rotation.

camorbit(dtheta,dphi,'coordsys') The coordsys argument
determines the center of rotation. It can take on two values:

• data (default) — Rotate the camera around an axis defined by the
camera target and the direction (default is the positive z direction).

• camera— Rotate the camera about the point defined by the camera
target.

camorbit(dtheta,dphi,'coordsys','direction') The direction
argument, in conjunction with the camera target, defines the axis
of rotation for the data coordinate system. Specify direction as a
three-element vector containing the x, y, and z components of the
direction or one of the characters, x, y, or z, to indicate [1 0 0], [0 1
0], or [0 0 1] respectively.

camorbit(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camorbit operates on the current axes.

Examples Compare rotation in the two coordinate systems with these for loops.
The first rotates the camera horizontally about a line defined by the
camera target point and a direction that is parallel to the y-axis.
Visualize this rotation as a cone formed with the camera target at the
apex and the camera position forming the base:

surf(peaks)

2-485

camorbit

axis vis3d
for i=1:36
camorbit(10,0,'data',[0 1 0])
drawnow

end

Rotation in the camera coordinate system orbits the camera around the
axes along a circle while keeping the center of a circle at the camera
target.

surf(peaks)
axis vis3d
for i=1:36
camorbit(10,0,'camera')
drawnow

end

Remarks The behavior of cameraorbit differs from the rotate3d function in
that while the rotate3d tool modifies the View property of the axes,
the cameraorbit function fixes the aspect ratio and modifies the
CameraTarget, CameraPosition and CameraUpVector properties of the
axes. See Axes Propertiesfor more information.

You can also enable 3-D rotation from the figure Tools menu or the
figure toolbar.

See Also axes, axis('vis3d'), camdolly, campan, camzoom, camroll

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

Axes Properties for related properties

2-486

campan

Purpose Rotate camera target around camera position

Syntax campan(dtheta,dphi)
campan(dtheta,dphi,'coordsys')
campan(dtheta,dphi,'coordsys','direction')
campan(axes_handle,...)

Description campan(dtheta,dphi) rotates the camera target around the camera
position by the amounts specified in dtheta and dphi (both in degrees).
dtheta is the horizontal rotation and dphi is the vertical rotation.

campan(dtheta,dphi,'coordsys') The coordsys argument
determines the center of rotation. It can take on two values:

• data (default) — Rotate the camera target around an axis defined
by the camera position and the direction (default is the positive
z direction)

• camera— Rotate the camera about the point defined by the camera
target.

campan(dtheta,dphi,'coordsys','direction') The direction
argument, in conjunction with the camera position, defines the axis
of rotation for the data coordinate system. Specify direction as a
three-element vector containing the x, y, and z components of the
direction or one of the characters, x, y, or z, to indicate [1 0 0], [0 1
0], or [0 0 1] respectively.

campan(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle,
campan operates on the current axes.

See Also axes, camdolly, camorbit, camtarget, camzoom, camroll

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-487

campos

Purpose Set or query camera position

Syntax campos
campos([camera_position])
campos('mode')
campos('auto')
campos('manual')
campos(axes_handle,...)

Description campos with no arguments returns the camera position in the current
axes.

campos([camera_position]) sets the position of the camera in
the current axes to the specified value. Specify the position as a
three-element vector containing the x-, y-, and z-coordinates of the
desired location in the data units of the axes.

campos('mode') returns the value of the camera position mode, which
can be either auto (the default) or manual.

campos('auto') sets the camera position mode to auto.

campos('manual') sets the camera position mode to manual.

campos(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, campos operates on the current axes.

Remarks campos sets or queries values of the axes CameraPosition and
CameraPositionMode properties. The camera position is the point in the
Cartesian coordinate system of the axes from which you view the scene.

Examples This example moves the camera along the x-axis in a series of steps:

surf(peaks)
axis vis3d off
for x = -200:5:200

campos([x,5,10])
drawnow

2-488

campos

end

See Also axis, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-489

camproj

Purpose Set or query projection type

Syntax camproj
camproj('projection_type')
camproj(axes_handle,...)

Description The projection type determines whether MATLAB 3-D views use a
perspective or orthographic projection.

camproj with no arguments returns the projection type setting in the
current axes.

camproj('projection_type') sets the projection type in the current
axes to the specified value. Possible values for projection_type are
orthographic and perspective.

camproj(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camproj operates on the current axes.

Remarks camproj sets or queries values of the axes object Projection property.

See Also campos, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-490

camroll

Purpose Rotate camera about view axis

Syntax camroll(dtheta)
camroll(axes_handle,dtheta)

Description camroll(dtheta) rotates the camera around the camera viewing axis
by the amounts specified in dtheta (in degrees). The viewing axis is
defined by the line passing through the camera position and the camera
target.

camroll(axes_handle,dtheta) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camroll operates on the current axes.

Remarks camroll sets the axes CameraUpVector property and thereby also sets
the CameraUpVectorMode property to manual.

See Also axes, axis('vis3d'), camdolly, camorbit, camzoom, campan

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-491

camtarget

Purpose Set or query location of camera target

Syntax camtarget
camtarget([camera_target])
camtarget('mode')
camtarget('auto')
camtarget('manual')
camtarget(axes_handle,...)

Description The camera target is the location in the axes that the camera points
to. The camera remains oriented toward this point regardless of its
position.

camtarget with no arguments returns the location of the camera target
in the current axes.

camtarget([camera_target]) sets the camera target in the current axes
to the specified value. Specify the target as a three-element vector
containing the x-, y-, and z-coordinates of the desired location in the
data units of the axes.

camtarget('mode') returns the value of the camera target mode, which
can be either auto (the default) or manual.

camtarget('auto') sets the camera target mode to auto.

camtarget('manual') sets the camera target mode to manual.

camtarget(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camtarget operates on the current axes.

Remarks camtarget sets or queries values of the axes object CameraTarget and
CameraTargetMode properties.

When the camera target mode is auto, the camera target is the center
of the axes plot box.

Examples This example moves the camera position and the camera target along
the x-axis in a series of steps:

2-492

camtarget

surf(peaks);
axis vis3d
xp = linspace(-150,40,50);
xt = linspace(25,50,50);
for i=1:50

campos([xp(i),25,5]);
camtarget([xt(i),30,0])
drawnow

end

See Also axis, camproj, campos, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-493

camup

Purpose Set or query camera up vector

Syntax camup
camup([up_vector])
camup('mode')
camup('auto')
camup('manual')
camup(axes_handle,...)

Description The camera up vector specifies the direction that is oriented up in the
scene.

camup with no arguments returns the camera up vector setting in the
current axes.

camup([up_vector]) sets the up vector in the current axes to the
specified value. Specify the up vector as x, y, and z components. See
Remarks.

camup('mode') returns the current value of the camera up vector mode,
which can be either auto (the default) or manual.

camup('auto') sets the camera up vector mode to auto. In auto mode,
[0 1 0] is the up vector of for 2-D views. This means the z-axis points
up.

camup('manual') sets the camera up vector mode to manual. In manual
mode, the value of the camera up vector does not change unless you
set it.

camup(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camup operates on the current axes.

Remarks camup sets or queries values of the axes object CameraUpVector and
CameraUpVectorMode properties.

Specify the camera up vector as the x-, y-, and z-coordinates of a point
in the axes coordinate system that forms the directed line segment
PQ, where P is the point (0,0,0) and Q is the specified x-, y-, and

2-494

camup

z-coordinates. This line always points up. The length of the line PQ has
no effect on the orientation of the scene. This means a value of [0 0 1]
produces the same results as [0 0 25].

See Also axis, camproj, campos, camtarget, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-495

camva

Purpose Set or query camera view angle

Syntax camva
camva(view_angle)
camva('mode')
camva('auto')
camva('manual')
camva(axes_handle,...)

Description The camera view angle determines the field of view of the camera.
Larger angles produce a smaller view of the scene. You can implement
zooming by changing the camera view angle.

camva with no arguments returns the camera view angle setting in
the current axes.

camva(view_angle) sets the view angle in the current axes to the
specified value. Specify the view angle in degrees.

camva('mode') returns the current value of the camera view angle
mode, which can be either auto (the default) or manual. See Remarks.

camva('auto') sets the camera view angle mode to auto.

camva('manual') sets the camera view angle mode to manual. See
Remarks.

camva(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camva operates on the current axes.

Remarks camva sets or queries values of the axes object CameraViewAngle and
CameraViewAngleMode properties.

When the camera view angle mode is auto, the camera view angle
adjusts so that the scene fills the available space in the window. If
you move the camera to a different position, the camera view angle
changes to maintain a view of the scene that fills the available area
in the window.

2-496

camva

Setting a camera view angle or setting the camera view angle to manual
disables the MATLAB stretch-to-fill feature (stretching of the axes
to fit the window). This means setting the camera view angle to its
current value,

camva(camva)

can cause a change in the way the graph looks. See the Remarks section
of the axes reference page for more information.

Examples This example creates two pushbuttons, one that zooms in and another
that zooms out.

uicontrol('Style','pushbutton',...
'String','Zoom In',...
'Position',[20 20 60 20],...
'Callback','if camva <= 1;return;else;camva(camva-1);end');

uicontrol('Style','pushbutton',...
'String','Zoom Out',...
'Position',[100 20 60 20],...
'Callback','if camva >= 179;return;else;camva(camva+1);end');

Now create a graph to zoom in and out on:

surf(peaks);

Note the range checking in the callback statements. This keeps the
values for the camera view angle in the range greater than zero and
less than 180.

See Also axis, camproj, campos, camup, camtarget

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-497

camzoom

Purpose Zoom in and out on scene

Syntax camzoom(zoom_factor)
camzoom(axes_handle,...)

Description camzoom(zoom_factor) zooms in or out on the scene depending on the
value specified by zoom_factor. If zoom_factor is greater than 1, the
scene appears larger; if zoom_factor is greater than zero and less than
1, the scene appears smaller.

camzoom(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camzoom operates on the current axes.

Remarks camzoom sets the axes CameraViewAngle property, which in turn
causes the CameraViewAngleMode property to be set to manual. Note
that setting the CameraViewAngle property disables the MATLAB
stretch-to-fill feature (stretching of the axes to fit the window). This
may result in a change to the aspect ratio of your graph. See the axes
function for more information on this behavior.

See Also axes, camdolly, camorbit, campan, camroll, camva

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-498

cart2pol

Purpose Transform Cartesian coordinates to polar or cylindrical

Syntax [THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

Description [THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional
Cartesian coordinates stored in corresponding elements of arrays X, Y,
and Z, into cylindrical coordinates. THETA is a counterclockwise angular
displacement in radians from the positive x-axis, RHO is the distance
from the origin to a point in the x-y plane, and Z is the height above
the x-y plane. Arrays X, Y, and Z must be the same size (or any can be
scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into
polar coordinates.

Algorithm The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to
cylindrical coordinates is

2-499

cart2pol

See Also cart2sph, pol2cart, sph2cart

2-500

cart2sph

Purpose Transform Cartesian coordinates to spherical

Syntax [THETA,PHI,R] = cart2sph(X,Y,Z)

Description [THETA,PHI,R] = cart2sph(X,Y,Z) transforms Cartesian coordinates
stored in corresponding elements of arrays X, Y, and Z into spherical
coordinates. Azimuth THETA and elevation PHI are angular
displacements in radians measured from the positive x-axis, and the x-y
plane, respectively; and R is the distance from the origin to a point.

Arrays X, Y, and Z must be the same size (or any of them can be scalar).

Algorithm The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is

The notation for spherical coordinates is not standard. For the cart2sph
function, the angle PHI is measured from the x-y plane. Notice that if
PHI = 0 then the point is in the x-y plane and if PHI = pi/2 then the
point is on the positive z-axis.

See Also cart2pol, pol2cart, sph2cart

2-501

case

Purpose Execute block of code if condition is true

Syntax switch switch_expr
case case_expr

statement, ..., statement
case {case_expr1, case_expr2, case_expr3, ...}

statement, ..., statement
otherwise

statement, ..., statement
end

Description case is part of the switch statement syntax which allows for conditional
execution. A particular case consists of the case statement itself
followed by a case expression and one or more statements.

case case_expr compares the value of the expression switch_expr
declared in the preceding switch statement with one or more values
in case_expr, and executes the block of code that follows if any of the
comparisons yield a true result.

You typically use multiple case statements in the evaluation of a single
switch statement. The block of code associated with a particular case
statement is executed only if its associated case expression (case_expr)
is the first to match the switch expression (switch_expr).

To enter more than one case expression in a switch statement, put the
expressions in a cell array, as shown above.

Examples To execute a certain block of code based on what the string, method,
is set to,

method = 'Bilinear';

switch lower(method)
case {'linear','bilinear'}

disp('Method is linear')
case 'cubic'

2-502

case

disp('Method is cubic')
case 'nearest'

disp('Method is nearest')
otherwise

disp('Unknown method.')
end

Method is linear

See Also switch, otherwise, end, if, else, elseif, while

2-503

cast

Purpose Cast variable to different data type

Syntax B = cast(A, newclass)

Description B = cast(A, newclass) casts A to class newclass. A must be
convertible to class newclass. newclass must be the name of one of the
built in data types.

Examples a = int8(5);
b = cast(a,'uint8');
class(b)

ans =

uint8

See Also class

2-504

cat

Purpose Concatenate arrays along specified dimension

Syntax C = cat(dim, A, B)
C = cat(dim, A1, A2, A3, A4, ...)

Description C = cat(dim, A, B)concatenates the arrays A and B along dim.

C = cat(dim, A1, A2, A3, A4, ...)concatenates all the input
arrays (A1, A2, A3, A4, and so on) along dim.

cat(2, A, B) is the same as [A, B], and cat(1, A, B) is the same
as [A; B].

Remarks When used with comma-separated list syntax, cat(dim, C{:}) or
cat(dim, C.field) is a convenient way to concatenate a cell or
structure array containing numeric matrices into a single matrix.

Examples Given

A = B =
1 2 5 6
3 4 7 8

concatenating along different dimensions produces

The commands

2-505

cat

A = magic(3); B = pascal(3);
C = cat(4, A, B);

produce a 3-by-3-by-1-by-2 array.

See Also vertcat, horzcat, strcat, strvcat, num2cell, special character []

2-506

catch

Purpose Specify how to respond to error in try statement

Syntax catch ME
catch

Description catch ME marks the start of a catch block in a try-catch statement.
It returns object ME, which is an instance of the MATLAB class
MException. This object contains information about an error caught
in the preceding try block and can be useful in helping your program
respond to the error appropriately.

A try-catch statement is a programming device that enables you to
define how certain errors are to be handled in your program. This
bypasses the default MATLAB error-handling mechanism when these
errors are detected. The try-catch statement consists of two blocks of
MATLAB code, a try block and a catch block, delimited by the keywords
try, catch, and end:

ctry
MATLAB commands % Try block

catch ME
MATLAB commands % Catch block

end

Each of these blocks consists of one or more MATLAB commands. The
try block is just another piece of your program code; the commands in
this block execute just like any other part of your program. Any errors
MATLAB encounters in the try block are dealt with by the respective
catch block. This is where you write your error-handling code. If the
try block executes without error, MATLAB skips the catch block
entirely. If an error occurs while executing the catch block, the program
terminates unless this error is caught by another try-catch block.

catch marks the start of a catch block but does not return an
MException object. You can obtain the error string that was generated
by calling the lasterror function.

2-507

catch

Specifying the try, catch, and end commands, as well as the
commands that make up the try and catch blocks, on separate lines
is recommended. If you combine any of these components on the same
line, separate them with commas:

try, surf, catch ME, ME.stack, end
ans =

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

Examples The catch block in this example checks to see if the specified file could
not be found. If this is the case, the program allows for the possibility
that a common variation of the filename extension (e.g., jpeg instead
of jpg) was used by retrying the operation with a modified extension.
This is done using a try-catch statement that is nested within the
original try-catch.

function d_in = read_image(filename)
[path name ext] = fileparts(filename);
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME1
% Get last segment of the error message identifier.
idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', ...

'match');

% Did the read fail because the file could not be found?
if strcmp(idSegLast, 'InvalidFid') && ...

~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch ext
case '.jpg' % Change jpg to jpeg

filename = strrep(filename, '.jpg', '.jpeg')
case '.jpeg' % Change jpeg to jpg

2-508

catch

filename = strrep(filename, '.jpeg', '.jpg')
case '.tif' % Change tif to tiff

filename = strrep(filename, '.tif', '.tiff')
case '.tiff' % Change tiff to tif

filename = strrep(filename, '.tiff', '.tif')
otherwise

fprintf('File %s not found\n', filename);
rethrow(ME1);

end

% Try again, with modifed filenames.
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME2
fprintf('Unable to access file %s\n', filename);
ME2 = addCause(ME2, ME1);
rethrow(ME2)

end
end

end

See Also try, rethrow, end, lasterror, eval, evalin

2-509

caxis

Purpose Color axis scaling

Syntax caxis([cmin cmax])
caxis auto
caxis manual
caxis(caxis) freeze
v = caxis
caxis(axes_handle,...)

Description caxis controls the mapping of data values to the colormap. It affects any
surfaces, patches, and images with indexed CData and CDataMapping
set to scaled. It does not affect surfaces, patches, or images with true
color CData or with CDataMapping set to direct.

caxis([cmin cmax]) sets the color limits to specified minimum and
maximum values. Data values less than cmin or greater than cmax map
to cmin and cmax, respectively. Values between cmin and cmax linearly
map to the current colormap.

caxis auto computes the color limits automatically using the minimum
and maximum data values. This is the default behavior. Color values
set to Inf map to the maximum color, and values set to -Inf map to
the minimum color. Faces or edges with color values set to NaN are
not drawn.

caxis manual and caxis(caxis) freeze the color axis scaling at the
current limits. This enables subsequent plots to use the same limits
when hold is on.

v = caxis returns a two-element row vector containing the [cmin
cmax] currently in use.

caxis(axes_handle,...) uses the axes specified by axes_handle
instead of the current axes.

Remarks caxis changes the CLim and CLimMode properties of axes graphics
objects.

2-510

caxis

How Color Axis Scaling Works

Surface, patch, and image graphics objects having indexed CData and
CDataMapping set to scaled map CData values to colors in the figure
colormap each time they render. CData values equal to or less than cmin
map to the first color value in the colormap, and CData values equal to
or greater than cmax map to the last color value in the colormap. The
following linear transformation is performed on the intermediate values
(referred to as C below) to map them to an entry in the colormap (whose
length is m, and whose row index is referred to as index below).

index = fix((C-cmin)/(cmax-cmin)*m)+1

Examples Create (X,Y,Z) data for a sphere and view the data as a surface.

[X,Y,Z] = sphere;
C = Z;
surf(X,Y,Z,C)

Values of C have the range [-1 1]. Values of C near -1 are assigned
the lowest values in the colormap; values of C near 1 are assigned the
highest values in the colormap.

To map the top half of the surface to the highest value in the color table,
use

caxis([-1 0])

To use only the bottom half of the color table, enter

caxis([-1 3])

which maps the lowest CData values to the bottom of the colormap, and
the highest values to the middle of the colormap (by specifying a cmax
whose value is equal to cmin plus twice the range of the CData).

The command

caxis auto

2-511

caxis

resets axis scaling back to autoranging and you see all the colors in
the surface. In this case, entering

caxis

returns

[-1 1]

Adjusting the color axis can be useful when using images with scaled
color data. For example, load the image data and colormap for Cape
Cod, Massachusetts.

load cape

This command loads the image’s data X and the image’s colormap map
into the workspace. Now display the image with CDataMapping set to
scaled and install the image’s colormap.

image(X,'CDataMapping','scaled')colormap(map)

This adjusts the color limits to span the range of the image data, which
is 1 to 192:

caxis
ans =

1 192

The blue color of the ocean is the first color in the colormap and is
mapped to the lowest data value (1). You can effectively move sea level
by changing the lower color limit value. For example,

2-512

caxis

See Also axes, axis, colormap, get, mesh, pcolor, set, surf

The CLim and CLimMode properties of axes graphics objects

The Colormap property of figure graphics objects

“Color Operations” on page 1-102 for related functions

2-513

caxis

“Axes Color Limits — the CLim Property” for more examples

2-514

cd

Purpose Change working directory

GUI
Alternatives

As an alternative to the cd function, you can change the current
directory using the current directory field on the desktop toolbar or
using the Current Directory browser.

Syntax cd
w = cd
cd('directory')
cd('..')
cd directory

Description cd displays the current working directory.

w = cd assigns the current working directory to w.

2-515

cd

cd('directory') sets the current working directory to directory. Use
the full path for directory. On UNIX1 platforms, the character ~ is
interpreted as the user’s root directory.

cd('..') changes the current working directory to the directory above
it.

cd directory or cd .. is the unquoted form of the syntax.

Examples UNIX Platforms

On UNIX platforms, to change the current working directory to
ctrldemos for the Control System Toolbox™ software, run

cd('/usr/local/matlab/toolbox/control/ctrldemos')

Windows Platforms

On Microsoft Windows platforms, to change the current working
directory to ctrldemos for the Control System Toolbox software, run

cd('c:/matlab/toolbox/control/ctrldemos')

Then change the current working directory to control by running

cd ..

Then change the current working directory to toolbox by running

cd ..

Change to matlabroot Directory

On any platform, use cd with the matlabroot function to change to a
directory relative to the directory in which the MATLAB executable
is installed. For example,

cd([matlabroot '/toolbox/control/ctrldemos'])

1. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-516

cd

changes the current working directory to ctrldemos for the Control
System Toolbox software.

See Also dir, fileparts, mfilename, path, pwd, what

“Managing Files and Working with the Current Directory”

2-517

cd (ftp)

Purpose Change current directory on FTP server

Syntax cd(f)
cd(f,'dirname')
cd(f,'..')

Description cd(f) Displays the current directory on the FTP server f, where f was
created using ftp.

cd(f,'dirname') Changes the current directory on the FTP server
f to dirname, where f was created using ftp. After running cd, the
object f remembers the current directory on the FTP server. You can
then perform file operations functions relative to f using the methods
delete, dir, mget, mkdir, mput, rename, and rmdir.

cd(f,'..') changes the current directory on the FTP server f to the
directory above the current one.

Examples Connect to the MathWorks FTP server.

tmw=ftp('ftp.mathworks.com');

View the contents.

dir(tmw)

Change the current directory to pub.

cd(tmw,'pub');

View the contents of pub.

dir(tmw)

See Also dir (ftp), ftp

2-518

cdf2rdf

Purpose Convert complex diagonal form to real block diagonal form

Syntax [V,D] = cdf2rdf(V,D)
[V,D] = cdf2rdf(V,D)

Description If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing
in complex-conjugate pairs, cdf2rdf transforms the system so D is in
real diagonal form, with 2-by-2 real blocks along the diagonal replacing
the complex pairs originally there. The eigenvectors are transformed
so that

X = V*D/V

continues to hold. The individual columns of V are no longer
eigenvectors, but each pair of vectors associated with a 2-by-2 block in
D spans the corresponding invariant vectors.

Examples The matrix

X =
1 2 3
0 4 5
0 -5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =

1.0000 -0.0191 - 0.4002i -0.0191 + 0.4002i
0 0 - 0.6479i 0 + 0.6479i
0 0.6479 0.6479

D =

1.0000 0 0

2-519

cdf2rdf

0 4.0000 + 5.0000i 0
0 0 4.0000 - 5.0000i

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

V =

1.0000 -0.0191 -0.4002
0 0 -0.6479
0 0.6479 0

D =

1.0000 0 0
0 4.0000 5.0000
0 -5.0000 4.0000

Algorithm The real diagonal form for the eigenvalues is obtained from the complex
form using a specially constructed similarity transformation.

See Also eig, rsf2csf

2-520

cdfepoch

Purpose Construct cdfepoch object for Common Data Format (CDF) export

Syntax E = cdfepoch(date)

Description E = cdfepoch(date) constructs a cdfepoch object, where date is a
valid string (datestr), a number (datenum) representing a date, or a
cdfepoch object.

When writing data to a CDF using cdfwrite, use cdfepoch to convert
MATLAB formatted dates to CDF formatted dates. The MATLAB
cdfepoch object simulates the CDFEPOCH data type in CDF files.

Use the todatenum function to convert a cdfepoch object into a
MATLAB serial date number.

Note A CDF epoch is the number of milliseconds since 1-Jan-0000.
MATLAB datenums are the number of days since 0-Jan-0000.

See Also cdfinfo, cdfread, cdfwrite, datenum

2-521

cdfinfo

Purpose Information about Common Data Format (CDF) file

Syntax info = cdfinfo(filename)

Description info = cdfinfo(filename) returns information about the Common
Data Format (CDF) file specified in the string filename.

Note Because cdfinfo creates temporary files, the current working
directory must be writeable.

The return value, info, is a structure that contains the fields listed
alphabetically in the following table.

Field Description

FileModDate Text string indicating the date the file was
last modified

Filename Text string specifying the name of the file
FileSettings Structure array containing library settings

used to create the file
FileSize Double scalar specifying the size of the file,

in bytes
Format Text string specifying the file format
FormatVersion Text string specifying the version of the CDF

library used to create the file
GlobalAttributes Structure array that contains one field for

each global attribute. The name of each field
corresponds to the name of an attribute. The
data in each field, contained in a cell array,
represents the entry values for that attribute.

2-522

cdfinfo

Field Description

Subfiles Filenames containing the CDF file’s data, if
it is a multifile CDF

VariableAttributes Structure array that contains one field for
each variable attribute. The name of each
field corresponds to the name of an attribute.
The data in each field is contained in a n-by-2
cell array, where n is the number of variables.
The first column of this cell array contains the
variable names associated with the entries.
The second column contains the entry values.

2-523

cdfinfo

Field Description

N-by-6 cell array, where N is the number of
variables, containing information about the
variables in the file. The columns present the
following information:
Column
1

Text string specifying name of
variable

Column
2

Double array specifying the
dimensions of the variable, as
returned by the size function

Column
3

Double scalar specifying the
number of records assigned for the
variable

Column
4

Text string specifying the data
type of the variable, as stored in
the CDF file

Column
5

Text string specifying the record
and dimension variance settings
for the variable. The single
T or F to the left of the slash
designates whether values vary
by record. The zero or more T or
F letters to the right of the slash
designate whether values vary at
each dimension. Here are some
examples.

T/ (scalar variable

F/T (one-dimensional variable)

T/TFF (three-dimensional variable)

Variables

Column
6

Text string specifying the sparsity
of the variable’s records, with these
possible values:

'Full' 'Sparse (padded)'
'Sparse (nearest)'

2-524

cdfinfo

Note Attribute names returned by cdfinfo might not match the
names of the attributes in the CDF file exactly. Attribute names can
contain characters that are illegal in MATLAB field names. cdfinfo
removes illegal characters that appear at the beginning of attributes
and replaces other illegal characters with underscores (’_’). When
cdfinfo modifies an attribute name, it appends the attribute’s internal
number to the end of the field name. For example, the attribute name
Variable%Attribute becomes Variable_Attribute_013.

Examples info = cdfinfo('example.cdf')
info =

Filename: 'example.cdf'
FileModDate: '09-Mar-2001 15:45:22'

FileSize: 1240
Format: 'CDF'

FormatVersion: '2.7.0'
FileSettings: [1x1 struct]

Subfiles: {}
Variables: {5x6 cell}

GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

info.Variables
ans =

'Time' [1x2 double] [24] 'epoch' 'T/' 'Full'
'Longitude' [1x2 double] [1] 'int8' 'F/FT' 'Full'
'Latitude' [1x2 double] [1] 'int8' 'F/TF' 'Full'
'Data' [1x3 double] [1] 'double' 'T/TTT' 'Full'
'multidim' [1x4 double] [1] 'uint8' 'T/TTTT' 'Full'

See Also cdfread

2-525

cdfread

Purpose Read data from Common Data Format (CDF) file

Syntax data = cdfread(filename)
data = cdfread(filename, param1, val1, param2, val2, ...)
[data, info] = cdfread(filename, ...)

Description data = cdfread(filename) reads all the data from the Common
Data Format (CDF) file specified in the string filename. CDF data
sets typically contain a set of variables, of a specific data type, each
with an associated set of records. The variable might represent time
values with each record representing a specific time that an observation
was recorded. cdfread returns all the data in a cell array where
each column represents a variable and each row represents a record
associated with a variable. If the variables have varying numbers of
associated records, cdfread pads the rows to create a rectangular cell
array, using pad values defined in the CDF file.

Note Because cdfread creates temporary files, the current working
directory must be writeable.

data = cdfread(filename, param1, val1, param2, val2, ...)
reads data from the file, where param1, param2, and so on, can be any of
the following parameters.

Parameter Value

'Records' A vector specifying which records to read. Record numbers
are zero-based. cdfread returns a cell array with the
same number of rows as the number of records read and
as many columns as there are variables.

2-526

cdfread

Parameter Value

'Variables' A 1-by-n or n-by-1 cell array specifying the names of the
variables to read from the file. n must be less than or
equal to the total number of variables in the file. cdfread
returns a cell array with the same number of columns as
the number of variables read, and a row for each record
read.

'Slices' An m-by-3 array, where each row specifies where to start
reading along a particular dimension of a variable, the
skip interval to use on that dimension (every item, every
other item, etc.), and the total number of values to read
on that dimension. m must be less than or equal to the
number of dimensions of the variable. If m is less than the
total number of dimensions, cdfread reads every value
from the unspecified dimensions ([0 1 n], where n is the
total number of elements in the dimension.
Note: Because the 'Slices' parameter describes how to
process a single variable, it must be used in conjunction
with the 'Variables' parameter.

2-527

cdfread

Parameter Value

'ConvertEpochToDatenum' A Boolean value that determines whether cdfread
automatically converts CDF epoch data types to MATLAB
serial date numbers. If set to false (the default), cdfread
wraps epoch values in MATLAB cdfepoch objects.
Note: For better performance when reading large data
sets, set this parameter to true.

'CombineRecords' A Boolean value that determines how cdfread returns
the CDF data sets read from the file. If set to false (the
default), cdfread stores the data in an m-by-n cell array,
where m is the number of records and n is the number
of variables requested. If set to true, cdfread combines
all records for a particular variable into one cell in the
output cell array. In this cell, cdfread stores scalar data
as a column array. cdfread extends the dimensionality
of nonscalar and string data. For example, instead of
creating 1000 elements containing 20-by-30 arrays for
each record, cdfread stores all the records in one cell as a
1000-by-20-by-30 array
Note: If you use the 'Records' parameter to specify which
records to read, you cannot use the 'CombineRecords'
parameter.
Note: When using the 'Variable' parameter to read
one variable, if the 'CombineRecords' parameter is
true, cdfread returns the data as an M-by-N numeric or
character array; it does not put the data into a cell array.

[data, info] = cdfread(filename, ...) returns details about the
CDF file in the info structure.

Note To maximize performance, specify both the
'ConvertEpochToDatenum' and 'CombineRecords' parameters, setting
their values to 'true'.

2-528

cdfread

Examples Read all the data from a CDF file.

data = cdfread('example.cdf');

Read the data from the variable 'Time'.

data = cdfread('example.cdf', 'Variable', {'Time'});

Read the first value in the first dimension, the second value in the second
dimension, the first and third values in the third dimension, and all
values in the remaining dimension of the variable 'multidimensional'.

data = cdfread('example.cdf', ...
'Variable', {'multidimensional'}, ...
'Slices', [0 1 1; 1 1 1; 0 2 2]);

This is similar to reading the whole variable into data and then using
matrix indexing, as in the following.

data{1}(1, 2, [1 3], :)

Collapse the records from a data set and convert CDF epoch data types
to MATLAB serial date numbers.

data = cdfread('example.cdf', ...
'CombineRecords', true, ...
'ConvertEpochToDatenum', true);

See Also cdfepoch, cdfinfo, cdfwrite

For more information about using this function, see “Common Data
Format (CDF) Files”.

2-529

cdfwrite

Purpose Write data to Common Data Format (CDF) file

Syntax cdfwrite(filename,variablelist)
cdfwrite(...,'PadValues',padvals)
cdfwrite(...,'GlobalAttributes',gattrib)
cdfwrite(..., 'VariableAttributes', vattrib)
cdfwrite(...,'WriteMode',mode)
cdfwrite(...,'Format',format)

Description cdfwrite(filename,variablelist) writes out a Common Data
Format (CDF) file, specified in filename. The filename input is a
string enclosed in single quotes. The variablelist argument is a cell
array of ordered pairs, each of which comprises a CDF variable name
(a string) and the corresponding CDF variable value. To write out
multiple records for a variable, put the values in a cell array where each
element in the cell array represents a record.

Note Because cdfwrite creates temporary files, both the destination
directory for the file and the current working directory must be
writeable.

cdfwrite(...,'PadValues',padvals) writes out pad values for given
variable names. padvals is a cell array of ordered pairs, each of which
comprises a variable name (a string) and a corresponding pad value.
Pad values are the default values associated with the variable when
an out-of-bounds record is accessed. Variable names that appear in
padvals must appear in variablelist.

cdfwrite(...,'GlobalAttributes',gattrib) writes the structure
gattrib as global metadata for the CDF file. Each field of the structure
is the name of a global attribute. The value of each field contains the
value of the attribute. To write out multiple values for an attribute,
put the values in a cell array where each element in the cell array
represents a record.

2-530

cdfwrite

Note To specify a global attribute name that is invalid in your
MATLAB application, create a field called 'CDFAttributeRename' in
the attribute structure. The value of this field must have a value that is
a cell array of ordered pairs. The ordered pair consists of the name of
the original attribute, as listed in the GlobalAttributes structure, and
the corresponding name of the attribute to be written to the CDF file.

cdfwrite(..., 'VariableAttributes', vattrib) writes the
structure vattrib as variable metadata for the CDF. Each field of
the struct is the name of a variable attribute. The value of each field
should be an M-by-2 cell array where M is the number of variables with
attributes. The first element in the cell array should be the name of the
variable and the second element should be the value of the attribute
for that variable.

Note To specify a variable attribute name that is illegal in MATLAB,
create a field called 'CDFAttributeRename' in the attribute structure.
The value of this field must have a value that is a cell array of ordered
pairs. The ordered pair consists of the name of the original attribute, as
listed in the VariableAttributes struct, and the corresponding name
of the attribute to be written to the CDF file. If you are specifying a
variable attribute of a CDF variable that you are renaming, the name of
the variable in the VariableAttributes structure must be the same
as the renamed variable.

cdfwrite(...,'WriteMode',mode), where mode is either 'overwrite'
or 'append', indicates whether or not the specified variables should be
appended to the CDF file if the file already exists. By default, cdfwrite
overwrites existing variables and attributes.

cdfwrite(...,'Format',format), where format is either 'multifile'
or 'singlefile', indicates whether or not the data is written out as a
multifile CDF. In a multifile CDF, each variable is stored in a separate

2-531

cdfwrite

file with the name *.vN, where N is the number of the variable that is
written out to the CDF. By default, cdfwrite writes out a single file
CDF. When 'WriteMode' is set to 'Append', the 'Format' option is
ignored, and the format of the preexisting CDF is used.

Examples Write out a file 'example.cdf' containing a variable 'Longitude' with
the value [0:360].

cdfwrite('example', {'Longitude', 0:360});

Write out a file 'example.cdf' containing variables 'Longitude' and
'Latitude' with the variable 'Latitude' having a pad value of 10 for
all out-of-bounds records that are accessed.

cdfwrite('example', {'Longitude', 0:360, 'Latitude', 10:20}, ...

'PadValues', {'Latitude', 10});

Write out a file 'example.cdf', containing a variable 'Longitude'
with the value [0:360], and with a variable attribute of 'validmin'
with the value 10.

varAttribStruct.validmin = {'longitude' [10]};

cdfwrite('example', {'Longitude' 0:360}, 'VarAttribStruct', ...

varAttribStruct);

See Also cdfread, cdfinfo, cdfepoch

2-532

ceil

Purpose Round toward positive infinity

Syntax B = ceil(A)

Description B = ceil(A) rounds the elements of A to the nearest integers greater
than or equal to A. For complex A, the imaginary and real parts are
rounded independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.6i]

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6
7.0000 2.4000 + 3.6000i

ceil(a)

ans =
Columns 1 through 4
-1.0000 0 4.0000 6.0000

Columns 5 through 6
7.0000 3.0000 + 4.0000i

See Also fix, floor, round

2-533

cell

Purpose Construct cell array

Syntax c = cell(n)
c = cell(m, n)
c = cell([m, n])
c = cell(m, n, p,...)
c = cell([m n p ...])
c = cell(size(A))
c = cell(javaobj)

Description c = cell(n) creates an n-by-n cell array of empty matrices. An error
message appears if n is not a scalar.

c = cell(m, n) or c = cell([m, n]) creates an m-by-n cell array of
empty matrices. Arguments m and n must be scalars.

c = cell(m, n, p,...) or c = cell([m n p ...]) creates an
m-by-n-by-p-... cell array of empty matrices. Arguments m, n, p,... must
be scalars.

c = cell(size(A)) creates a cell array the same size as A containing
all empty matrices.

c = cell(javaobj) converts a Java array or Java object javaobj into
a MATLAB cell array. Elements of the resulting cell array will be of the
MATLAB type (if any) closest to the Java array elements or Java object.

Remarks This type of cell is not related to “cell mode”, a MATLAB feature used in
debugging and publishing.

Examples This example creates a cell array that is the same size as another array,
A.

A = ones(2,2)

A =
1 1
1 1

2-534

cell

c = cell(size(A))

c =
[] []
[] []

The next example converts an array of java.lang.String objects into a
MATLAB cell array.

strArray = java_array('java.lang.String', 3);
strArray(1) = java.lang.String('one');
strArray(2) = java.lang.String('two');
strArray(3) = java.lang.String('three');

cellArray = cell(strArray)
cellArray =

'one'
'two'
'three'

See Also num2cell, ones, rand, randn, zeros

2-535

cell2mat

Purpose Convert cell array of matrices to single matrix

Syntax m = cell2mat(c)

Description m = cell2mat(c) converts a multidimensional cell array c with
contents of the same data type into a single matrix, m. The contents of c
must be able to concatenate into a hyperrectangle. Moreover, for each
pair of neighboring cells, the dimensions of the cells’ contents must
match, excluding the dimension in which the cells are neighbors.

The example shown below combines matrices in a 3-by-2 cell array into
a single 60-by-50 matrix:

cell2mat(c)

Remarks The dimensionality (or number of dimensions) of m will match the
highest dimensionality contained in the cell array.

cell2mat is not supported for cell arrays containing cell arrays or
objects.

Examples Combine the matrices in four cells of cell array C into the single matrix,
M:

C = {[1] [2 3 4]; [5; 9] [6 7 8; 10 11 12]}

2-536

cell2mat

C =
[1] [1x3 double]
[2x1 double] [2x3 double]

C{1,1} C{1,2}
ans = ans =

1 2 3 4

C{2,1} C{2,2}
ans = ans =

5 6 7 8
9 10 11 12

M = cell2mat(C)
M =

1 2 3 4
5 6 7 8
9 10 11 12

See Also mat2cell, num2cell

2-537

cell2struct

Purpose Convert cell array to structure array

Syntax s = cell2struct(c, fields, dim)

Description s = cell2struct(c, fields, dim) creates a structure array s from
the information contained within cell array c.

The fields argument specifies field names for the structure array.
fields can be a character array or a cell array of strings.

The dim argument controls which axis of the cell array is to be used
in creating the structure array. The length of c along the specified
dimension must match the number of fields named in fields. In other
words, the following must be true.

size(c,dim) == length(fields) % If fields is a cell array
size(c,dim) == size(fields,1) % If fields is a char array

Examples The cell array c in this example contains information on trees. The
three columns of the array indicate the common name, genus, and
average height of a tree.

c = {'birch', 'betula', 65; 'maple', 'acer', 50}
c =

'birch' 'betula' [65]
'maple' 'acer' [50]

To put this information into a structure with the fields name, genus, and
height, use cell2struct along the second dimension of the 2-by-3
cell array.

fields = {'name', 'genus', 'height'};
s = cell2struct(c, fields, 2);

This yields the following 2-by-1 structure array.

s(1) s(2)
ans = ans =

name: 'birch' name: 'maple'

2-538

cell2struct

genus: 'betula' genus: 'acer'
height: 65 height: 50

See Also struct2cell, cell, iscell, struct, isstruct, fieldnames, dynamic
field names

2-539

celldisp

Purpose Cell array contents

Syntax celldisp(C)
celldisp(C, name)

Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C, name) uses the string name for the display instead of the
name of the first input (or ans).

Examples Use celldisp to display the contents of a 2-by-3 cell array:

C = {[1 2] 'Tony' 3+4i; [1 2;3 4] -5 'abc'};
celldisp(C)

C{1,1} =
1 2

C{2,1} =
1 2
3 4

C{1,2} =
Tony

C{2,2} =
-5

C{1,3} =
3.0000+ 4.0000i

C{2,3} =
abc

See Also cellplot

2-540

cellfun

Purpose Apply function to each cell in cell array

Syntax A = cellfun(fun, C)
A = cellfun(fun, C, D, ...)
[A, B, ...] = cellfun(fun, C, ...)
[A, ...] = cellfun(fun, C, ..., 'param1', value1, ...)
A = cellfun('fname', C)
A = cellfun('size', C, k)
A = cellfun('isclass', C, 'classname')

Description A = cellfun(fun, C) applies the function specified by fun to the
contents of each cell of cell array C, and returns the results in array
A. The value A returned by cellfun is the same size as C, and the
(I,J,...)th element of A is equal to fun(C{I,J,...}). The first input
argument fun is a function handle to a function that takes one input
argument and returns a scalar value. fun must return values of the
same class each time it is called. The order in which cellfun computes
elements of A is not specified and should not be relied upon.

If fun is bound to more than one built-in or M-file (that is, if it
represents a set of overloaded functions), then the class of the values
that cellfun actually provides as input arguments to fun determines
which functions are executed.

A = cellfun(fun, C, D, ...) evaluates fun using the contents of
the cells of cell arrays C, D, ... as input arguments. The (I,J,...)th
element of A is equal to fun(C{I,J,...}, D{I,J,...}, ...). All
input arguments must be of the same size and shape.

[A, B, ...] = cellfun(fun, C, ...) evaluates fun, which is a
function handle to a function that returns multiple outputs, and returns
arrays A, B, ..., each corresponding to one of the output arguments of
fun. cellfun calls fun each time with as many outputs as there are in
the call to cellfun. fun can return output arguments having different
classes, but the class of each output must be the same each time fun
is called.

[A, ...] = cellfun(fun, C, ..., 'param1', value1, ...)
enables you to specify optional parameter name and value pairs.

2-541

cellfun

Parameters recognized by cellfun are shown below. Enclose each
parameter name with single quotes.

Parameter Name Parameter Value

UniformOutput Logical 1 (true) or 0 (false), indicating
whether or not the outputs of fun can be
returned without encapsulation in a cell
array. See “UniformOutput Parameter” on
page 2-542 below.

ErrorHandler Function handle, specifying the function that
cellfun is to call if the call to fun fails. See
“ErrorHandler Parameter” on page 2-542
below.

UniformOutput Parameter

If you set the UniformOutput parameter to true (the default), fun must
return scalar values that can be concatenated into an array. These
values can also be a cell array.

If UniformOutput is false, cellfun returns a cell array (or multiple
cell arrays), where the (I,J,...)th cell contains the value

fun(C{I,J,...}, ...)

ErrorHandler Parameter

The MATLAB software calls the function represented by the
ErrorHandler parameter with two input arguments:

• A structure having three fields, named identifier, message,
and index, respectively containing the identifier of the error that
occurred, the text of the error message, and a linear index into the
input array or arrays for which the error occurred

• The set of input arguments for which the call to the function failed

The error handling function must either rethrow the error that was
caught, or it must return the output values from the call to fun. Error

2-542

cellfun

handling functions that do not rethrow the error must have the same
number of outputs as fun. MATLAB places these output values in the
output variables used in the call to arrayfun.

Shown here is an example of a simple error handling function, errorfun:

function [A, B] = errorfun(S, varargin)
warning(S.identifier, S.message);
A = NaN; B = NaN;

If 'UniformOutput' is set to logical 1 (true), the outputs of the error
handler must be scalars and of the same data type as the outputs of
function fun.

If you do not specify an error handler, cellfun rethrows the error.

Backward Compatibility

The following syntaxes are also accepted for backward compatibility:

A = cellfun('fname', C) applies the function fname to the elements
of cell array C and returns the results in the double array A. Each
element of A contains the value returned by fname for the corresponding
element in C. The output array A is the same size as the cell array C.

These functions are supported:

Function Return Value

isempty true for an empty cell element
islogical true for a logical cell element
isreal true for a real cell element
length Length of the cell element
ndims Number of dimensions of the cell element
prodofsize Number of elements in the cell element

A = cellfun('size', C, k) returns the size along the kth dimension
of each element of C.

2-543

cellfun

A = cellfun('isclass', C, 'classname') returns logical 1 (true)
for each element of C that matches classname. This function syntax
returns logical 0 (false) for objects that are a subclass of classname.

Note For the previous three syntaxes, if C contains objects,
cellfun does not call any overloaded versions of MATLAB functions
corresponding to the above strings.

Examples Compute the mean of several data sets:

C = {1:10, [2; 4; 6], []};

Cmeans = cellfun(@mean, C)
Cmeans =

5.5000 4.0000 NaN

Compute the size of these data sets:

[Cnrows, Cncols] = cellfun(@size, C)
Cnrows =

1 3 0
Cncols =

10 1 0

Again compute the size, but with UniformOutput set to false:

Csize = cellfun(@size, C, 'UniformOutput', false)
Csize =

[1x2 double] [1x2 double] [1x2 double]

Csize{:}
ans =

1 10
ans =

3 1
ans =

2-544

cellfun

0 0

Find the positive values in several data sets.

C = {randn(10,1), randn(20,1), randn(30,1)};

Cpositives = cellfun(@(x) x(x>0), C, 'UniformOutput',false)
Cpositives =

[6x1 double] [11x1 double] [15x1 double]

Cpositives{:}
ans =

0.1253
0.2877
1.1909
etc.

ans =
0.7258
2.1832
0.1139
etc.

ans =
0.6900
0.8156
0.7119
etc.

Compute the covariance between several pairs of data sets:

C = {randn(10,1), randn(20,1), randn(30,1)};
D = {randn(10,1), randn(20,1), randn(30,1)};

CDcovs = cellfun(@cov, C, D, 'UniformOutput', false)
CDcovs =

[2x2 double] [2x2 double] [2x2 double]

CDcovs{:}
ans =

2-545

cellfun

0.7353 -0.2148
-0.2148 0.6080

ans =
0.5743 -0.2912

-0.2912 0.8505
ans =

0.7130 0.1750
0.1750 0.6910

See Also arrayfun, spfun, function_handle, cell2mat

2-546

cellplot

Purpose Graphically display structure of cell array

Syntax cellplot(c)
cellplot(c, 'legend')
handles = cellplot(c)

Description cellplot(c) displays a figure window that graphically represents
the contents of c. Filled rectangles represent elements of vectors and
arrays, while scalars and short text strings are displayed as text.

cellplot(c, 'legend') places a colorbar next to the plot labelled to
identify the data types in c.

handles = cellplot(c) displays a figure window and returns a vector
of surface handles.

Limitations The cellplot function can display only two-dimensional cell arrays.

Examples Consider a 2-by-2 cell array containing a matrix, a vector, and two text
strings:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

The command cellplot(c) produces

2-547

cellplot

2-548

cellstr

Purpose Create cell array of strings from character array

Syntax c = cellstr(S)

Description c = cellstr(S) places each row of the character array S into separate
cells of c. Any trailing spaces in the rows of S are removed.

Use the char function to convert back to a string matrix.

Examples Given the string matrix

S = ['abc '; 'defg'; 'hi ']

S =
abc
defg
hi

whos S
Name Size Bytes Class
S 3x4 24 char array

The following command returns a 3-by-1 cell array.

c = cellstr(S)

c =
'abc'
'defg'
'hi'

whos c
Name Size Bytes Class
c 3x1 294 cell array

See Also iscellstr, strings, char, isstrprop

2-549

cgs

Purpose Conjugate gradients squared method

Syntax x = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)
cgs(A,b,tol,maxit,M)
cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag] = cgs(A,b,...)
[x,flag,relres] = cgs(A,b,...)
[x,flag,relres,iter] = cgs(A,b,...)
[x,flag,relres,iter,resvec] = cgs(A,b,...)

Description x = cgs(A,b) attempts to solve the system of linear equations A*x = b
for x. The n-by-n coefficient matrix Amust be square and should be large
and sparse. The column vector bmust have length n. A can be a function
handle afun such that afun(x) returns A*x. See “Function Handles” in
the MATLAB Programming documentation for more information.

“Parametrizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function afun, as well as the preconditioner function mfun described
below, if necessary.

If cgs converges, a message to that effect is displayed. If cgs fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

cgs(A,b,tol) specifies the tolerance of the method, tol. If tol is [],
then cgs uses the default, 1e-6.

cgs(A,b,tol,maxit) specifies the maximum number of iterations,
maxit. If maxit is [] then cgs uses the default, min(n,20).

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then cgs applies no

2-550

cgs

preconditioner. M can be a function handle mfun such that mfun(x)
returns M\x.

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial guess x0. If x0 is
[], then cgs uses the default, an all-zero vector.

[x,flag] = cgs(A,b,...) returns a solution x and a flag that
describes the convergence of cgs.

Flag Convergence

0 cgs converged to the desired tolerance tol
within maxit iterations.

1 cgs iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 cgs stagnated. (Two consecutive iterates were

the same.)
4 One of the scalar quantities calculated during

cgs became too small or too large to continue
computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = cgs(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,iter] = cgs(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,...) also returns a vector
of the residual norms at each iteration, including norm(b-A*x0).

Examples Example

A = gallery('wilk',21);
b = sum(A,2);

2-551

cgs

tol = 1e-12; maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x = cgs(A,b,tol,maxit,M1);

displays the message

cgs converged at iteration 13 to a solution with relative residual
1.3e-016

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun, and the preconditioner M1 with a
handle to a backsolve function mfun. The example is contained in an
M-file run_cgs that

• Calls cgs with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_cgs
are available to afun and myfun.

The following shows the code for run_cgs:

function x1 = run_cgs
n = 21;
A = gallery('wilk',n);
b = sum(A,2);
tol = 1e-12; maxit = 15;
x1 = cgs(@afun,b,tol,maxit,@mfun);

function y = afun(x)
y = [0; x(1:n-1)] + ...

[((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
[x(2:n); 0];

end

function y = mfun(r)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

end

2-552

cgs

end

When you enter

x1 = run_cgs

MATLAB software returns

cgs converged at iteration 13 to a solution with relative residual
1.3e-016

Example 3

load west0479
A = west0479
b = sum(A,2)
[x,flag] = cgs(A,b)

flag is 1 because cgs does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5)
[x1,flag1] = cgs(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal,
and cgs fails in the first iteration when it tries to solve a system such
as U1*y = r for y with backslash.

[L2,U2] = luinc(A,1e-6)
[x2,flag2,relres2,iter2,resvec2] = cgs(A,b,1e-15,10,L2,U2)

flag2 is 0 because cgs converges to the tolerance of 6.344e-16 (the
value of relres2) at the fifth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(6) = norm(b-A*x2).
You can follow the progress of cgs by plotting the relative residuals at
each iteration starting from the initial estimate (iterate number 0) with

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')

2-553

cgs

ylabel('relative residual')

See Also bicg, bicgstab, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

function_handle (@), mldivide (\)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric
linear systems,” SIAM J. Sci. Stat. Comput., January 1989, Vol. 10,
No. 1, pp. 36-52.

2-554

char

Purpose Convert to character array (string)

Syntax S = char(X)
S = char(C)
S = char(t1, t2, t3, ...)

Description S = char(X) converts the array X that contains nonnegative integers
representing character codes into a MATLAB character array. The
actual characters displayed depend on the character encoding scheme
for a given font. The result for any elements of X outside the range from
0 to 65535 is not defined (and can vary from platform to platform). Use
double to convert a character array into its numeric codes.

S = char(C), when C is a cell array of strings, places each element of C
into the rows of the character array s. Use cellstr to convert back.

S = char(t1, t2, t3, ...) forms the character array S containing
the text strings T1, T2, T3, ... as rows, automatically padding each
string with blanks to form a valid matrix. Each text parameter, Ti, can
itself be a character array. This allows the creation of arbitrarily large
character arrays. Empty strings are significant.

Examples To print a 3-by-32 display of the printable ASCII characters,

ascii = char(reshape(32:127, 32, 3)')
ascii =

!"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
'abcdefghijklmnopqrstuvwxyz{|}~

See Also ischar, isletter, isspace, isstrprop, cellstr, iscellstr, get, set,
strings, strvcat, text

2-555

checkin

Purpose Check files into a source control system (UNIX platforms)

GUI
Alternatives

As an alternative to the checkin function, use File > Source
Control > Check In in the Editor, the Simulink® product, or the
Stateflow® product, or in the context menu of the Current Directory
browser. For more information, see “Checking Files Into the Source
Control System on UNIX Platforms”.

Syntax checkin('filename’,'comments','comment_text')
checkin({'filename1','filename2'},'comments','comment_text')
checkin('filename','comments', 'comment_text','option’,

'value')

Description checkin('filename’,'comments','comment_text') checks in the file
named filename to the source control system. Use the full path for
filename and include the file extension. You must save the file before
checking it in, but the file can be open or closed. The comment_text
argument is a MATLAB string containing checkin comments for the
source control system. You must supply comments and comment_text.

checkin({'filename1','filename2'},'comments','comment_text')
checks in the files filename1 through filenamen to the source control
system. Use the full paths for the files and include file extensions.
Comments apply to all files checked in.

checkin('filename','comments',
'comment_text','option’,'value') provides additional checkin
options. For multiple file names, use an array of strings instead of
filename, that is, {'filename1','filename2',...}. Options apply to
all file names. The option and value arguments are shown in the
following table.

option
Argument

value
Argument Purpose

'force' 'on' filename is checked in even if the file
has not changed since it was checked
out.

2-556

checkin

option
Argument

value
Argument Purpose

'force' 'off'
(default)

filename is not checked in if there
were no changes since checkout.

'lock' 'on' filename is checked in with
comments, and is automatically
checked out.

'lock' 'off'
(default)

filename is checked in with
comments but does not remain
checked out.

Examples Check In a File

Typing

checkin('/myserver/mymfiles/clock.m','comments',...
'Adjustment for leapyear')

checks the file /myserver/mymfiles/clock.m into the source control
system, with the comment Adjustment for leapyear.

Check In Multiple Files

Typing

checkin({'/myserver/mymfiles/clock.m', ...
'/myserver/mymfiles/calendar.m'},'comments',...
'Adjustment for leapyear')

checks the two files into the source control system, using the same
comment for each.

Check In a File and Keep It Checked Out

Typing

checkin('/myserver/mymfiles/clock.m','comments',...
'Adjustment for leapyear','lock','on')

2-557

checkin

checks the file /myserver/mymfiles/clock.m into the source control
system and keeps the file checked out.

See Also checkout, cmopts, undocheckout

For Microsoft Windows platforms, use verctrl.

2-558

checkout

Purpose Check files out of a source control system (UNIX platforms)

GUI
Alternatives

As an alternative to the checkout function, select Source
Control > Check Out from the File menu in the MATLAB Editor, the
Simulink product, or the Stateflow product, or in the context menu of
the Current Directory browser. For details, see “Checking Files Out of
the Source Control System on UNIX”.

Syntax checkout('filename')
checkout({'filename1','filename2', ...})
checkout('filename','option’,'value',...)

Description checkout('filename') checks out the file named filename from the
source control system. Use the full path for filename and include the
file extension. The file can be open or closed when you use checkout.

checkout({'filename1','filename2', ...}) checks out the files
named filename1 through filenamen from the source control system.
Use the full paths for the files and include the file extensions.

checkout('filename','option’,'value',...) provides additional
checkout options. For multiple file names, use an array of strings
instead of filename, that is, {'filename1','filename2', ...}.
Options apply to all file names. The option and value arguments are
shown in the following table.

option Argument value Argument Purpose

'force' 'on' The checkout is
forced, even if you
already have the
file checked out.
This is effectively
an undocheckout
followed by a
checkout.

2-559

checkout

option Argument value Argument Purpose

'force' 'off' (default) Prevents you from
checking out the file
if you already have it
checked out.

'lock' 'on' (default) The checkout gets
the file, allows you to
write to it, and locks
the file so that access
to the file for others is
read only.

'lock' 'off' The checkout gets a
read-only version of
the file, allowing
another user to
check out the file
for updating. You do
not have to check the
file in after checking
it out with this option.

’revision’ ’version_num’ Checks out the
specified revision
of the file.

If you end the MATLAB session, the file remains checked out. You
can check in the file from within the MATLAB desktop during a later
session, or directly from your source control system.

Examples Check Out a File

Typing

checkout('/myserver/mymfiles/clock.m')

checks out the file /myserver/mymfiles/clock.m from the source
control system.

2-560

checkout

Check Out Multiple Files

Typing

checkout({'/myserver/mymfiles/clock.m',...
'/myserver/mymfiles/calendar.m'})

checks out /matlab/mymfiles/clock.m and
/matlab/mymfiles/calendar.m from the source control system.

Force a Checkout, Even If File Is Already Checked Out

Typing

checkout('/myserver/mymfiles/clock.m','force','on')

checks out /matlab/mymfiles/clock.m even if clock.m is already
checked out to you.

Check Out Specified Revision of File

Typing

checkout('/matlab/mymfiles/clock.m','revision','1.1')

checks out revision 1.1 of clock.m.

See Also checkin, cmopts, undocheckout, customverctrl

For Microsoft Windows platforms, use verctrl.

2-561

chol

Purpose Cholesky factorization

Syntax R = chol(A)
L = chol(A,'lower')
[R,p] = chol(A)
[L,p] = chol(A,'lower')
[R,p,S] = chol(A)
[R,p,s] = chol(A,'vector')
[L,p,s] = chol(A,'lower','vector')

Description R = chol(A) produces an upper triangular matrix R from the diagonal
and upper triangle of matrix A, satisfying the equation R'*R=A. The
lower triangle is assumed to be the (complex conjugate) transpose of the
upper triangle. Matrix A must be positive definite; otherwise, MATLAB
software displays an error message.

L = chol(A,'lower') produces a lower triangular matrix L from the
diagonal and lower triangle of matrix A, satisfying the equation L*L'=A.
When A is sparse, this syntax of chol is typically faster. Matrix A must
be positive definite; otherwise MATLAB displays an error message.

[R,p] = chol(A) for positive definite A, produces an upper triangular
matrix R from the diagonal and upper triangle of matrix A, satisfying
the equation R'*R=A and p is zero. If A is not positive definite, then p
is a positive integer and MATLAB does not generate an error. When
A is full, R is an upper triangular matrix of order q=p-1 such that
R'*R=A(1:q,1:q). When A is sparse, R is an upper triangular matrix
of size q-by-n so that the L-shaped region of the first q rows and first q
columns of R'*R agree with those of A.

[L,p] = chol(A,'lower') for positive definite A, produces a lower
triangular matrix L from the diagonal and lower triangle of matrix A,
satisfying the equation L*L'=A and p is zero. If A is not positive definite,
then p is a positive integer and MATLAB does not generate an error.
When A is full, L is a lower triangular matrix of order q=p-1 such that
L*L'=A(1:q,1:q). When A is sparse, L is a lower triangular matrix of
size q-by-n so that the L-shaped region of the first q rows and first q
columns of L*L' agree with those of A.

2-562

chol

[R,p,S] = chol(A), when A is sparse, returns a permutation matrix
S. Note that the preordering S may differ from that obtained from amd
since chol will slightly change the ordering for increased performance.
When p=0, R is an upper triangular matrix such that R'*R=S'*A*S.
When p is not zero, R is an upper triangular matrix of size q-by-n so
that the L-shaped region of the first q rows and first q columns of R'*R
agree with those of S'*A*S. The factor of S'*A*S tends to be sparser
than the factor of A.

[R,p,s] = chol(A,'vector') returns the permutation information as
a vector s such that A(s,s)=R'*R, when p=0. You can use the 'matrix'
option in place of 'vector' to obtain the default behavior.

[L,p,s] = chol(A,'lower','vector') uses only the diagonal and
the lower triangle of A and returns a lower triangular matrix L and
a permutation vector s such that A(s,s)=L*L', when p=0. As above,
you can use the 'matrix' option in place of 'vector' to obtain a
permutation matrix.

For sparse A, CHOLMOD is used to compute the Cholesky factor.

Note Using chol is preferable to using eig for determining positive
definiteness.

Examples The binomial coefficients arranged in a symmetric array create an
interesting positive definite matrix.

n = 5;
X = pascal(n)
X =

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

2-563

chol

It is interesting because its Cholesky factor consists of the same
coefficients, arranged in an upper triangular matrix.

R = chol(X)
R =

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

Destroy the positive definiteness (and actually make the matrix
singular) by subtracting 1 from the last element.

X(n,n) = X(n,n)-1

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization fails.

Algorithm For full matrices X, chol uses the LAPACK routines listed in the
following table.

Real Complex

X double DPOTRF ZPOTRF
X single SPOTRF CPOTRF

For sparse matrices, MATLAB software uses CHOLMOD to compute
the Cholesky factor.

2-564

chol

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

[2] Davis, T. A., CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod), Dept. of
Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, 2005.

See Also cholinc, cholupdate

2-565

http://www.netlib.org/lapack/lug/lapack_lug.html
http://www.cise.ufl.edu/research/sparse/cholmod

cholinc

Purpose Sparse incomplete Cholesky and Cholesky-Infinity factorizations

Syntax R = cholinc(X,droptol)
R = cholinc(X,options)
R = cholinc(X,'0')
[R,p] = cholinc(X,'0')
R = cholinc(X,'inf')

Description cholinc produces two different kinds of incomplete Cholesky
factorizations: the drop tolerance and the 0 level of fill-in factorizations.
These factors may be useful as preconditioners for a symmetric positive
definite system of linear equations being solved by an iterative method
such as pcg (Preconditioned Conjugate Gradients). cholinc works only
for sparse matrices.

R = cholinc(X,droptol) performs the incomplete Cholesky
factorization of X, with drop tolerance droptol.

R = cholinc(X,options) allows additional options to the incomplete
Cholesky factorization. options is a structure with up to three fields:

droptol Drop tolerance of the incomplete factorization
michol Modified incomplete Cholesky
rdiag Replace zeros on the diagonal of R

Only the fields of interest need to be set.

droptol is a non-negative scalar used as the drop tolerance for the
incomplete Cholesky factorization. This factorization is computed by
performing the incomplete LU factorization with the pivot threshold
option set to 0 (which forces diagonal pivoting) and then scaling the
rows of the incomplete upper triangular factor, U, by the square root
of the diagonal entries in that column. Since the nonzero entries
U(i,j) are bounded below by droptol*norm(X(:,j)) (see luinc), the
nonzero entries R(i,j) are bounded below by the local drop tolerance
droptol*norm(X(:,j))/R(i,i).

2-566

cholinc

Setting droptol = 0 produces the complete Cholesky factorization,
which is the default.

michol stands for modified incomplete Cholesky factorization. Its value
is either 0 (unmodified, the default) or 1 (modified). This performs the
modified incomplete LU factorization of X and scales the returned upper
triangular factor as described above.

rdiag is either 0 or 1. If it is 1, any zero diagonal entries of the upper
triangular factor R are replaced by the square root of the local drop
tolerance in an attempt to avoid a singular factor. The default is 0.

R = cholinc(X,'0') produces the incomplete Cholesky factor of a real
sparse matrix that is symmetric and positive definite using no fill-in.
The upper triangular R has the same sparsity pattern as triu(X),
although R may be zero in some positions where X is nonzero due to
cancellation. The lower triangle of X is assumed to be the transpose of
the upper. Note that the positive definiteness of X does not guarantee
the existence of a factor with the required sparsity. An error message
results if the factorization is not possible. If the factorization is
successful, R'*R agrees with X over its sparsity pattern.

[R,p] = cholinc(X,'0') with two output arguments, never produces
an error message. If R exists, p is 0. If R does not exist, then p is a
positive integer and R is an upper triangular matrix of size q-by-n where
q = p-1. In this latter case, the sparsity pattern of R is that of the
q-by-n upper triangle of X. R'*R agrees with X over the sparsity pattern
of its first q rows and first q columns.

R = cholinc(X,'inf') produces the Cholesky-Infinity factorization.
This factorization is based on the Cholesky factorization, and
additionally handles real positive semi-definite matrices. It may be
useful for finding a solution to systems which arise in interior-point
methods. When a zero pivot is encountered in the ordinary Cholesky
factorization, the diagonal of the Cholesky-Infinity factor is set to Inf
and the rest of that row is set to 0. This forces a 0 in the corresponding
entry of the solution vector in the associated system of linear equations.
In practice, X is assumed to be positive semi-definite so even negative
pivots are replaced with a value of Inf.

2-567

cholinc

Remarks The incomplete factorizations may be useful as preconditioners
for solving large sparse systems of linear equations. A single 0 on
the diagonal of the upper triangular factor makes it singular. The
incomplete factorization with a drop tolerance prints a warning message
if the upper triangular factor has zeros on the diagonal. Similarly, using
the rdiag option to replace a zero diagonal only gets rid of the symptoms
of the problem, but it does not solve it. The preconditioner may not be
singular, but it probably is not useful, and a warning message is printed.

The Cholesky-Infinity factorization is meant to be used within
interior-point methods. Otherwise, its use is not recommended.

Examples Example 1

Start with a symmetric positive definite matrix, S.

S = delsq(numgrid('C',15));

S is the two-dimensional, five-point discrete negative Lapacian on the
grid generated by numgrid(’C’,15).

Compute the Cholesky factorization and the incomplete Cholesky
factorization of level 0 to compare the fill-in. Make S singular by zeroing
out a diagonal entry and compute the (partial) incomplete Cholesky
factorization of level 0.

C = chol(S);
R0 = cholinc(S,'0');
S2 = S; S2(101,101) = 0;
[R,p] = cholinc(S2,'0');

Fill-in occurs within the bands of S in the complete Cholesky factor, but
none in the incomplete Cholesky factor. The incomplete factorization
of the singular S2 stopped at row p = 101 resulting in a 100-by-139
partial factor.

D1 = (R0'*R0).*spones(S)-S;
D2 = (R'*R).*spones(S2)-S2;

2-568

cholinc

D1 has elements of the order of eps, showing that R0'*R0 agrees with S
over its sparsity pattern. D2 has elements of the order of eps over its
first 100 rows and first 100 columns, D2(1:100,:) and D2(:,1:100).

Example 2

The first subplot below shows that cholinc(S,0), the incomplete
Cholesky factor with a drop tolerance of 0, is the same as the Cholesky
factor of S. Increasing the drop tolerance increases the sparsity of the
incomplete factors, as seen below.

2-569

cholinc

Unfortunately, the sparser factors are poor approximations, as is seen
by the plot of drop tolerance versus norm(R'*R-S,1)/norm(S,1) in
the next figure.

2-570

cholinc

Example 3

The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically
positive definite:

H3 = hilb(3)
H3 =

1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

R3 = chol(H3)
R3 =

1.0000 0.5000 0.3333
0 0.2887 0.2887
0 0 0.0745

In practice, the Cholesky factorization breaks down for larger matrices:

H20 = sparse(hilb(20));

2-571

cholinc

[R,p] = chol(H20);
p =

14

For hilb(20), the Cholesky factorization failed in the computation
of row 14 because of a numerically zero pivot. You can use the
Cholesky-Infinity factorization to avoid this error. When a zero pivot is
encountered, cholinc places an Inf on the main diagonal, zeros out the
rest of the row, and continues with the computation:

Rinf = cholinc(H20,'inf');

In this case, all subsequent pivots are also too small, so the remainder
of the upper triangular factor is:

full(Rinf(14:end,14:end))
ans =

Inf 0 0 0 0 0 0
0 Inf 0 0 0 0 0
0 0 Inf 0 0 0 0
0 0 0 Inf 0 0 0
0 0 0 0 Inf 0 0
0 0 0 0 0 Inf 0
0 0 0 0 0 0 Inf

Limitations cholinc works on square sparse matrices only. For cholinc(X,'0')
and cholinc(X,'inf'), X must be real.

Algorithm R = cholinc(X,droptol) is obtained from [L,U] =
luinc(X,options), where options.droptol = droptol and
options.thresh = 0. The rows of the uppertriangular U are scaled
by the square root of the diagonal in that row, and this scaled factor
becomes R.

R = cholinc(X,options) is produced in a similar manner, except the
rdiag option translates into the udiag option and the milu option takes
the value of the michol option.

2-572

cholinc

R = cholinc(X,'0') is based on the “KJI” variant of the Cholesky
factorization. Updates are made only to positions which are nonzero
in the upper triangle of X.

R = cholinc(X,'inf') is based on the algorithm in Zhang [2].

See Also chol, ilu, luinc, pcg

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS
Publishing Company, 1996. Chapter 10, “Preconditioning Techniques”

[2] Zhang, Yin, Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment, Department of Mathematics
and Statistics, University of Maryland Baltimore County, Technical
Report TR96-01

2-573

cholupdate

Purpose Rank 1 update to Cholesky factorization

Syntax R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+')
R1 = cholupdate(R,x,'-')
[R1,p] = cholupdate(R,x,'-')

Description R1 = cholupdate(R,x) where R = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A +
x*x', where x is a column vector of appropriate length. cholupdate
uses only the diagonal and upper triangle of R. The lower triangle of R
is ignored.

R1 = cholupdate(R,x,'+') is the same as R1 = cholupdate(R,x).

R1 = cholupdate(R,x,'-') returns the Cholesky factor of A - x*x'.
An error message reports when R is not a valid Cholesky factor or when
the downdated matrix is not positive definite and so does not have
a Cholesky factorization.

[R1,p] = cholupdate(R,x,'-') will not return an error message. If p
is 0, R1 is the Cholesky factor of A - x*x’. If p is greater than 0, R1 is
the Cholesky factor of the original A. If p is 1, cholupdate failed because
the downdated matrix is not positive definite. If p is 2, cholupdate
failed because the upper triangle of R was not a valid Cholesky factor.

Remarks cholupdate works only for full matrices.

Example A = pascal(4)
A =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

R = chol(A)
R =

2-574

cholupdate

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

x = [0 0 0 1]';

This is called a rank one update to A since rank(x*x') is 1:

A + x*x'
ans =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'),
we can use cholupdate:

R1 = cholupdate(R,x)
R1 =

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix
singular) by subtracting 1 from the last element of A. The downdated
matrix is:

A - x*x'
ans =

1 1 1 1
1 2 3 4

2-575

cholupdate

1 3 6 10
1 4 10 19

Compare chol with cholupdate:

R1 = chol(A-x*x')
??? Error using ==> chol
Matrix must be positive definite.
R1 = cholupdate(R,x,'-')
??? Error using ==> cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky
factor:

x = [0 0 0 1/sqrt(2)]';
R1 = cholupdate(R,x,'-')
R1 =

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 0.7071

Algorithm cholupdate uses the algorithms from the LINPACK subroutines ZCHUD
and ZCHDD. cholupdate is useful since computing the new Cholesky
factor from scratch is an algorithm, while simply updating the
existing factor in this way is an algorithm.

See Also chol, qrupdate

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart,
LINPACK Users’ Guide, SIAM, Philadelphia, 1979.

2-576

circshift

Purpose Shift array circularly

Syntax B = circshift(A,shiftsize)

Description B = circshift(A,shiftsize) circularly shifts the values in the array, A,
by shiftsize elements. shiftsize is a vector of integer scalars where
the n-th element specifies the shift amount for the n-th dimension of
array A. If an element in shiftsize is positive, the values of A are
shifted down (or to the right). If it is negative, the values of A are shifted
up (or to the left). If it is 0, the values in that dimension are not shifted.

Example Circularly shift first dimension values down by 1.

A = [1 2 3;4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

B = circshift(A,1)
B =

7 8 9
1 2 3
4 5 6

Circularly shift first dimension values down by 1 and second dimension
values to the left by 1.

B = circshift(A,[1 -1]);
B =

8 9 7
2 3 1
5 6 4

See Also fftshift, shiftdim

2-577

cla

Purpose Clear current axes

GUI
Alternatives

Remove axes and clear objects from them in plot edit mode. For
details, see “Working in Plot Edit Mode” in the MATLAB Graphics
documentation.

Syntax cla
cla reset
cla(ax)
cla(ax,'reset')

Description cla deletes from the current axes all graphics objects whose handles
are not hidden (i.e., their HandleVisibility property is set to on).

cla reset deletes from the current axes all graphics objects regardless
of the setting of their HandleVisibility property and resets all axes
properties, except Position and Units, to their default values.

cla(ax) or cla(ax,'reset') clears the single axes with handle ax.

Remarks The cla command behaves the same way when issued on the command
line as it does in callback routines — it does not recognize the
HandleVisibility setting of callback. This means that when issued
from within a callback routine, cla deletes only those objects whose
HandleVisibility property is set to on.

See Also clf, hold, newplot, reset

“Axes Operations” on page 1-100 for related functions

2-578

clabel

Purpose Contour plot elevation labels

Syntax clabel(C,h)
clabel(C,h,v)
clabel(C,h,'manual')
clabel(C)
clabel(C,v)
clabel(C,'manual')
text_handles = clabel(...)
clabel(...,'PropertyName',propertyvalue,...)
clabel(...'LabelSpacing',points)

Description The clabel function adds height labels to a 2-D contour plot.

clabel(C,h) rotates the labels and inserts them in the contour lines.
The function inserts only those labels that fit within the contour,
depending on the size of the contour.

clabel(C,h,v) creates labels only for those contour levels given in
vector v, then rotates the labels and inserts them in the contour lines.

clabel(C,h,'manual') places contour labels at locations you select
with a mouse. Press the left mouse button (the mouse button on a
single-button mouse) or the space bar to label a contour at the closest
location beneath the center of the cursor. Press the Return key while
the cursor is within the figure window to terminate labeling. The labels
are rotated and inserted in the contour lines.

clabel(C) adds labels to the current contour plot using the contour
array C output from contour. The function labels all contours displayed
and randomly selects label positions.

clabel(C,v) labels only those contour levels given in vector v.

clabel(C,'manual') places contour labels at locations you select with
a mouse.

text_handles = clabel(...) returns the handles of text objects
created by clabel. The UserData properties of the text objects contain
the contour values displayed. If you call clabel without the h argument,

2-579

clabel

text_handles also contains the handles of line objects used to create
the '+' symbols.

clabel(...,'PropertyName',propertyvalue,...) enables you to
specify text object property/value pairs for the label strings. (See Text
Properties.)

clabel(...'LabelSpacing',points) specifies the spacing between
labels on the same contour line, in units of points (72 points equal one
inch).

Remarks When the syntax includes the argument h, this function rotates the
labels and inserts them in the contour lines (see Examples). Otherwise,
the labels are displayed upright and a '+' indicates which contour line
the label is annotating.

Examples Generate, draw, and label a simple contour plot.

[x,y] = meshgrid(-2:.2:2);
z = x.^exp(-x.^2-y.^2);
[C,h] = contour(x,y,z);
clabel(C,h);

2-580

clabel

Label a contour plot with label spacing set to 72 points (one inch).

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h,'LabelSpacing',72)

2-581

clabel

Label a contour plot with 15 point red text.

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h,'FontSize',15,'Color','r','Rotation',0)

2-582

clabel

Label a contour plot with upright text and '+' symbols indicating which
contour line each label annotates.

[x,y,z] = peaks;
C = contour(x,y,z);
clabel(C)

2-583

clabel

See Also contour, contourc, contourf

“Annotating Plots” on page 1-91 for related functions

“Drawing Text in a Box” for an example that illustrates the use of
contour labels

2-584

class

Purpose Create object or return class of object

Syntax str = class(object)
obj = class(s,'class_name')
obj = class(s,'class_name',parent1,parent2,...)
obj = class(struct([]),'class_name',parent1,parent2,...)
obj_struct = class(struct_array,'class_name',parent_array)

Description str = class(object) returns a string specifying the class of object.

The following table lists the class names that can be returned. All
except the last one are MATLAB classes.

logical Logical array of true and false values
char Character array
int8 8-bit signed integer array
uint8 8-bit unsigned integer array
int16 16-bit signed integer array
uint16 16-bit unsigned integer array
int32 32-bit signed integer array
uint32 32-bit unsigned integer array
int64 64-bit signed integer array
uint64 64-bit unsigned integer array
single Single-precision floating-point number array
double Double-precision floating-point number array
cell Cell array
struct Structure array
function_handle Array of values for calling functions indirectly

2-585

class

’class_name’ User–defined MATLAB class

’Java_class_name’ Java class

Using the class function within a class constructor (prior to
MATLAB Version 7.6)

The following usage of the class function is restricted to pre MATLAB
Version 7.6 class constructors (classes defined without a classdef
statement). It can be used only within a function named class_name.m,
which is in a directory named @class_name (where class_name is the
same as the string passed to class and is the name of the class being
constructed).

See “Class Constructor Methods” for information on implementing class
constructor methods in MATLAB Version 7.6 and after.

obj = class(s,'class_name') creates an array of class class_name
objects using the struct s as a pattern to determine the size of obj.

obj = class(s,'class_name',parent1,parent2,...) creates an
array of class class_name objects that inherit the methods and fields
of the parent objects parent1, parent2, and so on. The struct s is
used as a pattern to determine the size of obj. The size of the parent
objects must match the size of s or be a scalar (1–by-1), in which case,
MATLAB performs scalar expansion.

obj = class(struct([]),'class_name',parent1,parent2,...)
creates an array of class class_name objects that inherits the methods
and fields of the parent objects parent1, parent2, and so on. Specifying
the empty structure struct([]) as the first argument ensures that the
object created contains no fields other than those that are inherited
from the parent objects. All parents must have the same, nonzero size,
which determines the size of the returned object obj.

Arrays of objects

obj_struct = class(struct_array,'class_name',parent_array)
struct_array is an array of structs and parent_array is an array

2-586

class

of parent objects. Every element of the parent_array is mapped to
a corresponding element in the struct_array to produce the output
array of objects, obj_struct. All arrays must be of the same size or,
if either the struct_array or the parent_array is of size 1–by1, then
MATLAB performs scalar expansion to match the array sizes.

Note that you can create an object array of size 0–by-0 by setting the
size of the struct_array and parent_array to 0–by-0.

Examples To return in nameStr the class of Java object j,

nameStr = class(j)

Obtain the full name of a package-based Java class,

import java.lang.*;
obj = String('mystring');
class(obj)

See Also inferiorto, isa, struct, superiorto

Object-Oriented Programming

2-587

classdef

Purpose Class definition key words

Syntax classdef
properties
methods
events

Description classdef begins the class definition, which is terminated by an end key
word. Only blank lines and comments can precede classdef. You must
place a class definition in a file having the same name as the class, with
a filename extension of .m. Class definition M-files can be in directories
on the MATLAB path or in @ directories whose parent directory is on
the MATLAB path. See “Class Directories” for more information.

See “The Classdef Block” and “Defining Classes — Syntax” for more
information on classes.

properties begins a property definition block, which is terminated
by an end key word. Class definitions can contain multiple property
definition blocks, each specifying different attribute settings that apply
to the properties in that particular block.

See “Defining Properties” for more information.

methods begins a methods definition block, which is terminated by
an end key word. This block contains functions that implement class
methods. Class definitions can contain multiple method blocks, each
specifying different attribute settings that apply to the methods in
that particular block. It is possible for method functions to be defined
in separate files.

See “Class Methods” for more information.

events begins an events definition block, which is terminated by an end
key word. This block contains event names defined by the class. Class
definitions can contain multiple event blocks, each specifying different
attribute settings that apply to the events in that particular block.

See “Defining Events and Listeners — Syntax and Techniques” for more
information.

2-588

classdef

Table of Attributes

Display the attributes of all class component in a popup window, click
this link: Attribute Tables

Examples Here is the basic structure of a class definition.

classdef class_name
properties

PropertyName
end
methods

function obj = methodName(obj,arg2,...)
...

end
end
events

EventName
end

end

See Also Object-Oriented Programming

2-589

clc

Purpose Clear Command Window

GUI
Alternatives

As an alternative to the clc function, select Edit > Clear Command
Window in the MATLAB desktop.

Syntax clc

Description clc clears all input and output from the Command Window display,
giving you a “clean screen.”

After using clc, you cannot use the scroll bar to see the history of
functions, but you still can use the up arrow to recall statements from
the command history.

Examples Use clc in an M-file to always display output in the same starting
position on the screen.

See Also clear, clf, close, home

2-590

clear

Purpose Remove items from workspace, freeing up system memory

Graphical
Interface

As an alternative to the clear function, use Edit > Clear Workspace
in the MATLAB desktop.

Syntax clear
clear name
clear name1 name2 name3 ...
clear global name
clear -regexp expr1 expr2 ...
clear global -regexp expr1 expr2 ...
clear keyword
clear('name1','name2','name3',...)

Description clear removes all variables from the workspace. This frees up system
memory.

clear name removes just the M-file or MEX-file function or variable
name from the workspace. You can use wildcards (*) to remove items
selectively. For example, clear my* removes any variables whose
names begin with the string my. It removes debugging breakpoints in
M-files and reinitializes persistent variables, since the breakpoints for
a function and persistent variables are cleared whenever the M-file is
changed or cleared. If name is global, it is removed from the current
workspace, but left accessible to any functions declaring it global. If
name has been locked by mlock, it remains in memory.

Use a partial path to distinguish between different overloaded
versions of a function. For example, clear polynom/display clears
only the display method for polynom objects, leaving any other
implementations in memory.

clear name1 name2 name3 ... removes name1, name2, and name3
from the workspace.

clear global name removes the global variable name. If name is global,
clear name removes name from the current workspace, but leaves it

2-591

clear

accessible to any functions declaring it global. Use clear global name
to completely remove a global variable.

clear -regexp expr1 expr2 ... clears all variables that match any
of the regular expressions expr1, expr2, etc. This option only clears
variables.

clear global -regexp expr1 expr2 ... clears all global variables
that match any of the regular expressions expr1, expr2, etc.

clear keyword clears the items indicated by keyword.

Keyword Items Cleared

all Removes all variables, functions, and MEX-files
from memory, leaving the workspace empty.
Using clear all removes debugging breakpoints
in M-files and reinitializes persistent variables,
since the breakpoints for a function and persistent
variables are cleared whenever the M-file is
changed or cleared. When issued from the
Command Window prompt, also removes the Sun
Microsystems Java packages import list.

classes The same as clear all, but also clears MATLAB
class definitions. If any objects exist outside the
workspace (for example, in user data or persistent
variables in a locked M-file), a warning is issued
and the class definition is not cleared. Issue a
clear classes function if the number or names of
fields in a class are changed.

functions Clears all the currently compiled M-functions
and MEX-functions from memory. Using clear
function removes debugging breakpoints in
the function M-file and reinitializes persistent
variables, since the breakpoints for a function
and persistent variables are cleared whenever the
M-file is changed or cleared.

2-592

clear

Keyword Items Cleared

global Clears all global variables from the workspace.
import Removes the Java packages import list. It can only

be issued from the Command Window prompt. It
cannot be used in a function.

java The same as clear all, but also clears the
definitions of all Java classes defined by files on
the Java dynamic class path (see “The Java Class
Path” in the External Interfaces documentation).
If any Java objects exist outside the workspace (for
example, in user data or persistent variables in a
locked M-file), a warning is issued and the Java
class definition is not cleared. Issue a clear java
command after modifying any files on the Java
dynamic class path.

variables Clears all variables from the workspace.

clear('name1','name2','name3',...) is the function form of the
syntax. Use this form when the variable name or function name is
stored in a string.

Remarks When you use clear in a function, it has the following effect on items in
your function and base workspaces:

• clear name — If name is the name of a function, the function is
cleared in both the function workspace and in your base workspace.

• clear functions — All functions are cleared in both the function
workspace and in your base workspace.

• clear global— All global variables are cleared in both the function
workspace and in your base workspace.

• clear all — All functions and global variables are cleared in both
the function workspace and in your base workspace.

2-593

clear

Limitations On UNIX2 systems, clear does not affect the amount of memory
allocated to the MATLAB process.

The clear function does not clear Simulink models. Use close instead.

Examples Given a workspace containing the following variables

Name Size Bytes Class

c 3x4 1200 cell array
frame 1x1 java.awt.Frame
gbl1 1x1 8 double array (global)
gbl2 1x1 8 double array (global)
xint 1x1 1 int8 array

you can clear a single variable, xint, by typing

clear xint

To clear all global variables, type

clear global
whos

Name Size Bytes Class

c 3x4 1200 cell array
frame 1x1 java.awt.Frame

Using regular expressions, clear those variables with names that begin
with Mon, Tue, or Wed:

clear('-regexp', '^Mon|^Tue|^Wed');

To clear all compiled M- and MEX-functions from memory, type clear
functions. In the case shown below, clear functions was unable to

2. is a registered trademark of The Open Group in the United States and other
countries

2-594

clear

clear one M-file function from memory, testfun, because the function is
locked.

clear functions % Attempt to clear all functions.

inmem

ans =
'testfun' % One M-file function remains in memory.

mislocked testfun
ans =

1 % This function is locked in memory.

Once you unlock the function from memory, you can clear it.

munlock testfun
clear functions

inmem
ans =

Empty cell array: 0-by-1

See Also clc, clearvars, close, import, inmem, load, mlock, munlock, pack,
persistent, save, who, whos, workspace

“MATLAB Workspace” in the Desktop Tools and Development
Environment documentation

2-595

clearvars

Purpose Clear variables from memory

Graphical
Interface

As an alternative to the clearvars function, in the Workspace browser,
select variables to clear and then press Delete.

Syntax clearvars v1 v2 ...
clearvars -global
clearvars -global v1 v2 ...
clearvars -regexp p1 p2 ...
clearvars -except v1 v2 ...
clearvars -except -regexp p1 p2 ...
clearvars v1 v2 ... -except -regexp p1 p2 ...
clearvars -regexp p1 p2 ... -except v1 v2 ...

Description clearvars v1 v2 ... clears variables v1, v2, and so on from the
currently active workspace. Each input must be an unquoted string
specifying the variable to be cleared. This string may include the
wildcard character (*) to clear all variables that match a pattern.
For example, clearvars X* clears all the variables in the current
workspace that start with the letter X.

If any of the variables v1, v2, and so on, are global, clearvars
removes these variables from the current workspace only, leaving them
accessible to any functions that declare them as global.

clearvars -global removes all global variables, including those made
global within functions.

clearvars -global v1 v2 ... completely removes the specified
global variables.

The -global flag may be used with any of the following syntaxes. When
used in this way, it must immediately follow the function name.

clearvars -regexp p1 p2 ... clears all variables that match regular
expression patterns p1, p2, and so on.

clearvars -except v1 v2 ... clears all variables except for those
specified following the -except flag. Use the wildcard character ’*’

2-596

clearvars

in a variable name to exclude variables that match a pattern from
being cleared. clearvars -except X* clears all the variables in the
current workspace, except for those that start with X, for instance. Use
clearvars -except to keep the variables you want and remove all
others.

clearvars -except -regexp p1 p2 ... clears all variables except
those that regular expression patterns p1, p2. If used in this way, the
-regexp flag must immediately follow the -except flag.

clearvars v1 v2 ... -except -regexp p1 p2 ... can be used to
specify variables to clear that do not match specified regular expression
patterns.

clearvars -regexp p1 p2 ... -except v1 v2 ... clears variables
that match p1, p2, ..., except for variables v1, v2, ...

Examples Clear variables starting with a, except for the variable ab:

clearvars a* -except ab

Clear all global variables except those starting with x:

clearvars -global -except x*

Clear variables that start with b and are followed by 3 digits, for the
variable b106:

clearvars -regexp ^b\d{3}$ -except b106

Clear variables that start with a, except those ending with a:

clearvars a* -except -regexp a$

See Also clear, exist, global, persistent, save, who, whos

“MATLAB Workspace” in the Desktop Tools and Development
Environment documentation

2-597

clear (serial)

Purpose Remove serial port object from MATLAB workspace

Syntax clear obj

Description clear obj removes obj from the MATLAB workspace, where obj is a
serial port object or an array of serial port objects.

Remarks If obj is connected to the device and it is cleared from the workspace,
then obj remains connected to the device. You can restore obj to the
workspace with the instrfind function. A serial port object connected
to the device has a Status property value of open.

To disconnect obj from the device, use the fclose function. To remove
obj from memory, use the delete function. You should remove invalid
serial port objects from the workspace with clear.

Example This example creates the serial port object s, copies s to a new variable
scopy, and clears s from the MATLAB workspace. s is then restored to
the workspace with instrfind and is shown to be identical to scopy.

s = serial('COM1');
scopy = s;
clear s
s = instrfind;
isequal(scopy,s)
ans =

1

See Also Functions

delete, fclose, instrfind, isvalid

Properties

Status

2-598

clf

Purpose Clear current figure window

GUI
Alternatives

Use Clear Figure from the figure window’s File menu to clear the
contents of a figure. You can also create a desktop shortcut to clear the
current figure with one mouse click. See “MATLAB Shortcuts — Easily
Run a Group of Statements” in the MATLAB Desktop Environment
documentation.

Syntax clf('reset')
clf(fig)
clf(fig,'reset')
figure_handle = clf(...)

Description clf deletes from the current figure all graphics objects whose handles
are not hidden (i.e., their HandleVisibility property is set to on).

clf('reset') deletes from the current figure all graphics objects
regardless of the setting of their HandleVisibility property and resets
all figure properties except Position, Units, PaperPosition, and
PaperUnits to their default values.

clf(fig) or clf(fig,'reset') clears the single figure with handle fig.

figure_handle = clf(...) returns the handle of the figure. This
is useful when the figure IntegerHandle property is off because the
noninteger handle becomes invalid when the reset option is used (i.e.,
IntegerHandle is reset to on, which is the default).

Remarks The clf command behaves the same way when issued on the command
line as it does in callback routines — it does not recognize the
HandleVisibility setting of callback. This means that when issued
from within a callback routine, clf deletes only those objects whose
HandleVisibility property is set to on.

See Also cla, clc, hold, reset

“Figure Windows” on page 1-99 for related functions

2-599

clipboard

Purpose Copy and paste strings to and from system clipboard

Graphical
Interface

As an alternative to clipboard, use the Import Wizard. To use the
Import Wizard to copy data from the clipboard, select Paste to
Workspace from the Edit menu.

Syntax clipboard('copy', data)
str = clipboard('paste')
data = clipboard('pastespecial')

Description clipboard('copy', data) sets the clipboard contents to data. If data
is not a character array, the clipboard uses mat2str to convert it to a
string.

str = clipboard('paste') returns the current contents of the
clipboard as a string or as an empty string (' '), if the current clipboard
contents cannot be converted to a string.

data = clipboard('pastespecial') returns the current contents of
the clipboard as an array using uiimport.

Note The clipboard function requires Sun Microsystems Java
software.

See Also load, uiimport

2-600

clock

Purpose Current time as date vector

Syntax c = clock

Description c = clock returns a 6-element date vector containing the current date
and time in decimal form:

[year month day hour minute seconds]

The sixth element of the date vector output (seconds) is accurate to
several digits beyond the decimal point. The statement fix(clock)
rounds to integer display format.

Remarks When timing the duration of an event, use the tic and toc functions
instead of clock or etime. These latter two functions are based on the
system time which can be adjusted periodically by the operating system
and thus might not be reliable in time comparison operations.

See Also cputime, datenum, datevec, now, etime, tic, toc

2-601

close

Purpose Remove specified figure

Syntax close
close(h)
close name
close all
close all hidden
status = close(...)

Description close deletes the current figure or the specified figure(s). It optionally
returns the status of the close operation.

close deletes the current figure (equivalent to close(gcf)).

close(h) deletes the figure identified by h. If h is a vector or matrix,
clse deletes all figures identified by h.

close name deletes the figure with the specified name.

close all deletes all figures whose handles are not hidden.

close all hidden deletes all figures including those with hidden
handles.

status = close(...) returns 1 if the specified windows have been
deleted and 0 otherwise.

Remarks The close function works by evaluating the specified figure’s
CloseRequestFcn property with the statement

eval(get(h,'CloseRequestFcn'))

The default CloseRequestFcn, closereq, deletes the current figure
using delete(get(0,'CurrentFigure')). If you specify multiple figure
handles, close executes each figure’s CloseRequestFcn in turn. If an
error that terminates the execution of a CloseRequestFcn occurs, the
figure is not deleted. Note that using your computer’s window manager
(i.e., the Close menu item) also calls the figure’s CloseRequestFcn.

2-602

close

If a figure’s handle is hidden (i.e., the figure’s HandleVisibility
property is set to callback or off and the root ShowHiddenHandles
property is set to on), you must specify the hidden option when trying
to access a figure using the all option.

To delete all figures unconditionally, use the statements

set(0,'ShowHiddenHandles','on')
delete(get(0,'Children'))

The delete function does not execute the figure’s CloseRequestFcn; it
simply deletes the specified figure.

The figure CloseRequestFcn allows you to either delay or abort the
closing of a figure once the close function has been issued. For
example, you can display a dialog box to see if the user really wants to
delete the figure or save and clean up before closing.

See Also delete, figure, gcf

The figure HandleVisibility property

The root ShowHiddenHandles property

“Figure Windows” on page 1-99 for related functions

2-603

close (avifile)

Purpose Close Audio/Video Interleaved (AVI) file

Syntax aviobj = close(aviobj)

Description aviobj = close(aviobj) finishes writing and closes the AVI file
associated with aviobj, which is an AVI file object created using the
avifile function.

See Also avifile, addframe, movie2avi

2-604

close (ftp)

Purpose Close connection to FTP server

Syntax close(f)

Description close(f) closes the connection to the FTP server, represented by object
f, which was created using ftp. Be sure to use close after completing
work on the server. If you do not run close, the connection will be
terminated automatically either because of the server’s time-out feature
or by exiting MATLAB.

Examples Connect to the MathWorks FTP server and then disconnect.

tmw=ftp('ftp.mathworks.com');
close(tmw)

See Also ftp

2-605

closereq

Purpose Default figure close request function

Syntax closereq

Description closereq deletes the current figure.

See Also The figure CloseRequestFcn property

“Figure Windows” on page 1-99 for related functions

2-606

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/figure_props.html%23CloseRequestFcn

cmopts

Purpose Name of source control system

GUI
Alternatives

As an alternative to cmopts, select
File > Preferences > General > Source Control to view the
currently selected source control system.

Syntax cmopts

Description cmopts displays the name of the source control system you selected
using preferences, which is one of the following:

• clearcase (UNIX platforms only)

• customverctrl (UNIX platforms only)

• cvs (UNIX platforms only)

• pvcs (UNIX platforms only, used for PVCS® and ChangeMan®
software)

• rcs (UNIX platforms only)

• sourcesafe (Windows platforms only)

If you have not selected a source control system, cmopts displays

none

For more information, see “Specify Source Control System with
MATLAB Software” for PC platforms, and “Specifying the Source
Control System on UNIX Platforms” for UNIX platforms in the
MATLAB Desktop Tools and Development Environment documentation.

Examples Type

cmopts

and MATLAB returns

ans =

2-607

cmopts

Microsoft Visual SourceSafe

which is the source control system specified in preferences.

See Also checkin, checkout, customverctrl, verctrl

2-608

colamd

Purpose Column approximate minimum degree permutation

Syntax p = colamd(S)

Description p = colamd(S) returns the column approximate minimum degree
permutation vector for the sparse matrix S. For a non-symmetric matrix
S, S(:,p) tends to have sparser LU factors than S. The Cholesky
factorization of S(:,p)' * S(:,p) also tends to be sparser than that
of S'*S.

knobs is a two-element vector. If S is m-by-n, then rows with more
than (knobs(1))*n entries are ignored. Columns with more than
(knobs(2))*m entries are removed prior to ordering, and ordered last in
the output permutation p. If the knobs parameter is not present, then
knobs(1) = knobs(2) = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and
the validity of the matrix S.

stats(1) Number of dense or empty rows ignored by
colamd

stats(2) Number of dense or empty columns ignored by
colamd

stats(3) Number of garbage collections performed on the
internal data structure used by colamd (roughly
of size 2.2*nnz(S) + 4*m + 7*n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid
stats(5) Rightmost column index that is unsorted or

contains duplicate entries, or 0 if no such
column exists

2-609

colamd

stats(6) Last seen duplicate or out-of-order row index in
the column index given by stats(5), or 0 if no
such row index exists

stats(7) Number of duplicate and out-of-order row
indices

Although MATLAB built-in functions generate valid sparse matrices,
a user may construct an invalid sparse matrix using the MATLAB C
or Fortran APIs and pass it to colamd. For this reason, colamd verifies
that S is valid:

• If a row index appears two or more times in the same column, colamd
ignores the duplicate entries, continues processing, and provides
information about the duplicate entries in stats(4:7).

• If row indices in a column are out of order, colamd sorts each column
of its internal copy of the matrix S (but does not repair the input
matrix S), continues processing, and provides information about the
out-of-order entries in stats(4:7).

• If S is invalid in any other way, colamd cannot continue. It prints an
error message, and returns no output arguments (p or stats) .

The ordering is followed by a column elimination tree post-ordering.

Examples The Harwell-Boeing collection of sparse matrices and the MATLAB
demos directory include a test matrix west0479. It is a matrix of order
479 resulting from a model due to Westerberg of an eight-stage chemical
distillation column. The spy plot shows evidence of the eight stages.
The colamd ordering scrambles this structure.

load west0479
A = west0479;
p = colamd(A);
subplot(1,2,1), spy(A,4), title('A')
subplot(1,2,2), spy(A(:,p),4), title('A(:,p)')

2-610

colamd

Comparing the spy plot of the LU factorization of the original matrix
with that of the reordered matrix shows that minimum degree reduces
the time and storage requirements by better than a factor of 2.8. The
nonzero counts are 16777 and 5904, respectively.

spy(lu(A),4)
spy(lu(A(:,p)),4)

2-611

colamd

See Also colperm, spparms, symamd, symrcm

References [1] The authors of the code for “colamd” are Stefan I. Larimore
and Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,
Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

2-612

http://www.cise.ufl.edu/research/sparse/%0D

colorbar

Purpose Colorbar showing color scale

GUI
Alternatives

Add a colorbar to a plot with the colorbar tool on the figure toolbar,
or use Insert —> Colorbar from the figure menu. Use the Property
Editor to modify the position, font and other properties of a legend. .
For details, see “Working in Plot Edit Mode” in the MATLAB Graphics
documentation.

Syntax colorbar
colorbar('off')
colorbar('hide')
colorbar('delete')
colorbar(...,'peer',axes_handle)
colorbar(...,'location')
colorbar(...,'PropertyName',propertyvalue)
cbar_axes = colorbar(...)
colorbar(cbar_handle,'off')
colorbar(cbar_handle,'hide')
colorbar(cbar_handle,'delete')
colorbar(cbar_handle, PropertyName',propertyvalue,...)

Description The colorbar function displays the current colormap in the current
figure and resizes the current axes to accommodate the colorbar.

colorbar adds a new vertical colorbar on the right side of the current
axes. If a colorbar exists in that location, colorbar replaces it with a
new one. If a colorbar exists at a nondefault location, it is retained
along with the new colorbar.

colorbar('off'), colorbar('hide'), and colorbar('delete')
delete all colorbars associated with the current axes.

colorbar(...,'peer',axes_handle) creates a colorbar associated
with the axes axes_handle instead of the current axes.

colorbar(...,'location') adds a colorbar in the specified orientation
with respect to the axes. If a colorbar exists at the location specified,

2-613

colorbar

it is replaced. Any colorbars not occupying the specified location are
retained. Possible values for location are

North Inside plot box near top
South Inside bottom
East Inside right
West Inside left
NorthOutside Outside plot box near top
SouthOutside Outside bottom
EastOutside Outside right
WestOutside Outside left

Using one of the ...Outside values for location ensures that the
colorbar does not overlap the plot, whereas overlaps can occur when you
specify any of the other four values.

colorbar(...,'PropertyName',propertyvalue) specifies property
names and values for the axes object used to create the colorbar. See
Axes Properties for a description of the properties you can set. The
location property applies only to colorbars and legends, not to axes.

cbar_axes = colorbar(...) returns a handle to a new colorbar
object, which is a child of the current figure. If a colorbar exists, a new
one is still created.

colorbar(cbar_handle,'off'), colorbar(cbar_handle,'hide'),
and colorbar(cbar_handle,'delete') delete the colorbar specified
by cbar_handle.

colorbar(cbar_handle, PropertyName',propertyvalue,...) sets
properties for the existing colorbar having the handle cbar_handle. To
obtain the handle to an existing colorbar, use the command

cbar_handle = findobj(figure_handle,'tag','Colorbar')

2-614

colorbar

where figure_handle is the handle of the figure containing the colorbar
you want to modify. If the figure contains more than one colorbar,
cbar_handle is returned as a vector, and you must choose which of
the handles to specify to colorbar.

Backward-Compatible Version

h = colorbar('v6',...) creates a colorbar compatible with MATLAB
6.5 and earlier. It returns the handles of patch objects instead of a
colorbar object.

Note The v6 option enables MATLAB Version 7.x users to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks You can use colorbar with 2-D and 3-D plots.

Examples Example 1

Display a colorbar beside the axes and use descriptive text strings as
y-tick labels. Note that labels will repeat cyclically when the number
of y-ticks is greater than the number of labels, and not all labels will
appear if there are fewer y-ticks than labels you have specified. Also
note that when colorbars are horizontal, their ticks and labels are
governed by the XTick property rather than the YTick property. For
more information, see “Labeling Colorbar Ticks”.

surf(peaks(30))
colorbar('YTickLabel',...

{'Freezing','Cold','Cool','Neutral',...
'Warm','Hot','Burning','Nuclear'})

2-615

colorbar

Example 2

Display a horizontal colorbar beneath the axes of a filled contour plot:

contourf(peaks(60))
colormap cool
colorbar('location','southoutside')

2-616

colorbar

See Also colormap

“Color Operations” on page 1-102 for related functions

2-617

colordef

Purpose Set default property values to display different color schemes

Syntax colordef white
colordef black
colordef none
colordef(fig,color_option)
h = colordef('new',color_option)

Description colordef enables you to select either a white or black background for
graphics display. It sets axis lines and labels so that they contrast with
the background color.

colordef white sets the axis background color to white, the axis lines
and labels to black, and the figure background color to light gray.

colordef black sets the axis background color to black, the axis lines
and labels to white, and the figure background color to dark gray.

colordef none sets the figure coloring to that used by MATLAB
Version 4. The most noticeable difference is that the axis background
is set to 'none', making the axis background and figure background
colors the same. The figure background color is set to black.

colordef(fig,color_option) sets the color scheme of the figure
identified by the handle fig to one of the color options 'white',
'black', or 'none'. When you use this syntax to apply colordef to an
existing figure, the figure must have no graphic content. If it does, you
should first clear it (via clf) before using this form of the command.

h = colordef('new',color_option) returns the handle to a new
figure created with the specified color options (i.e., 'white', 'black', or
'none'). This form of the command is useful for creating GUIs when
you may want to control the default environment. The figure is created
with 'visible','off' to prevent flashing.

Remarks colordef affects only subsequently drawn figures, not those currently
on the display. This is because colordef works by setting default
property values (on the root or figure level). You can list the currently
set default values on the root level with the statement

2-618

colordef

get(0,'defaults')

You can remove all default values using the reset command:

reset(0)

See the get and reset references pages for more information.

See Also whitebg, clf

“Color Operations” on page 1-102 for related functions

2-619

colormap

Purpose Set and get current colormap

GUI
Alternatives

Select a built-in colormap with the Property Editor. To modify the
current colormap, use the Colormap Editor, accessible from Edit >
Colormap on the figure menu.

Syntax colormap(map)
colormap('default')
cmap = colormap
colormap(ax,...)

Description A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0.
Each row is an RGB vector that defines one color. The kth row of the
colormap defines the kth color, where map(k,:) = [r(k) g(k) b(k)])
specifies the intensity of red, green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in
map are outside the interval [0 1], you receive the error Colormap must
have values in [0,1].

colormap('default') sets the current colormap to the default
colormap.

cmap = colormap retrieves the current colormap. The values returned
are in the interval [0 1].

colormap(ax,...) uses the figure corresponding to axes ax instead of
the current figure.

Specifying Colormaps

M-files in the color directory generate a number of colormaps. Each
M-file accepts the colormap size as an argument. For example,

colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size, a
colormap the same size as the current colormap is created.

2-620

colormap

Supported Colormaps

The built-in MATLAB colormaps are illustrated and described below.
In addition to specifying built-in colormaps programmatically, you can
use the Colormap menu in the Figure Properties pane of the Plot
Tools GUI to select one interactively.

The named built-in colormaps are the following:

• autumn varies smoothly from red, through orange, to yellow.

• bone is a grayscale colormap with a higher value for the blue
component. This colormap is useful for adding an “electronic” look
to grayscale images.

• colorcube contains as many regularly spaced colors in RGB color
space as possible, while attempting to provide more steps of gray,
pure red, pure green, and pure blue.

• cool consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

2-621

colormap

• copper varies smoothly from black to bright copper.

• flag consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.

• gray returns a linear grayscale colormap.

• hot varies smoothly from black through shades of red, orange, and
yellow, to white.

• hsv varies the hue component of the hue-saturation-value color
model. The colors begin with red, pass through yellow, green, cyan,
blue, magenta, and return to red. The colormap is particularly
appropriate for displaying periodic functions. hsv(m) is the same
as hsv2rgb([h ones(m,2)]) where h is the linear ramp, h =
(0:m 1)'/m.

• jet ranges from blue to red, and passes through the colors cyan,
yellow, and orange. It is a variation of the hsv colormap. The jet
colormap is associated with an astrophysical fluid jet simulation from
the National Center for Supercomputer Applications. See “Examples”
on page 2-622 on page -3.

• lines produces a colormap of colors specified by the axes ColorOrder
property and a shade of gray.

• pink contains pastel shades of pink. The pink colormap provides
sepia tone colorization of grayscale photographs.

• prism repeats the six colors red, orange, yellow, green, blue, and
violet.

• spring consists of colors that are shades of magenta and yellow.

• summer consists of colors that are shades of green and yellow.

• white is an all white monochrome colormap.

• winter consists of colors that are shades of blue and green.

Examples The images and colormaps demo, imagedemo, provides an introduction
to colormaps. Select Color Spiral from the menu. This uses the pcolor
function to display a 16-by-16 matrix whose elements vary from 0 to 255

2-622

colormap

in a rectilinear spiral. The hsv colormap starts with red in the center,
then passes through yellow, green, cyan, blue, and magenta before
returning to red at the outside end of the spiral. Selecting Colormap
Menu gives access to a number of other colormaps.

The rgbplot function plots colormap values. Try rgbplot(hsv),
rgbplot(gray), and rgbplot(hot).

The following commands display the flujet data using the jet
colormap:

load flujet
image(X)
colormap(jet)

The demos directory contains a CAT scan image of a human spine. To
view the image, type the following commands:

load spine

2-623

colormap

image(X)
colormap bone

Algorithm Each figure has its own colormap property. colormap is an M-file that
sets and gets this property.

See Also brighten, caxis, colorbar, colormapeditor, contrast, hsv2rgb,
pcolor, rgbplot, rgb2hsv

The Colormap property of figure graphics objects

“Color Operations” on page 1-102 for related functions

“Coloring Mesh and Surface Plots” for information about colormaps
and other coloring methods

2-624

colormapeditor

Purpose Start colormap editor

Syntax colormapeditor

Description colormapeditor displays the current figure’s colormap as a strip of
rectangular cells in the colormap editor. Node pointers are colored cells
below the colormap strip that indicate points in the colormap where
the rate of the variation of R, G, and B values changes. You can also
work in the HSV colorspace by setting the Interpolating Colorspace
selector to HSV.

You can also start the colormap editor by selecting Colormap from
the Edit menu.

Node Pointer Operations

You can select and move node pointers to change a range of colors in
the colormap. The color of a node pointer remains constant as you move
it, but the colormap changes by linearly interpolating the RGB values
between nodes.

Change the color at a node by double-clicking the node pointer. A color
picker box appears, from which you can select a new color. After you
select a new color at a node, the colors between nodes are reinterpolated.

Operation How to Perform

Add a node Click below the corresponding cell in
the colormap strip.

Select a node Left-click the node.
Select multiple nodes Adjacent: left-click first node,

Shift+click the last node.

Nonadjacent: left-click first node,
Ctrl+click subsequent nodes.

Move a node Select and drag with the mouse or
select and use the left and right arrow
keys.

2-625

colormapeditor

Operation How to Perform

Move multiple nodes Select multiple nodes and use the left
and right arrow keys to move nodes as
a group. Movement stops when one of
the selected nodes hits an unselected
node or an end node.

Delete a node Select the node and then press the
Delete key, or select Delete from the
Edit menu, or type Ctrl+x.

Delete multiple nodes Select the nodes and then press the
Delete key, or select Delete from the
Edit menu, or type Ctrl+x.

Display color picker for a
node

Double-click the node pointer.

Current Color Info

When you put the mouse over a color cell or node pointer, the colormap
editor displays the following information about that colormap element:

• The element’s index in the colormap

• The value from the graphics object color data that is mapped to the
node’s color (i.e., data from the CData property of any image, patch,
or surface objects in the figure)

• The color’s RGB and HSV color value

2-626

colormapeditor

Interpolating Colorspace

The colorspace determines what values are used to calculate the colors
of cells between nodes. For example, in the RGB colorspace, internode
colors are calculated by linearly interpolating the red, green, and blue
intensity values from one node to the next. Switching to the HSV
colorspace causes the colormap editor to recalculate the colors between
nodes using the hue, saturation, and value components of the color
definition.

Note that when you switch from one colorspace to another, the color
editor preserves the number, color, and location of the node pointers,
which can cause the colormap to change.

2-627

colormapeditor

Interpolating in HSV. Since hue is conceptually mapped about a
color circle, the interpolation between hue values can be ambiguous.
To minimize this ambiguity, the interpolation uses the shortest
distance around the circle. For example, interpolating between
two nodes, one with hue of 2 (slightly orange red) and another
with a hue of 356 (slightly magenta red), does not result in hues
3,4,5...353,354,355 (orange/red-yellow-green-cyan-blue-magenta/red).
Taking the shortest distance around the circle gives 357,358,1,2
(orange/red-red-magenta/red).

Color Data Min and Max

The Color Data Min and Color Data Max text fields enable you to
specify values for the axes CLim property. These values change the
mapping of object color data (the CData property of images, patches,
and surfaces) to the colormap. See “Axes Color Limits — the CLim
Property” for discussion and examples of how to use this property.

Examples This example modifies a default MATLAB colormap so that ranges of
data values are displayed in specific ranges of color. The graph is a slice
plane illustrating a cross section of fluid flow through a jet nozzle. See
the slice reference page for more information on this type of graph.

Example Objectives

The objectives are as follows:

• Regions of flow from left to right (positive data) are mapped to colors
from yellow through orange to dark red. Yellow is slowest and dark
red is the fastest moving fluid.

• Regions that have a speed close to zero are colored green.

• Regions where the fluid is actually moving right to left (negative
data) are shades of blue (darker blue is faster).

The following picture shows the desired coloring of the slice plane. The
colorbar shows the data to color mapping.

2-628

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23CLim

colormapeditor

Running the Example

Note If you are viewing this documentation in the MATLAB help
browser, you can display the graph used in this example by running this
M-file from the MATLAB editor (select Run from the Debug menu).

Initially, the default colormap (jet) colored the slice plane, as illustrated
in the following picture. Note that this example uses a colormap that is
48 elements to display wider bands of color (the default is 64 elements).

2-629

colormapeditor

1 Start the colormap editor using the colormapeditor command. The
color map editor displays the current figure’ s colormap, as shown
in the following picture.

2-630

colormapeditor

2 Since we want the regions of left-to-right flow (positive speed) to
range from yellow to dark red, we can delete the cyan node pointer.
To do this, first select it by clicking with the left mouse button and
press Delete. The colormap now looks like this.

2-631

colormapeditor

The Immediate Apply box is checked, so the graph displays the
results of the changes made to the colormap.

2-632

colormapeditor

3 We want the fluid speed values around zero to stand out, so we need
to find the color cell where the negative-to-positive transition occurs.
Dragging the cursor over the color strip enables you to read the data
values in the Current Color Info panel.

In this case, cell 10 is the first positive value, so we click below that
cell and create a node pointer. Double-clicking the node pointer
displays the color picker. Set the color of this node to green.

2-633

colormapeditor

The graph continues to update to the modified colormap.

2-634

colormapeditor

4 In the current state, the colormap colors are interpolated from the
green node to the yellowish node about 20 cells away. We actually
want only the single cell that is centered around zero to be colored
green. To limit the color green to one cell, move the blue and yellow
node pointers next to the green pointer.

2-635

colormapeditor

5 Before making further adjustments to the colormap, we need to move
the green cell so that it is centered around zero. Use the colorbar to
locate the green cell.

2-636

colormapeditor

To recenter the green cell around zero, select the blue, green, and
yellow node pointers (left-click blue, Shift+click yellow) and move
them as a group using the left arrow key. Watch the colorbar in the
figure window to see when the green color is centered around zero.

2-637

colormapeditor

The slice plane now has the desired range of colors for negative, zero,
and positive data.

2-638

colormapeditor

6 Increase the orange-red coloring in the slice by moving the red node
pointer toward the yellow node.

2-639

colormapeditor

7 Darken the endpoints to bring out more detail in the extremes of the
data. Double-click the end nodes to display the color picker. Set the
red endpoint to the RGB value [50 0 0] and set the blue endpoint to
the RGB value [0 0 50].

The slice plane coloring now matches the example objectives.

2-640

colormapeditor

Saving the Modified Colormap

You can save the modified colormap using the colormap function or the
figure Colormap property.

After you have applied your changes, save the current figure colormap
in a variable:

mycmap = get(fig,'Colormap'); % fig is figure
handle or use gcf

To use this colormap in another figure, set that figure’s Colormap
property:

set(new_fig,'Colormap',mycmap)

To save your modified colormap in a MAT-file, use the save command to
save the mycmap workspace variable:

save('MyColormaps','mycmap')

2-641

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/figure_props.html%23Colormap

colormapeditor

To use your saved colormap in another MATLAB session, load the
variable into the workspace and assign the colormap to the figure:

load('MyColormaps','mycmap')
set(fig,'Colormap',mycmap)

See Also colormap, get, load, save, set

Color Operations for related functions

See “Colormaps” for more information on using MATLAB colormaps.

2-642

ColorSpec (Color Specification)

Purpose Color specification

Description ColorSpec is not a function; it refers to the three ways in which you
specify color for MATLAB graphics:

• RGB triple

• Short name

• Long name

The short names and long names are MATLAB strings that specify
one of eight predefined colors. The RGB triple is a three-element row
vector whose elements specify the intensities of the red, green, and blue
components of the color; the intensities must be in the range [0 1]. The
following table lists the predefined colors and their RGB equivalents.

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

Remarks The eight predefined colors and any colors you specify as RGB values
are not part of a figure’s colormap, nor are they affected by changes to
the figure’s colormap. They are referred to as fixed colors, as opposed
to colormap colors.

Some high-level functions (for example, scatter) accept a colorspec as
an input argument and use it to set the CData of graphic objects they

2-643

ColorSpec (Color Specification)

create. When using such functions, take care not to specify a colorspec
in a property/value pair that sets CData; values for CData are always
n-length vectors or n-by-3 matrices, where n is the length of XData and
YData, never strings.

Examples To change the background color of a figure to green, specify the color
with a short name, a long name, or an RGB triple. These statements
generate equivalent results:

whitebg('g')
whitebg('green')
whitebg([0 1 0]);

You can use ColorSpec anywhere you need to define a color. For
example, this statement changes the figure background color to pink:

set(gcf,'Color',[1,0.4,0.6])

See Also bar, bar3, colordef, colormap, fill, fill3, whitebg

“Color Operations” on page 1-102 for related functions

2-644

colperm

Purpose Sparse column permutation based on nonzero count

Syntax j = colperm(S)

Description j = colperm(S) generates a permutation vector j such that the
columns of S(:,j) are ordered according to increasing count of nonzero
entries. This is sometimes useful as a preordering for LU factorization;
in this case use lu(S(:,j)).

If S is symmetric, then j = colperm(S) generates a permutation j so
that both the rows and columns of S(j,j) are ordered according to
increasing count of nonzero entries. If S is positive definite, this is
sometimes useful as a preordering for Cholesky factorization; in this
case use chol(S(j,j)).

Algorithm The algorithm involves a sort on the counts of nonzeros in each column.

Examples The n-by-n arrowhead matrix

A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, lu(A), is almost
completely full. The statement

j = colperm(A)

returns j = [2:n 1]. So A(j,j) sends the full row and column to the
bottom and the rear, and lu(A(j,j)) has the same nonzero structure
as A itself.

On the other hand, the Bucky ball example,

B = bucky

has exactly three nonzero elements in each row and column, so j
= colperm(B) is the identity permutation and is no help at all for
reducing fill-in with subsequent factorizations.

2-645

colperm

See Also chol, colamd, lu, spparms, symamd, symrcm

2-646

comet

Purpose 2-D comet plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

Syntax comet(y)
comet(x,y)
comet(x,y,p)
comet(axes_handle,...)

Description A comet graph is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

comet(y) displays a comet graph of the vector y.

comet(x,y) displays a comet graph of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults
to 0.1.

comet(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

Remarks The trace left by comet is created by using an EraseMode of none, which
means you cannot print the graph (you get only the comet head), and it
disappears if you cause a redraw (e.g., by resizing the window).

2-647

comet

Examples Create a simple comet graph:

t = 0:.01:2*pi;
x = cos(2*t).*(cos(t).^2);
y = sin(2*t).*(sin(t).^2);
comet(x,y);

See Also comet3

“Direction and Velocity Plots” on page 1-93 for related functions

2-648

comet3

Purpose 3-D comet plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

Syntax comet3(z)
comet3(x,y,z)
comet3(x,y,z,p)
comet3(axes_handle,...)

Description A comet plot is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

comet3(z) displays a 3-D comet graph of the vector z.

comet3(x,y,z) displays a comet graph of the curve through the points
[x(i),y(i),z(i)].

comet3(x,y,z,p) specifies a comet body of length p*length(y).

comet3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

Remarks The trace left by comet3 is created by using an EraseMode of none,
which means you cannot print the graph (you get only the comet head),
and it disappears if you cause a redraw (e.g., by resizing the window).

2-649

comet3

Examples Create a 3-D comet graph.

t = -10*pi:pi/250:10*pi;
comet3((cos(2*t).^2).*sin(t),(sin(2*t).^2).*cos(t),t);

See Also comet

“Direction and Velocity Plots” on page 1-93 for related functions

2-650

commandhistory

Purpose Open Command History window, or select it if already open

GUI
Alternatives

As an alternative to commandhistory, select Desktop > Command
History to open it, orWindow > Command History to select it.

Syntax commandhistory

Description commandhistory opens the MATLAB Command History window when
it is closed, and selects the Command History window when it is open.
The Command History window presents a log of the statements most
recently run in the Command Window.

See Also diary, prefdir, startup

MATLAB Desktop Tools and Development Environment Documentation

• “Recalling Previous Lines in the Command Window”

• “Command History Window”

2-651

commandwindow

Purpose Open Command Window, or select it if already open

GUI
Alternatives

As an alternative to commandwindow, select Desktop > Command
Window to open it, orWindow > Command Window to select it.

Syntax commandwindow

Description commandwindow opens the MATLAB Command Window when it is
closed, and selects the Command Window when it is open.

Remarks To determine the number of columns and rows that display in the
Command Window, given its current size, use

get(0,'CommandWindowSize')

The number of columns is based on the width of the Command Window.
With the matrix display width preference set to 80 columns, the number
of columns is always 80.

See Also commandhistory, input, inputdlg

MATLAB Desktop Tools and Development Environment documentation

• “Opening and Arranging Tools”

• “Running Functions and Programs, and Entering Variables”

• “Preferences for the Command Window”

2-652

compan

Purpose Companion matrix

Syntax A = compan(u)

Description A = compan(u) returns the corresponding companion matrix whose
first row is -u(2:n)/u(1), where u is a vector of polynomial coefficients.
The eigenvalues of compan(u) are the roots of the polynomial.

Examples The polynomial has a
companion matrix given by

u = [1 0 -7 6]
A = compan(u)
A =

0 7 -6
1 0 0
0 1 0

The eigenvalues are the polynomial roots:

eig(compan(u))

ans =
-3.0000
2.0000
1.0000

This is also roots(u).

See Also eig, poly, polyval, roots

2-653

compass

Purpose Plot arrows emanating from origin

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

Syntax compass(U,V)
compass(Z)
compass(...,LineSpec)
compass(axes_handle,...)
h = compass(...)

Description A compass graph displays the vectors with components (U,V) as arrows
emanating from the origin. U, V, and Z are in Cartesian coordinates and
plotted on a circular grid.

compass(U,V) displays a compass graph having n arrows, where n is
the number of elements in U or V. The location of the base of each arrow
is the origin. The location of the tip of each arrow is a point relative to
the base and determined by [U(i),V(i)].

compass(Z) displays a compass graph having n arrows, where n is the
number of elements in Z. The location of the base of each arrow is the
origin. The location of the tip of each arrow is relative to the base as
determined by the real and imaginary components of Z. This syntax is
equivalent to compass(real(Z),imag(Z)).

compass(...,LineSpec) draws a compass graph using the line type,
marker symbol, and color specified by LineSpec.

compass(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

2-654

compass

h = compass(...) returns handles to line objects.

Examples Draw a compass graph of the eigenvalues of a matrix.

Z = eig(randn(20,20));
compass(Z)

See Also feather, LineSpec, quiver, rose

“Direction and Velocity Plots” on page 1-93 for related functions

“Compass Plots” for another example

2-655

complex

Purpose Construct complex data from real and imaginary components

Syntax c = complex(a,b)

Description c = complex(a,b) creates a complex output, c, from the two real
inputs.

c = a + bi

The output is the same size as the inputs, which must be scalars or
equally sized vectors, matrices, or multi-dimensional arrays.

Note If b is all zeros, c is complex and the value of all its imaginary
components is 0. In contrast, the result of the addition a+0i returns a
strictly real result.

The following describes when a and b can have different data types, and
the resulting data type of the output c:

• If either of a or b has type single, c has type single.

• If either of a or b has an integer data type, the other must have the
same integer data type or type scalar double, and c has the same
integer data type.

c = complex(a) for real a returns the complex result c with real part
a and 0 as the value of all imaginary components. Even though the
value of all imaginary components is 0, c is complex and isreal(c)
returns false.

The complex function provides a useful substitute for expressions such
as

a + i*b or a + j*b

2-656

complex

in cases when the names “i” and “j” may be used for other variables
(and do not equal), when a and b are not single or double, or
when b is all zero.

Example Create complex uint8 vector from two real uint8 vectors.

a = uint8([1;2;3;4])
b = uint8([2;2;7;7])
c = complex(a,b)
c =

1.0000 + 2.0000i
2.0000 + 2.0000i
3.0000 + 7.0000i
4.0000 + 7.0000i

See Also abs, angle, conj, i, imag, isreal, j, real

2-657

computer

Purpose Information about computer on which MATLAB software is running

Syntax str = computer
[str,maxsize] = computer
[str,maxsize,endian] = computer
archstr = computer('arch')

Description str = computer returns the string str with the computer type on
which MATLAB software is running.

[str,maxsize] = computer returns the integer maxsize, which
contains the maximum number of elements allowed in an array with
this version of MATLAB software.

[str,maxsize,endian] = computer also returns either ’L’ for
little-endian byte ordering or ’B’ for big-endian byte ordering.

archstr = computer('arch') returns the string archstr which is the
architecture of the build platform. This string can be used for the term
arch in the mex command switch -<arch>.

The list of supported computers changes as new computers are added
and others become obsolete. A typical list follows.

32–bit Platforms

Computer str archstr ispc isunixismac

GNU® on x86 GLNX86 glnx86 0 1 0

Apple® Macintosh OS X
on x86

MACI maci 0 1 1

Microsoft Windows on x86 PCWIN win32 1 0 0

64–bit Platforms

Computer str archstr ispc isunixismac

GNU Linux® on x86_64
(Linux is a registered
trademark of Linus
Torvalds.)

GLNXA64 glnxa64 0 1 0

2-658

computer

64–bit Platforms (Continued)

Computer str archstr ispc isunixismac

Microsoft Windows on
x64

PCWIN64 win64 1 0 0

Sun Solaris™ on SPARC® SOL64 sol64 0 1 0

Remarks In some cases, both 32-bit and 64-bit versions of MATLAB can run on
the same platform. In this case, the value returned by computer reflects
which of these is running. For example, if you run a 32-bit version
of MATLAB on a Windows x64 platform, computer returns PCWIN,
indicating that the 32-bit version is running.

See Also getenv, setenv, ispc, isunix, ismac

2-659

cond

Purpose Condition number with respect to inversion

Syntax c = cond(X)
c = cond(X,p)

Description The condition number of a matrix measures the sensitivity of the
solution of a system of linear equations to errors in the data. It gives
an indication of the accuracy of the results from matrix inversion and
the linear equation solution. Values of cond(X) and cond(X,p) near 1
indicate a well-conditioned matrix.

c = cond(X) returns the 2-norm condition number, the ratio of the
largest singular value of X to the smallest.

c = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p

If p is... Then cond(X,p) returns the...

1 1-norm condition number
2 2-norm condition number
’fro’ Frobenius norm condition number
inf Infinity norm condition number

Algorithm The algorithm for cond (when p = 2) uses the singular value
decomposition, svd.

See Also condeig, condest, norm, normest, rank, rcond, svd

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-660

http://www.netlib.org/lapack/lug/lapack_lug.html

condeig

Purpose Condition number with respect to eigenvalues

Syntax c = condeig(A)
[V,D,s] = condeig(A)

Description c = condeig(A) returns a vector of condition numbers for the
eigenvalues of A. These condition numbers are the reciprocals of the
cosines of the angles between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to

[V,D] = eig(A);
s = condeig(A);

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

See Also balance, cond, eig

2-661

condest

Purpose 1-norm condition number estimate

Syntax c = condest(A)
c = condest(A,t)
[c,v] = condest(A)

Description c = condest(A) computes a lower bound C for the 1-norm condition
number of a square matrix A.

c = condest(A,t) changes t, a positive integer parameter equal to
the number of columns in an underlying iteration matrix. Increasing
the number of columns usually gives a better condition estimate but
increases the cost. The default is t = 2, which almost always gives an
estimate correct to within a factor 2.

[c,v] = condest(A) also computes a vector v which is an
approximate null vector if c is large. v satisfies norm(A*v,1) =
norm(A,1)*norm(v,1)/c.

Note condest invokes rand. If repeatable results are required then
invoke rand('state',j), for some j, before calling this function.

This function is particularly useful for sparse matrices.

Algorithm condest is based on the 1-norm condition estimator of Hager [1] and a
block oriented generalization of Hager’s estimator given by Higham and
Tisseur [2]. The heart of the algorithm involves an iterative search to
estimate without computing . This is posed as the convex,
but nondifferentiable, optimization problem

subject to

See Also cond, norm, normest

2-662

condest

Reference [1] William W. Hager, “Condition Estimates,” SIAM J. Sci. Stat.
Comput. 5, 1984, 311-316, 1984.

[2] Nicholas J. Higham and Françoise Tisseur, “A Block Algorithm
for Matrix 1-Norm Estimation with an Application to 1-Norm
Pseudospectra, “SIAM J. Matrix Anal. Appl., Vol. 21, 1185-1201, 2000.

2-663

coneplot

Purpose Plot velocity vectors as cones in 3-D vector field

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

Syntax coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz)
coneplot(U,V,W,Cx,Cy,Cz)
coneplot(...,s)
coneplot(...,color)
coneplot(...,'quiver')
coneplot(...,'method')
coneplot(X,Y,Z,U,V,W,'nointerp')
coneplot(axes_handle,...)
h = coneplot(...)

Description coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) plots velocity vectors as cones
pointing in the direction of the velocity vector and having a length
proportional to the magnitude of the velocity vector.

• X, Y, Z define the coordinates for the vector field.

• U, V, W define the vector field. These arrays must be the same size,
monotonic, and 3-D plaid (such as the data produced by meshgrid).

• Cx, Cy, Cz define the location of the cones in the vector field. The
section “Specifying Starting Points for Stream Plots” in Visualization
Techniques provides more information on defining starting points.

2-664

coneplot

coneplot(U,V,W,Cx,Cy,Cz) (omitting the X, Y, and Z arguments)
assumes [X,Y,Z] = meshgrid(1:n,1:m,1:p), where [m,n,p]=
size(U).

coneplot(...,s) automatically scales the cones to fit the graph and
then stretches them by the scale factor s. If you do not specify a value
for s, a value of 1 is used. Use s = 0 to plot the cones without automatic
scaling.

coneplot(...,color) interpolates the array color onto the vector
field and then colors the cones according to the interpolated values. The
size of the color array must be the same size as the U, V, W arrays. This
option works only with cones (i.e., not with the quiver option).

coneplot(...,'quiver') draws arrows instead of cones (see quiver3
for an illustration of a quiver plot).

coneplot(...,'method') specifies the interpolation method to use.
method can be linear, cubic, or nearest. linear is the default. (See
interp3 for a discussion of these interpolation methods.)

coneplot(X,Y,Z,U,V,W,'nointerp') does not interpolate the positions
of the cones into the volume. The cones are drawn at positions defined
by X, Y, Z and are oriented according to U, V, W. Arrays X, Y, Z, U, V, W
must all be the same size.

coneplot(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = coneplot(...) returns the handle to the patch object used to
draw the cones. You can use the set command to change the properties
of the cones.

Remarks coneplot automatically scales the cones to fit the graph, while keeping
them in proportion to the respective velocity vectors.

It is usually best to set the data aspect ratio of the axes before calling
coneplot. You can set the ratio using the daspect command.

daspect([1,1,1])

2-665

coneplot

Examples This example plots the velocity vector cones for vector volume data
representing the motion of air through a rectangular region of space.
The final graph employs a number of enhancements to visualize the
data more effectively:

• Cone plots indicate the magnitude and direction of the wind velocity.

• Slice planes placed at the limits of the data range provide a visual
context for the cone plots within the volume.

• Directional lighting provides visual cues to the orientation of the
cones.

• View adjustments compose the scene to best reveal the information
content of the data by selecting the view point, projection type, and
magnification.

1. Load and Inspect Data

The winds data set contains six 3-D arrays: u, v, and w specify the vector
components at each of the coordinates specified in x, y, and z. The
coordinates define a lattice grid structure where the data is sampled
within the volume.

It is useful to establish the range of the data to place the slice planes
and to specify where you want the cone plots (min, max).

load wind
xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
ymax = max(y(:));
zmin = min(z(:));

2. Create the Cone Plot

• Decide where in data space you want to plot cones. This example
selects the full range of x and y in eight steps and the range 3 to 15 in
four steps in z (linspace, meshgrid).

2-666

coneplot

• Use daspect to set the data aspect ratio of the axes before calling
coneplot to automatically determine the proper size of the cones.

• Draw the cones, setting the scale factor to 5 to make the cones larger
than the default size.

• Set the coloring of each cone (FaceColor, EdgeColor).

daspect([2,2,1])
xrange = linspace(xmin,xmax,8);
yrange = linspace(ymin,ymax,8);
zrange = 3:4:15;
[cx cy cz] = meshgrid(xrange,yrange,zrange);
hcones = coneplot(x,y,z,u,v,w,cx,cy,cz,5);
set(hcones,'FaceColor','red','EdgeColor','none')

3. Add the Slice Planes

• Calculate the magnitude of the vector field (which represents wind
speed) to generate scalar data for the slice command.

• Create slice planes along the x-axis at xmin and xmax, along the
y-axis at ymax, and along the z-axis at zmin.

• Specify interpolated face color so the slice coloring indicates wind
speed, and do not draw edges (hold, slice, FaceColor, EdgeColor).

hold on
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')
hold off

4. Define the View

• Use the axis command to set the axis limits equal to the range of
the data.

• Orient the view to azimuth = 30 and elevation = 40. (rotate3d is a
useful command for selecting the best view.)

2-667

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceColor
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23EdgeColor

coneplot

• Select perspective projection to provide a more realistic looking
volume (camproj).

• Zoom in on the scene a little to make the plot as large as possible
(camzoom).

axis tight; view(30,40); axis off
camproj perspective; camzoom(1.5)

5. Add Lighting to the Scene

The light source affects both the slice planes (surfaces) and the cone
plots (patches). However, you can set the lighting characteristics of
each independently:

• Add a light source to the right of the camera and use Phong lighting
to give the cones and slice planes a smooth, three-dimensional
appearance (camlight, lighting).

• Increase the value of the AmbientStrength property for each slice
plane to improve the visibility of the dark blue colors. (Note that
you can also specify a different colormap to change the coloring of
the slice planes.)

• Increase the value of the DiffuseStrength property of the cones to
brighten particularly those cones not showing specular reflections.

camlight right; lighting phong
set(hsurfaces,'AmbientStrength',.6)
set(hcones,'DiffuseStrength',.8)

2-668

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AmbientStrength
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23DiffuseStrength

coneplot

See Also isosurface, patch, reducevolume, smooth3, streamline, stream2,
stream3, subvolume

“Volume Visualization” on page 1-106 for related functions

2-669

conj

Purpose Complex conjugate

Syntax ZC = conj(Z)

Description ZC = conj(Z) returns the complex conjugate of the elements of Z.

Algorithm If Z is a complex array:

conj(Z) = real(Z) - i*imag(Z)

See Also i, j, imag, real

2-670

continue

Purpose Pass control to next iteration of for or while loop

Syntax continue

Description continue passes control to the next iteration of the for or while loop
in which it appears, skipping any remaining statements in the body of
the loop. The same holds true for continue statements in nested loops.
That is, execution continues at the beginning of the loop in which the
continue statement was encountered.

Examples The example below shows a continue loop that counts the lines of
code in the file magic.m, skipping all blank lines and comments. A
continue statement is used to advance to the next line in magic.m
without incrementing the count whenever a blank line or comment
line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) | strncmp(line,'%',1)

continue
end
count = count + 1;

end
disp(sprintf('%d lines',count));

See Also for, while, end, break, return

2-671

contour

Purpose Contour plot of matrix

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools and Development Environment documentation.

Syntax contour(Z)
contour(Z,n)
contour(Z,v)
contour(X,Y,Z)
contour(X,Y,Z,n)
contour(X,Y,Z,v)
contour(...,LineSpec)
contour(axes_handle,...)
[C,h] = contour(...)
[C,h] = contour('v6',...)

Description A contour plot displays isolines of matrix Z. Label the contour lines
using clabel.

contour(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to the x-y plane. Z must be at least a 2-by-2 matrix
that contains at least two different values. The number of contour lines
and the values of the contour lines are chosen automatically based on
the minimum and maximum values of Z. The ranges of the x- and y-axis
are [1:n] and [1:m], where [m,n] = size(Z).

contour(Z,n) draws a contour plot of matrix Z with n contour levels.

contour(Z,v) draws a contour plot of matrix Z with contour lines
at the data values specified in the monotonically increasing vector v.
The number of contour levels is equal to length(v). To draw a single

2-672

contour

contour of level i, use contour(Z,[i i]). Specifying the vector v sets
the LevelListMode to manual to allow user control over contour levels.
See contourgroup properties for more information.

contour(X,Y,Z), contour(X,Y,Z,n), and contour(X,Y,Z,v) draw
contour plots of Z using X and Y to determine the x- and y-axis limits.
When X and Y are matrices, they must be the same size as Z and must
be monotonically increasing.

contour(...,LineSpec) draws the contours using the line type and
color specified by LineSpec. contour ignores marker symbols.

contour(axes_handle,...) plots into axes gerkaxes_handle instead
of gca.

[C,h] = contour(...) returns a contour matrix, C, derived from the
matrix returned by the low-level contourc function, and a handle, h, to
a contourgroup object. clabel uses the contour matrix C to create the
labels. (See descriptions of contourgroup properties.)

Backward Compatibility

[C,h] = contour('v6',...)returns the contour matrix C, as
calculated by the function contourc and used by clabel, a vector of
handles h to patch graphics objects instead of a contourgroup object, for
compatibility with MATLAB Version 6.5 and earlier. When called with
the 'v6' flag, contour creates patch graphics objects, unless you specify
a LineSpec, in which case contour creates line graphics objects. In this
case, contour lines are not mapped to colors in the figure colormap, but
are colored using the colors defined in the axes ColorOrder property. If
you do not specify a LineSpec argument, the figure colormap and the
color limits (caxis) control the color of the contour lines (patch objects).

Note The v6 option enables users of MATLAB Version 7.x to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

2-673

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ColorOrder

contour

Remarks Use contourgroup object properties to control the contour plot
appearance.

If X or Y is irregularly spaced, contour calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

Examples Contour Plot of a Function

Create a contour plot of the peaks function using the contour matrix
and contourgroup object handle as output.

[C,h] = contour(peaks(20),10);
colormap autumn

2-674

contour

Smoothing Contour Data

Use interp2 to create smoother contours. Also set the contour label
text BackgroundColor to a light yellow and the EdgeColor to light gray.

Z = peaks;
[C,h] = contour(interp2(Z,4));
text_handle = clabel(C,h);
set(text_handle,'BackgroundColor',[1 1 .6],...

'Edgecolor',[.7 .7 .7])

For more examples using contour, see “Contour Plots”.

See Also clabel, contourf, contour3, contourc, quiver

2-675

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/text_props.html%23BackgroundColor
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/text_props.html%23EdgeColor

contour

“Contour Plots” for related functions and more examples

contourgroup properties for related properties

2-676

contour3

Purpose 3-D contour plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools and Development Environment documentation.

Syntax contour3(Z)
contour3(Z,n)
contour3(Z,v)
contour3(X,Y,Z)
contour3(X,Y,Z,n)
contour3(X,Y,Z,v)
contour3(...,LineSpec)
contour3(axes_handle,...)
[C,h] = contour3(...)

Description contour3 creates a 3-D contour plot of a surface defined on a
rectangular grid.

contour3(Z) draws a contour plot of matrix Z in a 3-D view. Z is
interpreted as heights with respect to the x-y plane. Z must be at least a
2-by-2 matrix that contains at least two different values. The number of
contour levels and the values of contour levels are chosen automatically
based on the minimum and maximum values of Z. The ranges of the x-
and y-axis are [1:n] and [1:m], where [m,n] = size(Z).

contour3(Z,n) draws a contour plot of matrix Z with n contour levels
in a 3-D view.

contour3(Z,v) draws a contour plot of matrix Z with contour lines at
the values specified in vector v. The number of contour levels is equal
to length(v). To draw a single contour of level i, use contour(Z,[i

2-677

contour3

i]). Specifying the vector v sets the LevelListMode to manual to
allow user control over contour levels. See contourgroup properties
for more information.

contour3(X,Y,Z), contour3(X,Y,Z,n), and contour3(X,Y,Z,v) draw
contour plots of Z using X and Y to determine the x- and y-axis limits. If
X is a matrix, X(1,:) defines the x-axis. If Y is a matrix, Y(:,1) defines
the y-axis. When X and Y are matrices, they must be the same size as Z
and must be monotonically increasing.

contour3(...,LineSpec) draws the contour lines using the line type
and color specified by LineSpec. contour3 ignores marker symbols.

contour3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

[C,h] = contour3(...) returns a contour matrix C, derived from the
matrix returned by the low-level contourc function, and a handle,
h, to a contourgroup object containing handles to graphics objects.
contour3 creates patch graphics objects unless you specify LineSpec,
in which case contour3 creates line graphics objects.

Remarks If X or Y is irregularly spaced, contour3 calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

If you do not specify LineSpec, the functions colormap and caxis
control the color.

Label the contour lines using clabel.

contour3(...) works the same as contour(...) with these
exceptions:

• The contours are drawn at their corresponding Z level.

• Multiple patch objects are created instead of a contourgroup.

• Calling contour3 with trailing property-value pairs is not allowed.

Examples Plot the three-dimensional contour of a function and superimpose a
surface plot to enhance visualization of the function.

2-678

contour3

[X,Y] = meshgrid([-2:.25:2]);
Z = X.*exp(-X.^2-Y.^2);
contour3(X,Y,Z,30)
surface(X,Y,Z,'EdgeColor',[.8 .8 .8],'FaceColor','none')
grid off
view(-15,25)
colormap cool

For more examples using contour3, see “Contour Plots”.

See Also contour, contourc, contourf, meshc, meshgrid, surfc

“Contour Plots” section for more examples

contourgroup properties for related properties

2-679

contourc

Purpose Low-level contour plot computation

Syntax C = contourc(Z)
C = contourc(Z,n)
C = contourc(Z,v)
C = contourc(x,y,Z)
C = contourc(x,y,Z,n)
C = contourc(x,y,Z,v)

Description contourc calculates the contour matrix C used by contour, contour3,
and contourf. The values in Z determine the heights of the contour
lines with respect to a plane. The contour calculations use a regularly
spaced grid determined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix Z,
where Z must be at least a 2-by-2 matrix. The contours are isolines
in the units of Z. The number of contour lines and the corresponding
values of the contour lines are chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour
levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines
at the values specified in vector v. The length of v determines the
number of contour levels. To compute a single contour of level i, use
contourc(Z,[i i]).

C = contourc(x,y,Z), C = contourc(x,y,Z,n), and C =
contourc(x,y,Z,v) compute contours of Z using vectors x and y to
determine the x- and y-axis limits. x and y must be monotonically
increasing.

Remarks C is a two-row matrix specifying all the contour lines. Each contour
line defined in matrix C begins with a column that contains the value
of the contour (specified by v and used by clabel), and the number of
(x,y) vertices in the contour line. The remaining columns contain the
data for the (x,y) pairs.

C = [value1xdata(1)xdata(2)..value2xdata(1)xdata(2)...;

2-680

contourc

dim1ydata(1)ydata(2)...dim2 ydata(1)ydata(2)...]

Specifying irregularly spaced x and y vectors is not the same as
contouring irregularly spaced data. If x or y is irregularly spaced,
contourc calculates contours using a regularly spaced contour grid,
then transforms the data to x or y.

See Also clabel, contour, contour3, contourf

“Contour Plots” on page 1-93 for related functions

“The Contouring Algorithm” for more information

2-681

contourf

Purpose Filled 2-D contour plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools and Development Environment documentation.

Syntax contourf(Z)
contourf(Z,n)
contourf(Z,v)
contourf(X,Y,Z)
contourf(X,Y,Z,n)
contourf(X,Y,Z,v)
contourf(...,LineSpec)
contourf(axes_handle,...)
[C,h] = contourf(...)
[C,h,CF] = contourf('v6',...)

Description A filled contour plot displays isolines calculated from matrix Z and
fills the areas between the isolines using constant colors corresponding
to the current figure’s colormap.

contourf(Z) draws a filled contour plot of matrix Z, where Z is
interpreted as heights with respect to the x-y plane. Z must be at
least a 2-by-2 matrix that contains at least two different values. The
number of contour lines and the values of the contour lines are chosen
automatically based on the minimum and maximum values of Z. The
ranges of the x- and y-axis are [1:n] and [1:m], where [m,n] =
size(Z).

contourf(Z,n) draws a filled contour plot of matrix Z with n contour
levels.

2-682

contourf

contourf(Z,v) draws a filled contour plot of matrix Z with contour
lines at the data values specified in the monotonically increasing vector
v. The number of contour levels is equal to length(v). To draw a single
contour of level i, use contour(Z,[i i]). Specifying the vector v sets
the LevelListMode to manual to allow user control over contour levels.
See contourgroup properties for more information.

contourf(X,Y,Z), contourf(X,Y,Z,n), and contourf(X,Y,Z,v) draw
filled contour plots of Z using X and Y to determine the x- and y-axis
limits. When X and Y are matrices, they must be the same size as Z and
must be monotonically increasing.

contourf(...,LineSpec) draws the contour lines using the line type
and color specified by LineSpec. contourf ignores marker symbols.

contourf(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

[C,h] = contourf(...) returns a contour matrix C, derived from the
matrix returned by the low-level contourc function, and a handle, h, to
a contourgroup object containing the filled contours. clabel uses the
contour matrix C to create the labels. (See descriptions of contourgroup
properties.)

Backward Compatibility

[C,h,CF] = contourf('v6',...) returns the contour matrix C, as
calculated by the function contourc and used by clabel, a vector of
handles h to patch graphics objects (instead of a contourgroup object,
for compatibility with MATLAB Version 6.5 and earlier) and a contour
matrix CF for the filled areas. When called with the 'v6' flag, contourf
creates patch graphics objects, unless you specify a LineSpec. In this
case, contour creates line graphics objects and colors them using the
colors defined in the axes ColorOrder property. If you do not specify a
LineSpec argument, the figure colormap and the color limits (caxis)
control the color of the contour lines (patch objects).

2-683

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ColorOrder

contourf

Note The v6 option enables users of MATLAB Version 7.x to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks Use contourgroup object properties to control the filled contour plot
appearance.

Label the contour lines using clabel.

NaNs in the Z-data leave white holes with black borders in the contour
plot.

If X or Y is irregularly spaced, contourf calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

Examples Create a filled contour plot of the peaks function with contour matrix
and contourgroup object handle as output and autumn colormap.

[C,h] = contourf(peaks(20),10);
colormap autumn

2-684

contourf

For more examples using contourf, see “Contour Plots”.

See Also clabel, contour, contour3, contourc, quiver

“Contour Plots” for related functions and more examples

contourgroup properties for related properties

2-685

Contourgroup Properties

Purpose Define contourgroup properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for contourgroup objects.

See “Plot Objects” for more information on contourgroup objects.

Contourgroup
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of contourgroup objects in legends. The
Annotation property enables you to specify whether this
contourgroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
contourgroup object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the contourgroup object in a legend
as one entry, but not its children objects

off Do not include the contourgroup or its
children in a legend (default)

children Include only the children of the contourgroup
as separate entries in the legend

2-686

Contourgroup Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

2-687

Contourgroup Properties

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

2-688

Contourgroup Properties

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

ContourMatrix
2-by-n matrix Read Only

A two-row matrix specifying all the contour lines. Each contour
line defined in the ContourMatrix begins with a column that
contains the value of the contour (specified by the LevelList
property and is used by clabel), and the number of (x,y) vertices
in the contour line. The remaining columns contain the data for
the (x,y) pairs:

C = [value1 xdata(1) xdata(2)...value2 xdata(1) xdata(2)...;
dim1 ydata(1) ydata(2)... dim2 ydata(1) ydata(2)...]

That is,

C = [C(1) C(2)...C(I)...C(N)]

where N is the number of contour levels, and

C(i) = [level(i) x(1) x(2)...x(numel(i));

2-689

Contourgroup Properties

numel(i) y(1) y(2)...y(numel(i))];

For further information, see The Contouring Algorithm.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

2-690

Contourgroup Properties

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this contourgroup object. The legend
function uses the string defined by the DisplayName property to
label this contourgroup object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this contourgroup object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

2-691

Contourgroup Properties

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine

2-692

Contourgroup Properties

layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

Fill
{off} | on

Color spaces between contour lines. By default, contour draws
only the contour lines of the surface. If you set Fill to on, contour
colors the regions in between the contour lines according to the
Z-value of the region and changes the contour lines to black.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on—Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

2-693

Contourgroup Properties

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

2-694

Contourgroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

2-695

Contourgroup Properties

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LabelSpacing
distance in points (default = 144)

Spacing between labels on each contour line. When you display
contour line labels using either the ShowText property or the
clabel command, the labels are spaced 144 points (2 inches)
apart on each line. You can specify the spacing by setting the
LabelSpacing property to a value in points. If the length of an
individual contour line is less than the specified value, MATLAB
displays only one contour label on that line.

LevelList
vector of ZData-values

Values at which contour lines are drawn. When the
LevelListMode property is auto, the contour function
automatically chooses contour values that span the range of
values in ZData (the input argument Z). You can set this property
to the values at which you want contour lines drawn.

To specify the contour interval (space between contour lines) use
the LevelStep property.

LevelListMode
{auto} | manual

2-696

Contourgroup Properties

User-specified or autogenerated LevelList values. By default, the
contour function automatically generates the values at which
contours are drawn. If you set this property to manual, contour
does not change the values in LevelList as you change the values
of ZData.

LevelStep
scalar

Spacing of contour lines. The contour function draws contour
lines at regular intervals determined by the value of LevelStep.
When the LevelStepMode property is set to auto, contour
determines the contour interval automatically based on the ZData.

LevelStepMode
{auto} | manual

User-specified or autogenerated LevelStep values. By default,
the contour function automatically determines a value for the
LevelStep property. If you set this property to manual, contour
does not change the value of LevelStep as you change the values
of ZData.

LineColor
{auto} | ColorSpec | none

Color of the contour lines. This property determines how MATLAB
colors the contour lines.

• auto— Each contour line is a single color determined by its
contour value, the figure colormap, and the color axis (caxis).

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for
edges. The default edge color is black. See ColorSpec for more
information on specifying color.

• none — No contour lines are drawn.

2-697

Contourgroup Properties

LineStyle
{-} | – | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line
none No line

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the

2-698

Contourgroup Properties

SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

ShowText
on | {off}

Display labels on contour lines. When you set this property to
on, MATLAB displays text labels on each contour line indicating
the contour value. See also LevelList, clabel, and the example
“Contour Plot of a Function” on page 2-674.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

2-699

Contourgroup Properties

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

TextList
vector of contour values

Contour values to label. This property contains the contour values
where text labels are placed. By default, these values are the
same as those contained in the LevelList property, which define
where the contour lines are drawn. Note that there must be an
equivalent contour line to display a text label.

For example, the following statements create and label a contour
plot:

[c,h]=contour(peaks);
clabel(c,h)

You can get the LevelList property to see the contour line values:

get(h,'LevelList')

Suppose you want to view the contour value 4.375 instead of the
value of 4 that the contour function used. To do this, you need to
set both the LevelList and TextList properties:

set(h,'LevelList',[-6 -4 -2 0 2 4.375 6 8],...
'TextList',[-6 -4 -2 0 2 4.375 6 8])

See the example “Contour Plot of a Function” on page 2-674 for
additional information.

TextListMode
{auto} | manual

2-700

Contourgroup Properties

User-specified or auto TextList values. When this property is set
to auto, MATLAB sets the TextList property equal to the values
of the LevelList property (i.e., a text label for each contour line).
When this property is set to manual, MATLAB does not set the
values of the TextList property. Note that specifying values for
the TextList property causes the TextListMode property to be
set to manual.

TextStep
scalar

Determines which contour line have numeric labels. The contour
function labels contour lines at regular intervals which are
determined by the value of the TextStep property. When the
TextStepMode property is set to auto, contour labels every
contour line when the ShowText property is on. See “Contour
Plot of a Function” on page 2-674 for an example that uses the
TextStep property.

TextStepMode
{auto} | manual

User-specified or autogenerated TextStep values. By default,
the contour function automatically determines a value for the
TextStep property. If you set this property to manual, contour
does not change the value of TextStep as you change the values of
ZData.

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of graphics object. For contourgroup objects,
Type is ’hggroup’. This statement finds all the hggroup objects in
the current axes.

t = findobj(gca,'Type','hggroup');

2-701

Contourgroup Properties

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
vector or matrix

The x-axis values for a graph. The x-axis values for graphs
are specified by the X input argument. If XData is a vector,
length(XData) must equal length(YData) and must be
monotonic. If XData is a matrix, size(XData) must equal
size(YData) and each column must be monotonic.

2-702

Contourgroup Properties

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped. See for
more information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-703

Contourgroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Y-axis limits. This property determines the y-axis limits used in
the contour plot. If you do not specify a Y argument, the contour
function calculates y-axis limits based on the size of the input
argument Z.

YData can be either a matrix equal in size to ZData or a vector
equal in length to the number of columns in ZData.

Use YData to define meaningful coordinates for the underlying
surface whose topography is being mapped. See for more
information.

YDataMode
{auto} | manual

Use automatic or user-specified y-axis values. In auto mode (the
default) the contour function automatically determines the y-axis
limits. If you set this property to manual, specify a value for
YData, or specify a Y argument, then contour sets this property to
manual and does not change the axis limits.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

2-704

Contourgroup Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
matrix

Contour data. This property contains the data from which the
contour lines are generated (specified as the input argument
Z). ZData must be at least a 2-by-2 matrix. The number of
contour levels and the values of the contour levels are chosen
automatically based on the minimum and maximum values of
ZData. The limits of the x- and y-axis are [1:n] and [1:m], where
[m,n] = size(ZData).

ZDataSource
string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

2-705

Contourgroup Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-706

contourslice

Purpose Draw contours in volume slice planes

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

Syntax contourslice(X,Y,Z,V,Sx,Sy,Sz)
contourslice(X,Y,Z,V,Xi,Yi,Zi)
contourslice(V,Sx,Sy,Sz)
contourslice(V,Xi,Yi,Zi)
contourslice(...,n)
contourslice(...,cvals)
contourslice(...,[cv cv])
contourslice(...,'method')
contourslice(axes_handle,...)
h = contourslice(...)

Description contourslice(X,Y,Z,V,Sx,Sy,Sz) draws contours in the x-, y-, and
z-axis aligned planes at the points in the vectors Sx, Sy, Sz. The
arrays X, Y, and Z define the coordinates for the volume V and must
be monotonic and 3-D plaid (such as the data produced by meshgrid).
The color at each contour is determined by the volume V, which must
be an m-by-n-by-p volume array.

contourslice(X,Y,Z,V,Xi,Yi,Zi) draws contours through the volume
V along the surface defined by the 2-D arrays Xi,Yi,Zi. The surface
should lie within the bounds of the volume.

contourslice(V,Sx,Sy,Sz) and contourslice(V,Xi,Yi,Zi)
(omitting the X, Y, and Z arguments) assume [X,Y,Z] =
meshgrid(1:n,1:m,1:p), where [m,n,p]= size(v).

2-707

contourslice

contourslice(...,n) draws n contour lines per plane, overriding the
automatic value.

contourslice(...,cvals) draws length(cval) contour lines per
plane at the values specified in vector cvals.

contourslice(...,[cv cv]) computes a single contour per plane at
the level cv.

contourslice(...,'method') specifies the interpolation method to
use. method can be linear, cubic, or nearest. nearest is the default
except when the contours are being drawn along the surface defined
by Xi, Yi, Zi, in which case linear is the default. (See interp3 for a
discussion of these interpolation methods.)

contourslice(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = contourslice(...) returns a vector of handles to patch objects
that are used to implement the contour lines.

Examples This example uses the flow data set to illustrate the use of contoured
slice planes. (Type doc flow for more information on this data set.)
Notice that this example

• Specifies a vector of length = 9 for Sx, an empty vector for the Sy,
and a scalar value (0) for Sz. This creates nine contour plots along
the x direction in the y-z plane, and one in the x-y plane at z = 0.

• Uses linspace to define a 10-element vector of linearly spaced values
from -8 to 2. This vector specifies that 10 contour lines be drawn,
one at each element of the vector.

• Defines the view and projection type (camva, camproj, campos).

• Sets figure (gcf) and axes (gca) characteristics.

[x y z v] = flow;
h = contourslice(x,y,z,v,[1:9],[],[0],linspace(-8,2,10));
axis([0,10,-3,3,-3,3]); daspect([1,1,1])
camva(24); camproj perspective;

2-708

contourslice

campos([-3,-15,5])
set(gcf,'Color',[.5,.5,.5],'Renderer','zbuffer')
set(gca,'Color','black','XColor','white', ...
'YColor','white','ZColor','white')

box on

This example draws contour slices along a spherical surface within
the volume.

[x,y,z] = meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);
v = x.*exp(-x.^2-y.^2-z.^2); % Create volume data

2-709

contourslice

[xi,yi,zi] = sphere; % Plane to contour
contourslice(x,y,z,v,xi,yi,zi)
view(3)

See Also isosurface, slice, smooth3, subvolume, reducevolume

“Volume Visualization” on page 1-106 for related functions

2-710

contrast

Purpose Grayscale colormap for contrast enhancement

Syntax cmap = contrast(X)
cmap = contrast(X,m)

Description The contrast function enhances the contrast of an image. It creates a
new gray colormap, cmap, that has an approximately equal intensity
distribution. All three elements in each row are identical.

cmap = contrast(X) returns a gray colormap that is the same length
as the current colormap.

cmap = contrast(X,m) returns an m-by-3 gray colormap.

Examples Add contrast to the clown image defined by X.

load clown;
cmap = contrast(X);
image(X);
colormap(cmap);

See Also brighten, colormap, image

“Colormaps” on page 1-103 for related functions

2-711

conv

Purpose Convolution and polynomial multiplication

Syntax w = conv(u,v)

Description w = conv(u,v) convolves vectors u and v. Algebraically, convolution is
the same operation as multiplying the polynomials whose coefficients
are the elements of u and v.

Definition Let m = length(u) and n = length(v) . Then w is the vector of length
m+n-1 whose kth element is

The sum is over all the values of j which lead to legal subscripts for
u(j) and v(k+1-j), specifically j = max(1,k+1-n): min(k,m). When
m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)

Algorithm The convolution theorem says, roughly, that convolving two sequences
is the same as multiplying their Fourier transforms. In order to make
this precise, it is necessary to pad the two vectors with zeros and ignore
roundoff error. Thus, if

X = fft([x zeros(1,length(y)-1)])

and

Y = fft([y zeros(1,length(x)-1)])

2-712

conv

then conv(x,y) = ifft(X.*Y)

See Also conv2, convn, deconv, filter

convmtx and xcorr in the Signal Processing Toolbox

2-713

conv2

Purpose 2-D convolution

Syntax C = conv2(A,B)
C = conv2(hcol,hrow,A)
C = conv2(...,'shape')

Description C = conv2(A,B) computes the two-dimensional convolution of matrices
A and B. If one of these matrices describes a two-dimensional finite
impulse response (FIR) filter, the other matrix is filtered in two
dimensions.

The size of C in each dimension is equal to the sum of the corresponding
dimensions of the input matrices, minus one. That is, if the size
of A is [ma,na] and the size of B is [mb,nb], then the size of C is
[ma+mb-1,na+nb-1].

The indices of the center element of B are defined as floor(([mb
nb]+1)/2).

C = conv2(hcol,hrow,A) convolves A first with the vector hcol along
the rows and then with the vector hrow along the columns. If hcol is
a column vector and hrow is a row vector, this case is the same as C
= conv2(hcol*hrow,A).

C = conv2(...,'shape') returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:

full Returns the full two-dimensional convolution
(default).

same Returns the central part of the convolution of the
same size as A.

valid Returns only those parts of the convolution that
are computed without the zero-padded edges.
Using this option, C has size [ma-mb+1,na-nb+1]
when all(size(A) >= size(B)). Otherwise conv2
returns [].

2-714

conv2

Note If any of A, B, hcol, and hrow are empty, then C is an empty
matrix [].

Algorithm conv2 uses a straightforward formal implementation of the
two-dimensional convolution equation in spatial form. If and are
functions of two discrete variables, and , then the formula for the
two-dimensional convolution of and is

In practice however, conv2 computes the convolution for finite intervals.

Note that matrix indices in MATLAB software always start at 1 rather
than 0. Therefore, matrix elements A(1,1), B(1,1), and C(1,1)
correspond to mathematical quantities a (0,0), b (0,0), and c (0,0).

Examples Example 1

For the 'same' case, conv2 returns the central part of the convolution.
If there are an odd number of rows or columns, the “center” leaves one
more at the beginning than the end.
This example first computes the convolution of A using the default
('full') shape, then computes the convolution using the 'same'
shape. Note that the array returned using 'same' corresponds to the
underlined elements of the array returned using the default shape.

A = rand(3);
B = rand(4);
C = conv2(A,B) % C is 6-by-6

C =
0.1838 0.2374 0.9727 1.2644 0.7890 0.3750
0.6929 1.2019 1.5499 2.1733 1.3325 0.3096
0.5627 1.5150 2.3576 3.1553 2.5373 1.0602

2-715

conv2

0.9986 2.3811 3.4302 3.5128 2.4489 0.8462
0.3089 1.1419 1.8229 2.1561 1.6364 0.6841
0.3287 0.9347 1.6464 1.7928 1.2422 0.5423

Cs = conv2(A,B,'same') % Cs is the same size as A: 3-by-3
Cs =

2.3576 3.1553 2.5373
3.4302 3.5128 2.4489
1.8229 2.1561 1.6364

Example 2

In image processing, the Sobel edge finding operation is a
two-dimensional convolution of an input array with the special matrix

s = [1 2 1; 0 0 0; -1 -2 -1];

These commands extract the horizontal edges from a raised pedestal.

A = zeros(10);
A(3:7,3:7) = ones(5);
H = conv2(A,s);
mesh(H)

2-716

conv2

Transposing the filter s extracts the vertical edges of A.

V = conv2(A,s');
figure, mesh(V)

2-717

conv2

This figure combines both horizontal and vertical edges.

figure
mesh(sqrt(H.^2 + V.^2))

2-718

conv2

See Also conv, convn, filter2

xcorr2 in the Signal Processing Toolbox

2-719

convhull

Purpose Convex hull

Syntax K = convhull(x,y)
K = convhull(x,y,options)
[K,a] = convhull(...)

Description K = convhull(x,y) returns indices into the x and y vectors of the
points on the convex hull.

convhull uses Qhull.

K = convhull(x,y,options) specifies a cell array of strings options
to be used in Qhull via convhulln. The default option is {'Qt'}.

If options is [], the default options are used. If options is {''}, no
options will be used, not even the default. For more information on
Qhull and its options, see http://www.qhull.org.

[K,a] = convhull(...) also returns the area of the convex hull.

Visualization Use plot to plot the output of convhull.

Examples Example 1

xx = -1:.05:1; yy = abs(sqrt(xx));
[x,y] = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(k),y(k),'r-',x,y,'b+')

2-720

http://www.qhull.org

convhull

Example 2

The following example illustrates the options input for convhull. The
following commands

X = [0 0 0 1];
Y = [0 1e-10 0 1];
K = convhull(X,Y)

return a warning.

Warning: qhull precision warning:
The initial hull is narrow (cosine of min. angle is
0.9999999999999998).
A coplanar point may lead to a wide facet. Options 'QbB' (scale
to unit box)
or 'Qbb' (scale last coordinate) may remove this warning. Use 'Pp'
to skip

2-721

convhull

this warning.

To suppress this warning, use the option 'Pp'. The following command
passes the option 'Pp', along with the default 'Qt', to convhull.

K = convhull(X,Y,{'Qt','Pp'})

K =

2
1
4
2

Algorithm convhull is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhulln, delaunay, plot, polyarea, voronoi

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in PDF
format at http://www.acm.org/pubs/citations/journals
/toms/1996-22-4/p469-barber.

[2] National Science and Technology Research Center for Computation
and Visualization of Geometric Structures (The Geometry Center),
University of Minnesota, 1993.

2-722

http://www.qhull.org/
http://www.qhull.org/COPYING.txt
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/

convhulln

Purpose N-D convex hull

Syntax K = convhulln(X)
K = convulln(X, options)
[K, v] = convhulln(...)

Description K = convhulln(X) returns the indices K of the points in X that comprise
the facets of the convex hull of X. X is an m-by-n array representing m
points in N-dimensional space. If the convex hull has p facets then
K is p-by-n.

convhulln uses Qhull.

K = convulln(X, options) specifies a cell array of strings options to
be used as options in Qhull. The default options are:

• {'Qt'} for 2-, 3-. and 4-dimensional input

• {'Qt','Qx'} for 5-dimensional input and higher.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default. For more information on Qhull
and its options, see http://www.qhull.org/.

[K, v] = convhulln(...) also returns the volume v of the convex
hull.

Visualization Plotting the output of convhulln depends on the value of n:

• For n = 2, use plot as you would for convhull.

• For n = 3, you can use trisurf to plot the output. The calling
sequence is

K = convhulln(X);
trisurf(K,X(:,1),X(:,2),X(:,3))

2-723

http://www.qhull.org/

convhulln

For more control over the color of the facets, use patch to plot
the output. For an example, see “Convex Hulls” in the MATLAB
documentation.

• You cannot plot convhulln output for n > 3.

Example The following example illustrates the options input for convhulln.
The following commands

X = [0 0; 0 1e-10; 0 0; 1 1];
K = convhulln(X)

return a warning.

Warning: qhull precision warning:
The initial hull is narrow
(cosine of min. angle is 0.9999999999999998).
A coplanar point may lead to a wide facet.
Options 'QbB' (scale to unit box) or 'Qbb'
(scale last coordinate) may remove this warning.
Use 'Pp' to skip this warning.

To suppress the warning, use the option 'Pp'. The following command
passes the option 'Pp', along with the default 'Qt', to convhulln.

K = convhulln(X,{'Qt','Pp'})

K =

1 4
1 2
4 2

Algorithm convhulln is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhull, delaunayn, dsearchn, tsearchn, voronoin

2-724

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

convhulln

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-725

convn

Purpose N-D convolution

Syntax C = convn(A,B)
C = convn(A,B,'shape')

Description C = convn(A,B) computes the N-dimensional convolution of the arrays
A and B. The size of the result is size(A)+size(B)-1.

C = convn(A,B,'shape') returns a subsection of the N-dimensional
convolution, as specified by the shape parameter:

'full' Returns the full N-dimensional convolution
(default).

'same' Returns the central part of the result that is the
same size as A.

'valid' Returns only those parts of the convolution that
can be computed without assuming that the array
A is zero-padded. The size of the result is

max(size(A)-size(B) + 1, 0)

See Also conv, conv2

2-726

copyfile

Purpose Copy file or directory

GUI
Alternatives

As an alternative to the cd function, you can copy files and directories
using the Current Directory browser.

Syntax copyfile('source','destination')
copyfile('source','destination','f')
[status,message,messageid] = copyfile('source','destination',

'f')

Description copyfile('source','destination') copies the file or directory,
source (and all its contents) to the file or directory, destination,
where source and destination are the absolute or relative path
names for the directory or file. If source is a directory, destination
also must be a directory. If source is a directory, copyfile copies the
contents of source, not the directory itself. To rename a file or directory
when copying it, make destination a different name than source. If
destination already exists, copyfile replaces it without warning.
To copy multiple files or directories, you can use one or more wildcard
characters * after the last file separator in source. You cannot use a
wildcard character in destination. You can rename when copying only
when source is a single file. The read-only and archive attributes of
source are not preserved in destination.

copyfile('source','destination','f') copies source to
destination, regardless of the read-only attribute of destination.

[status,message,messageid] =
copyfile('source','destination','f') copies source to
destination, returning the status, a message, and the MATLAB
error message ID (see error and lasterror). Here, status is 1 for
success and 0 for error. Only one output argument is required and the
f input argument is optional.

2-727

copyfile

Remarks You can use a * (wildcard) in a path string. Current behavior of
copyfile differs between the UNIX3 and Windows platforms when
using the wildcard (*) or copying directories.

The timestamp given to the destination file is identical to that taken
from the source file.

Examples Copying and Renaming a File

To make a copy of a file myfun.m in the current directory, assigning it
the name myfun2.m, type

copyfile('myfun.m','myfun2.m')

Copying to Another Directory

To copy myfun.m to the directory d:/work/myfiles, keeping the same
filename, type

copyfile('myfun.m','d:/work/myfiles')

Copying With a Wildcard

To copy all files in the directory myfiles whose names begin with my to
the directory newprojects, where newprojects is at the same level as
the current directory, type

copyfile('myfiles/my*','../newprojects')

Copying and Returning Status

To copy all files and subdirectories in the current directory’s myfiles
directory to the directory d:/work/myfiles. :

[s,mess,messid]=copyfile('myfiles','d:/work/myfiles')
s =

1

mess =

3. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-728

copyfile

''

messid =
''

The message returned indicates that copyfile was successful.

Note that before running the copyfile function, d:/work does not
contain the directory myfiles. It is created because myfiles is
appended to destination in the copyfile function

Copying to a Read-Only Directory

Copy myfile.m from the current directory to d:/work/restricted,
where restricted is a read-only directory:

copyfile('myfile.m','d:/work/restricted','f')

After the copy, myfile.m exists in d:/work/restricted.

See Also cd, delete, dir, fileattrib, filebrowser, fileparts, mkdir,
movefile, rmdir

“Managing Files and Working with the Current Directory”

2-729

copyobj

Purpose Copy graphics objects and their descendants

Syntax new_handle = copyobj(h,p)

Description copyobj creates copies of graphics objects. The copies are identical
to the original objects except the copies have different values for
their Parent property and a new handle. The new parent must be
appropriate for the copied object (e.g., you can copy a line object only to
another axes object).

new_handle = copyobj(h,p) copies one or more graphics objects
identified by h and returns the handle of the new object or a vector
of handles to new objects. The new graphics objects are children of
the graphics objects specified by p.

Remarks h and p can be scalars or vectors. When both are vectors, they must be
the same length, and the output argument, new_handle, is a vector of
the same length. In this case, new_handle(i) is a copy of h(i) with
its Parent property set to p(i).

When h is a scalar and p is a vector, h is copied once to each of the
parents in p. Each new_handle(i) is a copy of h with its Parent
property set to p(i), and length(new_handle) equals length(p).

When h is a vector and p is a scalar, each new_handle(i) is a copy
of h(i) with its Parent property set to p. The length of new_handle
equals length(h).

Graphics objects are arranged as a hierarchy. See “Handle Graphics
Objects” for more information.

When programming a GUI, do not call copyobj or textwrap (which
calls copyobj) inside a CreateFcn. The act of copying the uicontrol
object fires the CreateFcn repeatedly, which raises a series of error
messages after exceeding the root object’s RecursionLimit property.

Examples Copy a surface to a new axes within a different figure.

h = surf(peaks);

2-730

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/rootobject_props.html%23RecursionLimit

copyobj

colormap hot
figure % Create a new figure
axes % Create an axes object in the figure
new_handle = copyobj(h,gca);
colormap hot
view(3)
grid on

Note that while the surface is copied, the colormap (figure property),
view, and grid (axes properties) are not copies.

See Also findobj, gcf, gca, gco, get, set

Parent property for all graphics objects

“Graphics Object Identification” on page 1-97 for related functions

2-731

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/infotool/hgprop/doc_frame.html

corrcoef

Purpose Correlation coefficients

Syntax R = corrcoef(X)
R = corrcoef(x,y)
[R,P]=corrcoef(...)
[R,P,RLO,RUP]=corrcoef(...)
[...]=corrcoef(...,'param1',val1,'param2',val2,...)

Description R = corrcoef(X) returns a matrix R of correlation coefficients
calculated from an input matrix X whose rows are observations and
whose columns are variables. The matrix R = corrcoef(X) is related
to the covariance matrix C = cov(X) by

corrcoef(X) is the zeroth lag of the normalized covariance function,
that is, the zeroth lag of xcov(x,'coeff') packed into a square array.

R = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]). If x and y are not column vectors, corrcoef converts
them to column vectors. For example, in this case R=corrcoef(x,y)
is equivalent to R=corrcoef([x(:) y(:)]).

[R,P]=corrcoef(...) also returns P, a matrix of p-values for testing
the hypothesis of no correlation. Each p-value is the probability of
getting a correlation as large as the observed value by random chance,
when the true correlation is zero. If P(i,j) is small, say less than 0.05,
then the correlation R(i,j) is significant.

[R,P,RLO,RUP]=corrcoef(...) also returns matrices RLO and RUP,
of the same size as R, containing lower and upper bounds for a 95%
confidence interval for each coefficient.

[...]=corrcoef(...,'param1',val1,'param2',val2,...) specifies
additional parameters and their values. Valid parameters are the
following.

2-732

corrcoef

’alpha’ A number between 0 and 1 to specify a confidence
level of 100*(1 - alpha)%. Default is 0.05 for 95%
confidence intervals.

’rows’ Either 'all' (default) to use all rows,
'complete' to use rows with no NaN values, or
'pairwise' to compute R(i,j) using rows with
no NaN values in either column i or j.

The p-value is computed by transforming the correlation to create a
t statistic having n-2 degrees of freedom, where n is the number of
rows of X. The confidence bounds are based on an asymptotic normal
distribution of 0.5*log((1+R)/(1-R)), with an approximate variance
equal to 1/(n-3). These bounds are accurate for large samples when
X has a multivariate normal distribution. The 'pairwise' option can
produce an R matrix that is not positive definite.

Examples Generate random data having correlation between column 4 and the
other columns.

x = randn(30,4); % Uncorrelated data
x(:,4) = sum(x,2); % Introduce correlation.
[r,p] = corrcoef(x) % Compute sample correlation and p-values.
[i,j] = find(p<0.05); % Find significant correlations.
[i,j] % Display their (row,col) indices.

r =
1.0000 -0.3566 0.1929 0.3457

-0.3566 1.0000 -0.1429 0.4461
0.1929 -0.1429 1.0000 0.5183
0.3457 0.4461 0.5183 1.0000

p =
1.0000 0.0531 0.3072 0.0613
0.0531 1.0000 0.4511 0.0135
0.3072 0.4511 1.0000 0.0033
0.0613 0.0135 0.0033 1.0000

2-733

corrcoef

ans =
4 2
4 3
2 4
3 4

See Also cov, mean, median, std, var

xcorr, xcov in the Signal Processing Toolbox

2-734

cos

Purpose Cosine of argument in radians

Syntax Y = cos(X)

Description The cos function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = cos(X) returns the circular cosine for each element of X.

Examples Graph the cosine function over the domain .

x = -pi:0.01:pi;
plot(x,cos(x)), grid on

The expression cos(pi/2) is not exactly zero but a value the size of
the floating-point accuracy, eps, because pi is only a floating-point
approximation to the exact value of .

2-735

cos

Definition The cosine can be defined as

Algorithm cos uses FDLIBM, which was developed at SunSoft, a Sun Microsystems
business, by Kwok C. Ng, and others. For information about FDLIBM,
see http://www.netlib.org.

See Also cosd, cosh, acos, acosd, acosh

2-736

http://www.netlib.org

cosd

Purpose Cosine of argument in degrees

Syntax Y = cosd(X)

Description Y = cosd(X) is the cosine of the elements of X, expressed in degrees.
For odd integers n, cosd(n*90) is exactly zero, whereas cos(n*pi/2)
reflects the accuracy of the floating point value of pi.

See Also cos, cosh, acos, acosd, acosh

2-737

cosh

Purpose Hyperbolic cosine

Syntax Y = cosh(X)

Description The cosh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = cosh(X) returns the hyperbolic cosine for each element of X.

Examples Graph the hyperbolic cosine function over the domain .

x = -5:0.01:5;
plot(x,cosh(x)), grid on

Definition The hyperbolic cosine can be defined as

2-738

cosh

Algorithm cosh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also acos, acosh, cos

2-739

http://www.netlib.org

cot

Purpose Cotangent of argument in radians

Syntax Y = cot(X)

Description The cot function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = cot(X) returns the cotangent for each element of X.

Examples Graph the cotangent the domains and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2)), grid on

Definition The cotangent can be defined as

2-740

cot

Algorithm cot uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also cotd, coth, acot, acotd, acoth

2-741

http://www.netlib.org

cotd

Purpose Cotangent of argument in degrees

Syntax Y = cotd(X)

Description Y = cotd(X) is the cotangent of the elements of X, expressed in degrees.
For integers n, cotd(n*180) is infinite, whereas cot(n*pi) is large but
finite, reflecting the accuracy of the floating point value of pi.

See Also cot, coth, acot, acotd, acoth

2-742

coth

Purpose Hyperbolic cotangent

Syntax Y = coth(X)

Description The coth function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = coth(X) returns the hyperbolic cotangent for each element of X.

Examples Graph the hyperbolic cotangent over the domains and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,coth(x1),x2,coth(x2)), grid on

Definition The hyperbolic cotangent can be defined as

2-743

coth

Algorithm coth uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acot, acoth, cot

2-744

http://www.netlib.org

cov

Purpose Covariance matrix

Syntax cov(x)
cov(x) or cov(x,y)
cov(x,1) or cov(x,y,1)

Description cov(x), if X is a vector, returns the variance. For matrices, where each
row is an observation, and each column is a variable, cov(X) is the
covariance matrix. diag(cov(X)) is a vector of variances for each
column, and sqrt(diag(cov(X))) is a vector of standard deviations.
cov(X,Y), where X and Y are matrices with the same number of
elements, is equivalent to cov([X(:) Y(:)]).

cov(x) or cov(x,y) normalizes by N-1, if N>1, where N is the number
of observations. This makes cov(X) the best unbiased estimate of the
covariance matrix if the observations are from a normal distribution.
For N=1, cov normalizes by N.

cov(x,1) or cov(x,y,1) normalizes by N and produces the second
moment matrix of the observations about their mean. cov(X,Y,0) is
the same as cov(X,Y) and cov(X,0) is the same as cov(X).

Remarks cov removes the mean from each column before calculating the result.

The covariance function is defined as

where is the mathematical expectation and .

Examples Consider A = [-1 1 2 ; -2 3 1 ; 4 0 3]. To obtain a vector of
variances for each column of A:

v = diag(cov(A))'
v =

10.3333 2.3333 1.0000

Compare vector v with covariance matrix C:

2-745

cov

C =
10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

The diagonal elements C(i,i) represent the variances for the columns
of A. The off-diagonal elements C(i,j) represent the covariances of
columns i and j.

See Also corrcoef, mean, median, std, var

xcorr, xcov in the Signal Processing Toolbox

2-746

cplxpair

Purpose Sort complex numbers into complex conjugate pairs

Syntax B = cplxpair(A)
B = cplxpair(A,tol)
B = cplxpair(A,[],dim)
B = cplxpair(A,tol,dim)

Description B = cplxpair(A) sorts the elements along different dimensions of a
complex array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair,
the element with negative imaginary part comes first. The purely real
values are returned following all the complex pairs. The complex
conjugate pairs are forced to be exact complex conjugates. A default
tolerance of 100*eps relative to abs(A(i)) determines which numbers
are real and which elements are paired complex conjugates.

If A is a vector, cplxpair(A) returns A with complex conjugate pairs
grouped together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and
complex conjugates paired.

If A is a multidimensional array, cplxpair(A) treats the values along
the first non-singleton dimension as vectors, returning an array of
sorted elements.

B = cplxpair(A,tol) overrides the default tolerance.

B = cplxpair(A,[],dim) sorts A along the dimension specified by
scalar dim.

B = cplxpair(A,tol,dim) sorts A along the specified dimension and
overrides the default tolerance.

Diagnostics If there are an odd number of complex numbers, or if the complex
numbers cannot be grouped into complex conjugate pairs within the
tolerance, cplxpair generates the error message

Complex numbers can't be paired.

2-747

cputime

Purpose Elapsed CPU time

Syntax cputime

Description cputime returns the total CPU time (in seconds) used by your MATLAB
application from the time it was started. This number can overflow the
internal representation and wrap around.

Remarks Although it is possible to measure performance using the cputime
function, it is recommended that you use the tic and toc functions
for this purpose exclusively. See Using tic and toc Versus the cputime
Function in the MATLAB Programming Fundamentals documentation
for more information.

Examples The following code returns the CPU time used to run surf(peaks(40)).

t = cputime; surf(peaks(40)); e = cputime-t

e =
0.4667

See Also clock, etime, tic, toc

2-748

create (RandStream)

Purpose Create random number streams

Class @RandStream

Syntax [s1,s2,...] = RandStream.create('gentype','NumStreams',n)
s = RandStream.create('gentype')
[...] = RandStream.create(..., 'PARAM1',val1, 'PARAM2',val2,

...)

Description [s1,s2,...] = RandStream.create('gentype','NumStreams',n)
creates n random number streams that use the uniform pseudorandom
number generator algorithm specified by gentype. The streams are
independent in a pseudorandom sense. The streams are not necessarily
independent from streams created at other times. RandStream.list
returns all possible values for gentype.

Note Multiple streams are not supported by all generator types.
The multiplicative lagged Fibonacci generator (mlfg6331_64) and the
combined multiple recursive generator (mrg32k3a) need to be active
to use multiple stream creation.

s = RandStream.create('gentype') creates a single random stream.

[...] = RandStream.create(..., 'PARAM1',val1,
'PARAM2',val2, ...) allows you to specify optional parameter name
or value pairs to control creation of the stream(s). The parameters are:

NumStreams Total number of streams of this
type that will be created across
sessions or labs. Default is 1.

StreamIndices Stream indices that should be
created in this call. Default is 1:N,
where N is the value given with
the 'NumStreams' parameter.

2-749

create (RandStream)

Seed Nonnegative scalar integer with
which to initialize all streams.
Default is 0. Seeds must be an
integer between 0 and .

RandnAlg Algorithm that will be used by
randn(S, ...) to generate
normal pseudorandom values.
Options are 'Ziggurat',
'Polar', or 'Inversion'.

CellOutput Logical flag indicating whether or
not to return the stream objects as
elements of a cell array. Default
is false.

Examples Create three independent streams.

[s1,s2,s3] = RandStream.create('mrg32k3a','NumStreams',3);
r1 = rand(s1,100000,1); r2 = rand(s2,100000,1); r3 = rand(s3,100000,1)
corrcoef([r1,r2,r3])

Create one stream from a set of three independent streams and
designate it as the default stream.

s2 = RandStream.create('mrg32k3a','NumStreams',3,'StreamIndices',2);
RandStream.setDefaultStream(s2);

See Also @RandStream, RandStream (RandStream), list (RandStream),
getDefaultStream (RandStream), setDefaultStream (RandStream),
rand (RandStream), randi (RandStream), randn (RandStream).

2-750

createClassFromWsdl

Purpose Create MATLAB object based on WSDL file

Syntax createClassFromWsdl(source)

Description createClassFromWsdl(source) creates a MATLAB object based on a Web
Services Description Language (WSDL) application program interface
(API). The source argument is a string that specifies a URL or path
to a WSDL API, which defines Web service methods, arguments, and
transactions. It returns the name of the new class.

Based on the WSDL API, the createClassFromWsdl function creates
a new folder in the current directory. The folder contains an M-file
for each Web service method. In addition, two default M-files are
created: the object’s display method (display.m) and its constructor
(servicename.m).

For example, if myWebService offers two methods (method1 and
method2), the createClassFromWsdl function creates

• @myWebService folder in the current directory

• method1.m — M-file for method1

• method2.m — M-file for method2

• display.m — Default M-file for display method

• myWebService.m — Default M-file for the myWebService MATLAB
object

Remarks For more information about WSDL and Web services, see the following
resources:

• World Wide Web Consortium (W3C®) WSDL specification

• W3C SOAP specification

• XMethods

See Also callSoapService, createSoapMessage, parseSoapResponse

2-751

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/
http://www.xmethods.net/ve2/index.po

createCopy (inputParser)

Purpose Create copy of inputParser object

Syntax p.createCopy
createCopy(p)

Description p.createCopy creates a copy of inputParser object p. Because the
inputParser class uses handle semantics, a normal assignment
statement does not create a copy.

createCopy(p) is functionally the same as the syntax above.

For more information on the inputParser class, see “Parsing Inputs
with inputParser”in the MATLAB Programming Fundamentals
documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class.
Construct an instance of inputParser and assign it to variable p:

function publish_ip(script, varargin)
p = inputParser; % Create an instance of the inputParser class.

Add arguments to the schema. See the reference pages for the
addRequired, addOptional, and addParamValue methods for help with
this:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Make a copy of object p, assigning it to variable x. Use the Parameters
property of inputParser to list the arguments belonging to each object:

disp(' ')
disp 'The input parameters for object p are'

2-752

createCopy (inputParser)

disp(p.Parameters')

x = p.createCopy;

disp(' ')
disp 'The input parameters for the copy of object p are'
disp(x.Parameters')

Save the M-file using the Save option on the MATLAB File menu,
and then run it:

publish_ip('ipscript.m', 'ppt', 'maxWidth', 500, 'MAXHeight', 300);

The input parameters for object p are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

The input parameters for the copy of object p are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

See Also inputParser, addRequired(inputParser),
addOptional(inputParser), addParamValue(inputParser),
parse(inputParser)

2-753

createSoapMessage

Purpose Create SOAP message to send to server

Syntax createSoapMessage(namespace, method, values, names, types,
style)

Description createSoapMessage(namespace, method, values, names, types,
style) creates a SOAP message. values, names, and types are
cell arrays. names defaults to dummy names and types defaults to
unspecified. The optional style argument specifies 'document' or
'rpc' messages; rpc is the default.

See Also callSoapService, createClassFromWsdl, parseSoapResponse

2-754

cross

Purpose Vector cross product

Syntax C = cross(A,B)
C = cross(A,B,dim)

Description C = cross(A,B) returns the cross product of the vectors A and B.
That is, C = A x B. A and B must be 3-element vectors. If A and B are
multidimensional arrays, cross returns the cross product of A and B
along the first dimension of length 3.

C = cross(A,B,dim) where A and B are multidimensional arrays,
returns the cross product of A and B in dimension dim. A and B must
have the same size, and both size(A,dim) and size(B,dim) must be 3.

Remarks To perform a dot (scalar) product of two vectors of the same size, use
c = dot(a,b).

Examples The cross and dot products of two vectors are calculated as shown:

a = [1 2 3];
b = [4 5 6];
c = cross(a,b)

c =
-3 6 -3

d = dot(a,b)

d =
32

See Also dot

2-755

csc

Purpose Cosecant of argument in radians

Syntax Y = csc(x)

Description The csc function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = csc(x) returns the cosecant for each element of x.

Examples Graph the cosecant over the domains and .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csc(x1),x2,csc(x2)), grid on

2-756

csc

Definition The cosecant can be defined as

Algorithm csc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems
business, by Kwok C. Ng, and others. For information about FDLIBM,
see http://www.netlib.org.

See Also cscd, csch, acsc, acscd, acsch

2-757

http://www.netlib.org

cscd

Purpose Cosecant of argument in degrees

Syntax Y = cscd(X)

Description Y = cscd(X) is the cosecant of the elements of X, expressed in degrees.
For integers n, cscd(n*180) is infinite, whereas csc(n*pi) is large but
finite, reflecting the accuracy of the floating point value of pi.

See Also csc, csch, acsc, acscd, acsch

2-758

csch

Purpose Hyperbolic cosecant

Syntax Y = csch(x)

Description The csch function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = csch(x) returns the hyperbolic cosecant for each element of x.

Examples Graph the hyperbolic cosecant over the domains and
.

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csch(x1),x2,csch(x2)), grid on

Definition The hyperbolic cosecant can be defined as

2-759

csch

Algorithm csch uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acsc, acsch, csc

2-760

http://www.netlib.org

csvread

Purpose Read comma-separated value file

Syntax M = csvread(filename)
M = csvread(filename, row, col)
M = csvread(filename, row, col, range)

Description M = csvread(filename) reads a comma-separated value formatted
file, filename. The filename input is a string enclosed in single quotes.
The result is returned in M. The file can only contain numeric values.

M = csvread(filename, row, col) reads data from the
comma-separated value formatted file starting at the specified row and
column. The row and column arguments are zero based, so that row=0
and col=0 specify the first value in the file.

M = csvread(filename, row, col, range) reads only the range
specified. Specify range using the notation [R1 C1 R2 C2] where
(R1,C1) is the upper left corner of the data to be read and (R2,C2) is the
lower right corner. You can also specify the range using spreadsheet
notation, as in range = 'A1..B7'.

Remarks csvread fills empty delimited fields with zero. Data files having lines
that end with a nonspace delimiter, such as a semicolon, produce a
result that has an additional last column of zeros.

csvread imports any complex number as a whole into a complex
numeric field, converting the real and imaginary parts to the specified
numeric type. Valid forms for a complex number are

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j

Embedded white-space in a complex number is invalid and is regarded
as a field delimiter.

2-761

csvread

Examples Given the file csvlist.dat that contains the comma-separated values

02, 04, 06, 08, 10, 12
03, 06, 09, 12, 15, 18
05, 10, 15, 20, 25, 30
07, 14, 21, 28, 35, 42
11, 22, 33, 44, 55, 66

To read the entire file, use

csvread('csvlist.dat')

ans =

2 4 6 8 10 12
3 6 9 12 15 18
5 10 15 20 25 30
7 14 21 28 35 42

11 22 33 44 55 66

To read the matrix starting with zero-based row 2, column 0, and assign
it to the variable m,

m = csvread('csvlist.dat', 2, 0)

m =

5 10 15 20 25 30
7 14 21 28 35 42

11 22 33 44 55 66

To read the matrix bounded by zero-based (2,0) and (3,3) and assign
it to m,

m = csvread('csvlist.dat', 2, 0, [2,0,3,3])

m =

2-762

csvread

5 10 15 20
7 14 21 28

See Also csvwrite, dlmread, textscan, wk1read, file formats, importdata,
uiimport

2-763

csvwrite

Purpose Write comma-separated value file

Syntax csvwrite(filename,M)
csvwrite(filename,M,row,col)

Description csvwrite(filename,M) writes matrix M into filename as
comma-separated values. The filename input is a string enclosed in
single quotes.

csvwrite(filename,M,row,col) writes matrix M into filename
starting at the specified row and column offset. The row and column
arguments are zero based, so that row=0 and C=0 specify the first value
in the file.

Remarks csvwrite terminates each line with a line feed character and no
carriage return.

Examples The following example creates a comma-separated value file from the
matrix m.

m = [3 6 9 12 15; 5 10 15 20 25; ...
7 14 21 28 35; 11 22 33 44 55];

csvwrite('csvlist.dat',m)
type csvlist.dat

3,6,9,12,15
5,10,15,20,25
7,14,21,28,35
11,22,33,44,55

The next example writes the matrix to the file, starting at a column
offset of 2.

csvwrite('csvlist.dat',m,0,2)
type csvlist.dat

2-764

csvwrite

,,3,6,9,12,15
,,5,10,15,20,25
,,7,14,21,28,35
,,11,22,33,44,55

See Also csvread, dlmwrite, wk1write,file formats, importdata, uiimport

2-765

ctranspose (timeseries)

Purpose Transpose timeseries object

Syntax ts1 = ctranspose(ts)

Description ts1 = ctranspose(ts) returns a new timeseries object ts1 with
IsTimeFirst value set to the opposite of what it is for ts. For example,
if ts has the first data dimension aligned with the time vector, ts1
has the last data dimension aligned with the time vector as a result of
this operation.

Remarks The ctranspose function that is overloaded for timeseries objects does
not transpose the data. Instead, this function changes whether the first
or the last dimension of the data is aligned with the time vector.

Note To transpose the data, you must transpose the Data property
of the timeseries object. For example, you can use the syntax
ctranspose(ts.Data) or (ts.Data)'. Data must be a 2-D array.

Consider a timeseries object with 10 samples with the property
IsTimeFirst = True. When you transpose this object, the data size is
changed from 10-by-1 to 1-by-1-by-10. Note that the first dimension of
the Data property is shown explicitly.

The following table summarizes the size for Data property of the
timeseries object (up to three dimensions) before and after transposing.

Data Size Before and After Transposing

Size of Original Data Size of Transposed Data

N-by-1 1-by-1-by-N
N-by-M M-by-1-by-N
N-by-M-by-L M-by-L-by-N

2-766

ctranspose (timeseries)

Examples Suppose that a timeseries object ts has ts.data size 10-by-3-by-2
and its time vector has a length of 10. The IsTimeFirst property of
ts is set to true, which means that the first dimension of the data is
aligned with the time vector. ctranspose(ts) modifies ts such that
the last dimension of the data is now aligned with the time vector. This
permutes the data such that the size of ts.Data becomes 3-by-2-by-10.

See Also transpose (timeseries), tsprops

2-767

cumprod

Purpose Cumulative product

Syntax B = cumprod(A)
B = cumprod(A,dim)

Description B = cumprod(A) returns the cumulative product along different
dimensions of an array.

If A is a vector, cumprod(A) returns a vector containing the cumulative
product of the elements of A.

If A is a matrix, cumprod(A) returns a matrix the same size as A
containing the cumulative products for each column of A.

If A is a multidimensional array, cumprod(A) works on the first
nonsingleton dimension.

B = cumprod(A,dim) returns the cumulative product of the elements
along the dimension of A specified by scalar dim. For example,
cumprod(A,1) increments the column index, thus working along the
columns of A. Thus, cumprod(A,1) and cumprod(A) will return the same
thing. To increment the row index, use cumprod(A,2).

Examples cumprod(1:5)
ans =

1 2 6 24 120

A = [1 2 3; 4 5 6];

cumprod(A,1)
ans =

1 2 3
4 10 18

cumprod(A,2)
ans =

1 2 6
4 20 120

2-768

cumprod

See Also cumsum, prod, sum

2-769

cumsum

Purpose Cumulative sum

Syntax B = cumsum(A)
B = cumsum(A,dim)

Description B = cumsum(A) returns the cumulative sum along different dimensions
of an array.

If A is a vector, cumsum(A) returns a vector containing the cumulative
sum of the elements of A.

If A is a matrix, cumsum(A) returns a matrix the same size as A
containing the cumulative sums for each column of A.

If A is a multidimensional array, cumsum(A) works on the first
nonsingleton dimension.

B = cumsum(A,dim) returns the cumulative sum of the elements along
the dimension of A specified by scalar dim. For example, cumsum(A,1)
works along the first dimension (the columns); cumsum(A,2) works
along the second dimension (the rows).

Examples cumsum(1:5)
ans =

[1 3 6 10 15]

A = [1 2 3; 4 5 6];

cumsum(A,1)
ans =

1 2 3
5 7 9

cumsum(A,2)
ans =

1 3 6
4 9 15

2-770

cumsum

See Also cumprod, prod, sum

2-771

cumtrapz

Purpose Cumulative trapezoidal numerical integration

Syntax Z = cumtrapz(Y)
Z = cumtrapz(X,Y)
Z = cumtrapz(X,Y,dim) or cumtrapz(Y,dim)

Description Z = cumtrapz(Y) computes an approximation of the cumulative
integral of Y via the trapezoidal method with unit spacing. To compute
the integral with other than unit spacing, multiply Z by the spacing
increment. Input Y can be complex.

For vectors, cumtrapz(Y) is a vector containing the cumulative integral
of Y.

For matrices, cumtrapz(Y) is a matrix the same size as Y with the
cumulative integral over each column.

For multidimensional arrays, cumtrapz(Y) works across the first
nonsingleton dimension.

Z = cumtrapz(X,Y) computes the cumulative integral of Y with respect
to X using trapezoidal integration. X and Y must be vectors of the
same length, or X must be a column vector and Y an array whose first
nonsingleton dimension is length(X). cumtrapz operates across this
dimension. Inputs X and Y can be complex.

If X is a column vector and Y an array whose first nonsingleton dimension
is length(X), cumtrapz(X,Y) operates across this dimension.

Z = cumtrapz(X,Y,dim) or cumtrapz(Y,dim) integrates across the
dimension of Y specified by scalar dim. The length of X must be the
same as size(Y,dim).

Example Example 1

Y = [0 1 2; 3 4 5];

cumtrapz(Y,1)
ans =
0 0 0

2-772

cumtrapz

1.5000 2.5000 3.5000

cumtrapz(Y,2)
ans =
0 0.5000 2.0000

0 3.5000 8.0000

Example 2

This example uses two complex inputs:

z = exp(1i*pi*(0:100)/100);

ct = cumtrapz(z,1./z);
ct(end)
ans =

0.0000 + 3.1411i

See Also cumsum, trapz

2-773

curl

Purpose Compute curl and angular velocity of vector field

Syntax [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W)
[curlx,curly,curlz,cav] = curl(U,V,W)
[curlz,cav]= curl(X,Y,U,V)
[curlz,cav]= curl(U,V)
[curlx,curly,curlz] = curl(...), curlx,curly] = curl(...)
cav = curl(...)

Description [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W) computes the curl
and angular velocity perpendicular to the flow (in radians per time unit)
of a 3-D vector field U, V, W. The arrays X, Y, Z define the coordinates for U,
V, W and must be monotonic and 3-D plaid (as if produced by meshgrid).

[curlx,curly,curlz,cav] = curl(U,V,W) assumes X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

[curlz,cav]= curl(X,Y,U,V) computes the curl z-component and the
angular velocity perpendicular to z (in radians per time unit) of a 2-D
vector field U, V. The arrays X, Y define the coordinates for U, V and must
be monotonic and 2-D plaid (as if produced by meshgrid).

[curlz,cav]= curl(U,V) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

[curlx,curly,curlz] = curl(...), curlx,curly] = curl(...)
returns only the curl.

cav = curl(...) returns only the curl angular velocity.

Examples This example uses colored slice planes to display the curl angular
velocity at specified locations in the vector field.

2-774

curl

load wind
cav = curl(x,y,z,u,v,w);
slice(x,y,z,cav,[90 134],[59],[0]);
shading interp
daspect([1 1 1]); axis tight
colormap hot(16)
camlight

This example views the curl angular velocity in one plane of the volume
and plots the velocity vectors (quiver) in the same plane.

load wind
k = 4;
x = x(:,:,k); y = y(:,:,k); u = u(:,:,k); v = v(:,:,k);
cav = curl(x,y,u,v);
pcolor(x,y,cav); shading interp
hold on;
quiver(x,y,u,v,'y')

2-775

curl

hold off
colormap copper

See Also streamribbon, divergence

“Volume Visualization” on page 1-106 for related functions

“Example – Displaying Curl with Stream Ribbons” for another example

2-776

customverctrl

Purpose Allow custom source control system (UNIX platforms)

Syntax customerverctrl

Description customerverctrl function is for customers who want to integrate a
source control system that is not supported for use with MATLAB
software. When using this function, conform to the structure of one
of the supported version control systems, for example, RCS. For
examples, see the files clearcase.m, cvs.m, pvcs.m, and rcs.m in
matlabroot\toolbox\matlab\verctrl.

See Also checkin, checkout, cmopts, undocheckout

For MicrosoftWindows platforms, use verctrl.

2-777

cylinder

Purpose Generate cylinder

Syntax [X,Y,Z] = cylinder
[X,Y,Z] = cylinder(r)
[X,Y,Z] = cylinder(r,n)
cylinder(axes_handle,...)
cylinder(...)

Description cylinder generates x-, y-, and z-coordinates of a unit cylinder. You can
draw the cylindrical object using surf or mesh, or draw it immediately
by not providing output arguments.

[X,Y,Z] = cylinder returns the x-, y-, and z-coordinates of a cylinder
with a radius equal to 1. The cylinder has 20 equally spaced points
around its circumference.

[X,Y,Z] = cylinder(r) returns the x-, y-, and z-coordinates of a
cylinder using r to define a profile curve. cylinder treats each element
in r as a radius at equally spaced heights along the unit height of
the cylinder. The cylinder has 20 equally spaced points around its
circumference.

[X,Y,Z] = cylinder(r,n) returns the x-, y-, and z-coordinates of a
cylinder based on the profile curve defined by vector r. The cylinder has
n equally spaced points around its circumference.

cylinder(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

cylinder(...), with no output arguments, plots the cylinder using
surf.

2-778

cylinder

Remarks cylinder treats its first argument as a profile curve. The resulting
surface graphics object is generated by rotating the curve about the
x-axis, and then aligning it with the z-axis.

Examples Create a cylinder with randomly colored faces.

cylinder
axis square
h = findobj('Type','surface');
set(h,'CData',rand(size(get(h,'CData'))))

Generate a cylinder defined by the profile function 2+sin(t).

t = 0:pi/10:2*pi;

2-779

cylinder

[X,Y,Z] = cylinder(2+cos(t));
surf(X,Y,Z)
axis square

See Also sphere, surf

“Polygons and Surfaces” on page 1-94 for related functions

2-780

daqread

Purpose Read Data Acquisition Toolbox (.daq) file

Syntax data = daqread('filename')
[data, time] = daqread(...)
[data, time, abstime] = daqread(...)
[data, time, abstime, events] = daqread(...)
[data, time, abstime, events, daqinfo] = daqread(...)
data = daqread(...,’Param1’, Val1,...)
daqinfo = daqread('filename','info')

Description data = daqread('filename') reads all the data from the Data
Acquisition Toolbox (.daq) file specified by filename. daqread returns
data, an m-by-n data matrix, where m is the number of samples and
n is the number of channels. If data includes data from multiple
triggers, the data from each trigger is separated by a NaN. If you set the
OutputFormat property to tscollection, daqread returns a time series
collection object. See below for more information.

[data, time] = daqread(...) returns time/value pairs. time is an
m-by-1 vector, the same length as data, that contains the relative time
for each sample. Relative time is measured with respect to the first
trigger that occurs.

[data, time, abstime] = daqread(...) returns the absolute time of
the first trigger. abstime is returned as a clock vector.

[data, time, abstime, events] = daqread(...) returns a log of
events. events is a structure containing event information. If you
specify either theSamples, Time, or Triggers parameters (see below),
the events structure contains only the specified events.

[data, time, abstime, events, daqinfo] = daqread(...) returns a
structure, daqinfo, that contains two fields: ObjInfo and HwInfo.
ObjInfo is a structure containing property name/property value pairs
and HwInfo is a structure containing hardware information. The entire
event log is returned to daqinfo.ObjInfo.EventLog.

2-781

daqread

data = daqread(...,’Param1’, Val1,...) specifies the amount
of data returned and the format of the data, using the following
parameters.

Parameter Description

Samples Specify the sample range.
Time Specify the relative time range.
Triggers Specify the trigger range.
Channels Specify the channel range. Channel names can be

specified as a cell array.
DataFormat Specify the data format as doubles (default) or

native.
TimeFormat Specify the time format as vector (default) or

matrix.
OutputFormat Specify the output format as matrix (the default)

or tscollection. When you specify tscollection,
daqread only returns data.

The Samples, Time, and Triggers properties are mutually exclusive;
that is, either Samples, Triggers or Time can be defined at once.

daqinfo = daqread('filename','info') returns metadata from the file
in the daqinfo structure, without incurring the overhead of reading the
data from the file as well. The daqinfo structure contains two fields:

daqinfo.ObjInfo
a structure containing parameter/value pairs for the data
acquisition object used to create the file, filename. Note: The
UserData property value is not restored.

daqinfo.HwInfo
a structure containing hardware information. The entire event
log is returned to daqinfo.ObjInfo.EventLog.

2-782

daqread

Remarks More About .daq Files

• The format used by daqread to return data, relative time, absolute
time, and event information is identical to the format used by the
getdata function that is part of Data Acquisition Toolbox. For more
information, see the Data Acquisition Toolbox documentation.

• If data from multiple triggers is read, then the size of the resulting
data array is increased by the number of triggers issued because
each trigger is separated by a NaN.

• ObjInfo.EventLog always contains the entire event log regardless of
the value specified by Samples, Time, or Triggers.

• The UserData property value is not restored when you return device
object (ObjInfo) information.

• When reading a .daq file, the daqread function does not return
property values that were specified as a cell array.

• Data Acquisition Toolbox (.daq) files are created by specifying a value
for the LogFileName property (or accepting the default value), and
configuring the LoggingMode property to Disk or Disk&Memory.

More About Time Series Collection Object Returned

When OutputFormat is set to tscollection, daqread returns a time
series collection object. This times series collection object contains an
absolute time series object for each channel in the file. The following
describes how daqread sets some of the properties of the times series
collection object and the time series objects.

• The time property of the time series collection object is set to the
value of the InitialTriggerTime property specified in the file.

• The name property of each time series object is set to the value of the
Name property of a channel in the file. If this name cannot be used as
a time series object name, daqread sets the name to 'Channel' with
the HwChannel property of the channel appended.

2-783

daqread

• The value of the Units property of the time series object depends on
the value of the DataFormat parameter. If the DataFormat parameter
is set to 'double', daqread sets the DataInfo property of each time
series object in the collection to the value of the Units property of the
corresponding channel in the file. If the DataFormat parameter is
set to 'native', daqread sets the Units property to 'native’. See
the Data Acquisition Toolbox documentation for more information
on these properties.

• Each time series object will have tsdata.event objects attached
corresponding to the log of events associated with the channel.

If daqread returns data from multiple triggers, the data from each
trigger is separated by a NaN in the time series data. This increases the
length of data and time vectors in the time series object by the number
of triggers.

Examples Use Data Acquisition Toolbox to acquire data. The analog input object,
ai, acquires one second of data for four channels, and saves the data to
the output file data.daq.

ai = analoginput('nidaq','Dev1');
chans = addchannel(ai,0:3);
set(ai,'SampleRate',1000)
ActualRate = get(ai,'SampleRate');
set(ai,'SamplesPerTrigger, ActualRate)
set(ai,'LoggingMode','Disk&Memory')
set(ai,'LogFileName','data.daq')
start(ai)

After the data has been collected and saved to a disk file, you can
retrieve the data and other acquisition-related information using
daqread. To read all the sample-time pairs from data.daq:

[data,time] = daqread('data.daq');

To read samples 500 to 1000 for all channels from data.daq:

2-784

daqread

data = daqread('data.daq','Samples',[500 1000]);

To read only samples 1000 to 2000 of channel indices 2, 4 and 7 in
native format from the file, data.daq:

data = daqread('data.daq', 'Samples', [1000 2000],...
'Channels', [2 4 7], 'DataFormat', 'native');

To read only the data which represents the first and second triggers on
all channels from the file, data.daq:

[data, time] = daqread('data.daq', 'Triggers', [1 2]);

To obtain the channel property information from data.daq:

daqinfo = daqread('data.daq','info');
chaninfo = daqinfo.ObjInfo.Channel;

To obtain a list of event types and event data contained by data.daq:

daqinfo = daqread('data.daq','info');
events = daqinfo.ObjInfo.EventLog;
event_type = {events.Type};
event_data = {events.Data};

To read all the data from the file data.daq and return it as a time
series collection object:

data = daqread('data.daq','OutputFormat','tscollection');

See Also Functions

timeseries, tscollection

For more information about using this function, see the Data
Acquisition Toolbox documentation.

2-785

daspect

Purpose Set or query axes data aspect ratio

Syntax daspect
daspect([aspect_ratio])
daspect('mode')
daspect('auto')
daspect('manual')
daspect(axes_handle,...)

Description The data aspect ratio determines the relative scaling of the data units
along the x-, y-, and z-axes.

daspect with no arguments returns the data aspect ratio of the current
axes.

daspect([aspect_ratio]) sets the data aspect ratio in the current
axes to the specified value. Specify the aspect ratio as three relative
values representing the ratio of the x-, y-, and z-axis scaling (e.g., [1 1
3] means one unit in x is equal in length to one unit in y and three
units in z).

daspect('mode') returns the current value of the data aspect ratio
mode, which can be either auto (the default) or manual. See Remarks.

daspect('auto') sets the data aspect ratio mode to auto.

daspect('manual') sets the data aspect ratio mode to manual.

daspect(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, daspect operates on the current axes.

Remarks daspect sets or queries values of the axes object DataAspectRatio and
DataAspectRatioMode properties.

When the data aspect ratio mode is auto, the data aspect ratio adjusts
so that each axis spans the space available in the figure window. If you
are displaying a representation of a real-life object, you should set the
data aspect ratio to [1 1 1] to produce the correct proportions.

2-786

daspect

Setting a value for data aspect ratio or setting the data aspect ratio
mode to manual disables the MATLAB stretch-to-fill feature (stretching
of the axes to fit the window). This means setting the data aspect ratio
to a value, including its current value,

daspect(daspect)

can cause a change in the way the graphs look. See the Remarks section
of the axes description for more information.

Examples The following surface plot of the function is useful to
illustrate the data aspect ratio. First plot the function over the range –2
≤ x ≤ 2, –2 ≤ y ≤ 2,

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

2-787

daspect

Querying the data aspect ratio shows how the surface is drawn.

daspect
ans =

4 4 1

Setting the data aspect ratio to [1 1 1] produces a surface plot with
equal scaling along each axis.

daspect([1 1 1])

See Also axis, pbaspect, xlim, ylim, zlim

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim,
YLim, ZLim

“Aspect Ratio and Axis Limits” on page 1-104 for related functions

“Understanding Axes Aspect Ratio” for more information

2-788

datacursormode

Purpose Enable or disable interactive data cursor mode

GUI
Alternatives

Use the Data Cursor tool to label x, y, and z values on graphs and
surfaces. For details, see Data Cursor — Displaying Data Values
Interactively in the MATLAB Graphics documentation.

Syntax datacursormode on
datacursormode off
datacursormode
datacursormode(figure_handle,...)
dcm_obj = datacursormode(figure_handle)

Description datacursormode on enables data cursor mode on the current figure.

datacursormode off disables data cursor mode on the current figure.

datacursormode toggles data cursor mode on the current figure.

datacursormode(figure_handle,...) enables or disables data cursor
mode on the specified figure.

dcm_obj = datacursormode(figure_handle) returns the figure’s data
cursor mode object, which enables you to customize the data cursor. See
“Data Cursor Mode Object” on page 2-790.

A data cursor is a small black square with a white border that you
interactively position on a graph in data cursor mode. When you do this,
a datatip) appears. Datatips are small text boxes or windows that float
within an axes that display data values at data cursor locations. The
default style is a text box. Datatips list x-, y- and (where appropriate)
z-values for one data point at a time. See “Examples” on page 2-792 for
an illustration of these two styles.

Most types of graphs support data cursor mode, but several do not
(pareto, for example). Polar plots support datatips, but display
Cartesian rather than polar coordinates on them. Histograms created
with hist display specialized datatips that itemize the observation
counts, lower and upper limits and center point for histogram bins.

2-789

datacursormode

Data
Cursor
Mode
Object

The data cursor mode object has properties that enable you to controls
certain aspects of the data cursor. You can use the set and get
commands and the returned object (dcm_obj in the above syntax) to set
and query property values.

Data Cursor Mode Properties

Enable
on | off

Specifies whether this mode is currently enabled on the figure.

SnapToDataVertex
on | off

Specifies whether the data cursor snaps to the nearest data value
or is located at the actual pointer position.

DisplayStyle
datatip | window

Determines how the data is displayed.

• datatip displays cursor information in a yellow text box next
to a marker indicating the actual data point being displayed.

• window displays cursor information in a floating window within
the figure.

Figure
handle

Handle of the figure associated with the data cursor mode object.

Updatefcn
function handle

This property references a function that customizes the text
appearing in the data cursor. The function handle must reference
a function that has two implicit arguments (these arguments

2-790

datacursormode

are automatically passed to the function when it executes). For
example, the following function definition line uses the required
arguments:

function output_txt = myfunction(obj,eventdata)
% obj Currently not used (empty)
% event_obj Object containing event data
% output_txt Data cursor text (string or cell array of strin

event_obj is an object having the following properties.

Target Handle of the object the data cursor is
referencing (the object on which the user
clicked)

Position An array specifying the x, y, (and z for 3-D
graphs) coordinates of the cursor

You can query these properties within your function. For example,

pos = get(eventdata,'Position');

returns the coordinates of the cursor.

See Function Handles for more information on creating a function
handle.

See “Change Data Cursor Text” on page 2-796 for an example.

Querying Data Cursor Mode

The getCursorInfo function queries the data cursor mode object
(dcm_obj in the above syntax) to obtain information about the data
cursor. For example,

info_struct = getCursorInfo(dcm_obj);

returns a vector of structures, one for each data cursor on the graph.
Each structure has the following fields.

2-791

datacursormode

Target The handle of the graphics object containing the
data point

Position An array specifying the x, y, (and z) coordinates
of the cursor

Line and lineseries objects have an additional field.

DataIndex A scalar index into the data arrays that
correspond to the nearest data point. The value
is the same for each array.

Note Do not change figure callbacks within an interactive
mode. While a mode is active (when panning, zooming, etc.), you will
receive a warning if you attempt to change any of the figure’s callbacks
and the operation will not succeed. The one exception to this rule is the
figure WindowButtonMotionFcn callback, which can be changed from
within a mode. Therefore, if you are creating a GUI that updates a
figure’s callbacks, the GUI should some keep track of which interactive
mode is active, if any, before attempting to do this.

Examples This example creates a plot and enables data cursor mode from the
command line.

surf(peaks)
datacursormode on
% Click mouse on surface to display data cursor

Selecting a point on the surface opens a datatip displaying its x-, y-,
and z-coordinates.

2-792

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/figure_props.html%23WindowButtonMotionFcn

datacursormode

You change the datatip display style to be a window instead of a text
box using the Tools > Options > Display cursor in window , or use
the context menu Display Style > Window inside figure to view the
datatip in a floating window that you can move around inside the axes.

2-793

datacursormode

You can position multiple text box datatips on the same graph, the
window style of datatip displays only one value at a time. For more
information on interacting with data cursors, including point selection
options and exporting datatips to the workspace, see “Data Cursor
— Displaying Data Values Interactively” in the MATLAB Graphics
documentation.

Setting Data Cursor Mode Options

This example enables data cursor mode on the current figure and sets
data cursor mode options. The following statements

• Create a graph

2-794

datacursormode

• Toggle data cursor mode to on

• Save the data cursor mode object to specify options and get the
handle of the line to which the datatip is attached

fig = figure;
z = peaks;
plot(z(:,30:35))
dcm_obj = datacursormode(fig);
set(dcm_obj,'DisplayStyle','datatip',...

'SnapToDataVertex','off','Enable','on')

% Click on line to place datatip

c_info = getCursorInfo(dcm_obj);
set(c_info.Target,'LineWidth',2) % Make
selected line wider

2-795

datacursormode

Change Data Cursor Text

This example shows you how to customize the text that is displayed by
the data cursor. Suppose you want to replace the text displayed in the
datatip and data window with “Time:” and “Amplitude:”

Note Save the following functions in you current directory or any
writable directory on the MATLAB path before running them. As
they are functions, you cannot highlight them and then evaluate the
selection to make them work.

% After saving both these functions as M-files,
% execute the following one first by typing
% >> doc_datacursormode

function doc_datacursormode
fig = figure;
a = -16; t = 0:60;
plot(t,sin(a*t))
dcm_obj = datacursormode(fig);
set(dcm_obj,'UpdateFcn',@myupdatefcn)

% Now click on line to select data point to use the update function

function txt = myupdatefcn(empt,eventdata)
pos = get(eventdata,'Position');
txt = {['Time: ',num2str(pos(1))],...

['Amplitude: ',num2str(pos(2))]};

See Also brush, pan, zoom

“Example — Visually Exploring Demographic Statistics” for a further
example of a data cursor update function

2-796

datatipinfo

Purpose Produce short description of input variable

Syntax datatipinfo(var)

Description datatipinfo(var) displays a short description of a variable, similar to
what is displayed in a datatip in the MATLAB debugger.

Examples Get datatip information for a 5-by-5 matrix:

A = rand(5);

datatipinfo(A)
A: 5x5 double =

0.4445 0.3567 0.7458 0.0767 0.4400
0.7962 0.6575 0.3918 0.8289 0.9746
0.5641 0.9808 0.0265 0.4838 0.6722
0.9099 0.9653 0.2508 0.4859 0.4054
0.2857 0.5198 0.7383 0.9301 0.9604

Get datatip information for a 50-by-50 matrix. For this larger matrix,
datatipinfo displays just the size and data type:

A = rand(50);

datatipinfo(A)
A: 50x50 double

Also for multidimensional matrices, datatipinfo displays just the size
and data type:

A = rand(5);
A(:,:,2) = A(:,:,1);

datatipinfo(A)
A: 5x5x2 double

See Also debug

2-797

date

Purpose Current date string

Syntax str = date

Description str = date returns a string containing the date in dd-mmm-yyyy format.

See Also clock, datestr, datenum, now

2-798

datenum

Purpose Convert date and time to serial date number

Syntax N = datenum(V)
N = datenum(S, F)
N = datenum(S, F, P)
N = datenum([S, P, F])
N = datenum(Y, M, D)
N = datenum(Y, M, D, H, MN, S)
N = datenum(S)
N = datenum(S, P)

Description datenum is one of three conversion functions that enable you to express
dates and times in any of three formats in your MATLAB application:
a string (or date string), a vector of date and time components (or date
vector), or as a numeric offset from a known date in time (or serial date
number). Here is an example of a date and time expressed in the three
MATLAB formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from a specific date and time, where datenum('Jan-1-0000
00:00:00') returns the number 1. (The year 0000 is merely a reference
point and is not intended to be interpreted as a real year in time.)

N = datenum(V) converts one or more date vectors V to serial date
numbers N. Input V can be an m-by-6 or m-by-3 matrix containing m full
or partial date vectors respectively. A full date vector has six elements,
specifying year, month, day, hour, minute, and second, in that order. A
partial date vector has three elements, specifying year, month, and day,
in that order. Each element of V must be a positive double-precision
number. datenum returns a column vector of m date numbers, where m is
the total number of date vectors in V.

N = datenum(S, F) converts one or more date strings S to serial date
numbers N using format string F to interpret each date string. Input S

2-799

datenum

can be a one-dimensional character array or cell array of date strings.
All date strings in S must have the same format, and that format must
match one of the date string formats shown in the help for the datestr
function. datenum returns a column vector of m date numbers, where m
is the total number of date strings in S. MATLAB considers date string
years that are specified with only two characters (e.g., '79') to fall
within 100 years of the current year.

See the datestr reference page to find valid string values for F. These
values are listed in Table 1 in the column labeled “Dateform String.”
You can use any string from that column except for those that include
the letter Q in the string (for example, ’QQ-YYYY’). Certain formats may
not contain enough information to compute a date number. In these
cases, hours, minutes, seconds, and milliseconds default to 0, the month
defaults to January, the day to 1, and the year to the current year.

N = datenum(S, F, P) converts one or more date strings S to date
numbers N using format F and pivot year P. The pivot year is used in
interpreting date strings that have the year specified as two characters.
It is the starting year of the 100-year range in which a two-character
date string year resides. The default pivot year is the current year
minus 50 years.

N = datenum([S, P, F]) is the same as the syntax shown above, except
the order of the last two arguments are switched.

N = datenum(Y, M, D) returns the serial date numbers for
corresponding elements of the Y, M, and D (year, month, day) arrays.
Y, M, and D must be arrays of the same size (or any can be a scalar)
of type double. You can also specify the input arguments as a date
vector, [Y M D].

For this and the following syntax, values outside the normal range of
each array are automatically carried to the next unit. Values outside
the normal range of each array are automatically carried to the next
unit. For example, month values greater than 12 are carried to years.
Month values less than 1 are set to be 1. All other units can wrap and
have valid negative values.

2-800

datenum

N = datenum(Y, M, D, H, MN, S) returns the serial date numbers
for corresponding elements of the Y, M, D, H, MN, and S (year, month,
day, hour, minute, and second) array values. datenum does not accept
milliseconds in a separate input, but as a fractional part of the seconds
(S) input. Inputs Y, M, D, H, MN, and S must be arrays of the same size
(or any can be a scalar) of type double. You can also specify the input
arguments as a date vector, [Y M D H MN S].

N = datenum(S) converts date string S into a serial date number.
String S must be in one of the date formats 0, 1, 2, 6, 13, 14, 15, 16, or
23, as defined in the reference page for the datestr function. MATLAB
considers date string years that are specified with only two characters
(e.g., '79') to fall within 100 years of the current year. If the format of
date string S is known, use the syntax N = datenum(S, F).

N = datenum(S, P) converts date string S, using pivot year P. If the
format of date string S is known, use the syntax N = datenum(S, F,
P).

Note The last two calling syntaxes are provided for backward
compatibility and are significantly slower than the syntaxes that
include a format argument F.

Examples Convert a date string to a serial date number:

n = datenum('19-May-2001', 'dd-mmm-yyyy')

n =
730990

Specifying year, month, and day, convert a date to a serial date number:

n = datenum(2001, 12, 19)

n =
731204

2-801

datenum

Convert a date vector to a serial date number:

format bank
datenum('March 28, 2005 3:37:07.033 PM')
ans =

732399.65

Convert a date string to a serial date number using the default pivot
year:

n = datenum('12-jun-17', 'dd-mmm-yy')

n =
736858

Convert the same date string to a serial date number using 1400 as
the pivot year:

n = datenum('12-jun-17', 'dd-mmm-yy', 1400)

n =
517712

Specify format 'dd.mm.yyyy' to be used in interpreting a nonstandard
date string:

n = datenum('19.05.2000', 'dd.mm.yyyy')

n =
730625

See Also datestr, datevec, date, clock, now, datetick

2-802

datestr

Purpose Convert date and time to string format

Syntax S = datestr(V)
S = datestr(N)
S = datestr(D, F)
S = datestr(S1, F, P)
S = datestr(..., 'local')

Description datestr is one of three conversion functions that enable you to express
dates and times in any of three formats in your MATLAB application:
a string (or date string), a vector of date and time components (or date
vector), or as a numeric offset from a known date in time (or serial date
number). Here is an example of a date and time expressed in the three
MATLAB formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from 1-Jan-0000 to a specific date. The year 0000 is merely
a reference point and is not intended to be interpreted as a real year
in time.

S = datestr(V) converts one or more date vectors V to date strings S.
Input V must be an m-by-6 matrix containing m full (six-element) date
vectors. Each element of V must be a positive double-precision number.
datestr returns a column vector of m date strings, where m is the total
number of date vectors in V.

S = datestr(N) converts one or more serial date numbers N to date
strings S. Input argument N can be a scalar, vector, or multidimensional
array of positive double-precision numbers. datestr returns a column
vector of m date strings, where m is the total number of date numbers
in N.

S = datestr(D, F) converts one or more date vectors, serial date
numbers, or date strings D into the same number of date strings S.

2-803

datestr

Input argument F is a format number or string that determines the
format of the date string output. Valid values for F are given in the
table Standard MATLAB Date Format Definitions on page 2-804, below.
Input F may also contain a free-form date format string consisting of
format tokens shown in the table Free-Form Date Format Specifiers on
page 2-807, below.

Date strings with 2-character years are interpreted to be within the 100
years centered around the current year.

S = datestr(S1, F, P) converts date string S1 to date string S,
applying format F to the output string, and using pivot year P as the
starting year of the 100-year range in which a two-character year
resides. The default pivot year is the current year minus 50 years. All
date strings in S1 must have the same format.

S = datestr(..., 'local') returns the date string in the localized
format that you currently have selected by means of your computer’s
operating system. You cannot select a nondefault format using the
datestr function. The default is US English (’en_US’).

The local argument must come last in the argument sequence. When
you specify the local keyword with datestr, MATLAB returns the date
string in a format

Note The vectorized calling syntax can offer significant performance
improvement for large arrays.

Standard MATLAB Date Format Definitions

dateform
(number) dateform (string) Example

0 'dd-mmm-yyyy
HH:MM:SS'

01-Mar-2000 15:45:17

2-804

datestr

Standard MATLAB Date Format Definitions (Continued)

dateform
(number) dateform (string) Example

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1-01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd,yyyy
HH:MM:SS'

Mar.01,2000 15:45:17

22 'mmm.dd,yyyy' Mar.01,2000

2-805

datestr

Standard MATLAB Date Format Definitions (Continued)

dateform
(number) dateform (string) Example

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY' Q1-2001

28 'mmmyyyy' Mar2000

29 (ISO
8601)

'yyyy-mm-dd' 2000-03-01

30 (ISO
8601)

'yyyymmddTHHMMSS' 20000301T154517

31 'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

Note dateform numbers 0, 1, 2, 6, 13, 14, 15, 16, and 23 produce a
string suitable for input to datenum or datevec. Other date string
formats do not work with these functions unless you specify a date form
in the function call.

Note For date formats that specify only a time (i.e., dateform numbers
13, 14, 15, and 16), MATLAB sets the date to January 1 of the current
year.

Time formats like 'h:m:s', 'h:m:s.s', 'h:m pm', ... can also be part
of the input array S. If you do not specify a format string F, or if you
specify F as -1, the date string format defaults to the following:

2-806

datestr

1 If S contains date information only, e.g., 01-Mar-1995
16 If S contains time information only, e.g., 03:45 PM
0 If S is a date vector, or a string that contains both date

and time information, e.g., 01-Mar-1995 03:45

The following table shows the string symbols to use in specifying a
free-form format for the output date string. MATLAB interprets these
symbols according to your computer’s language setting and the current
MATLAB language setting.

Note You cannot use more than one format specifier for any date or
time field. For example, datestr(n, 'dddd dd mmmm') specifies two
formats for the day of the week, and thus returns an error.

Free-Form Date Format Specifiers

Symbol Interpretation Example

yyyy Show year in full. 1990, 2002
yy Show year in two digits. 90, 02
mmmm Show month using full

name.
March, December

mmm Show month using first
three letters.

Mar, Dec

mm Show month in two digits. 03, 12
m Show month using

capitalized first letter.
M, D

dddd Show day using full name. Monday, Tuesday
ddd Show day using first three

letters.
Mon, Tue

2-807

datestr

Free-Form Date Format Specifiers (Continued)

Symbol Interpretation Example

dd Show day in two digits. 05, 20
d Show day using

capitalized first letter.
M, T

HH Show hour in two digits
(no leading zeros when
free-form specifier AM or
PM is used (see last entry
in this table)).

05, 5 AM

MM Show minute in two
digits.

12, 02

SS Show second in two digits. 07, 59
FFF Show millisecond in three

digits.
.057

AM or PM Append AM or PM to date
string (see note below).

3:45:02 PM

Note Free-form specifiers AM and PM from the table above are identical.
They do not influence which characters are displayed following the time
(AM versus PM), but only whether or not they are displayed. MATLAB
selects AM or PM based on the time entered.

Remarks A vector of three or six numbers could represent either a single date
vector, or a vector of individual serial date numbers. For example,
the vector [2000 12 15 11 45 03] could represent either 11:45:03
on December 15, 2000 or a vector of date numbers 2000, 12, 15,
etc.. MATLAB uses the following general rule in interpreting vectors
associated with dates:

2-808

datestr

• A 3- or 6-element vector having a first element within an approximate
range of 500 greater than or less than the current year is considered
by MATLAB to be a date vector. Otherwise, it is considered to be
a vector of serial date numbers.

To specify dates outside of this range as a date vector, first convert the
vector to a serial date number using the datenum function as shown
here:

datestr(datenum([1400 12 15 11 45 03]), ...
'mmm.dd,yyyy HH:MM:SS')

ans =
Dec.15,1400 11:45:03

Examples Return the current date and time in a string using the default format, 0:

datestr(now)

ans =
28-Mar-2005 15:36:23

Reformat the date and time, and also show milliseconds:

dt = datestr(now, 'mmmm dd, yyyy HH:MM:SS.FFF AM')
dt =

March 28, 2005 3:37:07.952 PM

Format the same showing only the date and in the mm/dd/yy format.
Note that you can specify this format either by number or by string.

datestr(now, 2) -or- datestr(now, 'mm/dd/yy')

ans =
03/28/05

Display the returned date string using your own format made up of
symbols shown in the Free-Form Date Format Specifiers on page 2-807
table above.

2-809

datestr

datestr(now, 'dd.mm.yyyy')

ans =
28.03.2005

Convert a nonstandard date form into a standard MATLAB date form
by first converting to a date number and then to a string:

datestr(datenum('28.03.2005', 'dd.mm.yyyy'), 2)

ans =
03/28/05

See Also datenum, datevec, date, clock, now, datetick

2-810

datetick

Purpose Date formatted tick labels

Syntax datetick(tickaxis)
datetick(tickaxis,dateformat)
datetick(tickaxis,dateformnum)
datetick(...,'keeplimits')
datetick(...,'keepticks')
datetick(axes_handle,...)

Description datetick(tickaxis) labels the tick lines of an axis using dates,
replacing the default numeric labels. tickaxis is the string 'x', 'y',
or 'z'. The default is 'x'. datetick selects a label format based on
the minimum and maximum limits of the specified axis. The axis data
values should be generated by or be compatible with the output of the
datenum function.

datetick(tickaxis,dateformat) formats the labels according to the
string dateformat. A date format string can consist of the following
elements (or combinations of them), identified by the format symbols in
the left-hand column.

Date
Format

Interpretation of Format Symbol

yyyy Full year, e.g., 1990, 2001, or 2008

yy Partial year, e.g. 90, 01, or 08
mmmm Full name of the month, according to the calendar locale,

e.g., "March" or "April" in the UK and USA English locales
mmm First three letters of the month, according to the calendar

locale, e.g., "Mar" or "Apr" in the UK and USA English
localesmm Numeric month of year, padded with leading zeros, e.g.,
../03/.. or ../12/..

2-811

datetick

Date
Format

Interpretation of Format Symbol

m Capitalized first letter of the month, according to the
calendar locale; for backwards compatibility, e.g., “D” for
December

dddd Full name of the weekday, according to the calendar locale,
e.g., "Monday" or "Tuesday", for the UK and USA calendar
locales

ddd First three letters of the weekday, according to the
calendar locale, e.g., "Mon" or "Tue", for the UK and USA
calendar locales

dd Numeric day of the month, padded with leading zeros, e.g.,
05/../.. or 20/../..

d Capitalized first letter of the weekday, e.g., “M” for
Monday; for backwards compatibility

HH Hour of the day, according to the time format. In case the
time format AM | PM is set, HH does not pad with leading
zeros. If AM | PM is not set, HH displays the hour of the
day, padded with leading zeros; e.g., 10:20 PM, which is
equivalent to 22:20; 9:00 AM, which is equivalent to 09:00.

MM Minutes of the hour, padded with leading zeros, e.g., 10:05
or 10:05 AM

SS Second of the minute, padded with leading zeros, e.g.,
10:15:30, 10:05:30, 10:05:30 AM

FFF Milliseconds field, padded with leading zeros, e.g.,
10:15:30.015

PM Setting the time format to morning or afternoon by
appending AM or PM to the date string, as appropriate,
without separating symbols

You can mix format symbols to create customized data symbols. For
example:

2-812

datetick

datetick('x','dd (ddd)')

generates ticks along the x-axis that display the day of the month
followed by the three-letter abbreviation of the day of the week in
parentheses, for example, 01 (Wed). To preface each date tick with an
abbreviated month name, you could specify

datetick('x','mmm-dd (ddd)')

to yield ticks such as Apr-01 (Wed).

datetick(tickaxis,dateformnum) formats the labels according to the
integer dateformnum, a date format index (see table). To produce correct
results, the data for the specified axis must be serial date numbers
(as produced by datenum).

Date Format
Number dateformat (string) Example

0 'dd-mmm-yyyy
HH:MM:SS'

01-Mar-2008
15:45:17

1 'dd-mmm-yyyy' 01-Mar-2008

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy’ 2000

11 'yy' 00

12 'mmmyy' Mar00

2-813

datetick

Date Format
Number dateformat (string) Example

13 ’HH:MM:SS’ 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1 01

18 'QQ' Q1
19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd.yyyy
HH:MM:SS'

Mar.01,2000
15:45:17

22 'mmm.dd.yyyy' Mar.01.2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY' Q1-2001

28 'mmmyyyy' Mar2000

29 (ISO 8601)
'yyyy-mm-dd'

2000-03-01

30 (ISO 8601)
'yyyymmddTHHMMSS'

20000301T154517

31 'yyyy-mm-dd
HH:MM:SS'

2000-03-01
15:45:17

datetick(...,'keeplimits') changes the tick labels to date-based
labels while preserving the axis limits.

2-814

datetick

datetick(...,'keepticks') changes the tick labels to date-based
labels without changing their locations.

You can use both keeplimits and keepticks in the same call to
datetick.

datetick(axes_handle,...) uses the axes specified by the handle ax
instead of the current axes.

Remarks datetick calls datestr to convert date numbers to date strings.

To change the tick spacing and locations, set the appropriate axes
property (i.e., XTick, YTick, or ZTick) before calling datetick.

Calling datetick sets the TickMode of the specified axis to 'manual'.
This means that after zooming, panning or otherwise changing axis
limits, you should call datetick again to update the ticks and labels.

Examples Example 1 — Plot US Population Across the 20th Century

Graph population data for the 20th Century taken from the 1990 US
census.

% Create time data by decade
t = (1900:10:1990)';
% Enter total population counts for the USA
p = [75.995 91.972 105.711 123.203 131.669 ...
150.697 179.323 203.212 226.505 249.633]';n

% Convert years to date numbers and plot
plot(datenum(t,1,1),p)
grid on
% Replace x-axis ticks with 2-digit years using date format 11
datetick('x',11)

2-815

datetick

Example 2 — Plot Hourly Traffic Counts by AM and PM

Plot traffic count data against date ticks for hours of the day showing
AM and PM.

% Get traffic count data
load count.dat
% Create arrays for an arbitrary date, here April 18, 1995
n = length(count);
year = 1990 * ones(1,n);
month = 4 * ones(1,n);
day = 18 * ones(1,n);
% Create arrays for each of 24 hours;

2-816

datetick

hour = 1:n;
min = zeros(1,n);
% Get the datenums for the data (only hours change)
xdate = datenum(year,month,day,hour,min,min);
% Plot the traffic data against datenums
plot(xdate,count)
% Update the graph's x-axis with date ticks
datetick('x','HHPM')

See Also The axes properties: XTick, YTick, and ZTick

datenum, datestr

2-817

datetick

“Annotating Plots” on page 1-91 for related functions

2-818

datevec

Purpose Convert date and time to vector of components

Syntax V = datevec(N)
V = datevec(S, F)
V = datevec(S, F, P)
V = datevec(S, P, F)
[Y, M, D, H, MN, S] = datevec(...)
V = datevec(S)
V = datevec(S, P)

Description datevec is one of three conversion functions that enable you to express
dates and times in any of three formats in your MATLAB application:
a string (or date string), a vector of date and time components (or date
vector), or as a numeric offset from a known date in time (or serial date
number). Here is an example of a date and time expressed in the three
MATLAB formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from 1-Jan-0000 to a specific date. The year 0000 is merely
a reference point and is not intended to be interpreted as a real year
in time.

V = datevec(N) converts one or more date numbers N to date vectors V.
Input argument N can be a scalar, vector, or multidimensional array of
positive date numbers. datevec returns an m-by-6 matrix containing m
date vectors, where m is the total number of date numbers in N.

V = datevec(S, F) converts one or more date strings S to date vectors
V using format string F to interpret the date strings in S. Input argument
S can be a cell array of strings or a character array where each row
corresponds to one date string. All of the date strings in Smust have the
same format which must be composed of date format symbols according
to the table “Free-Form Date Format Specifiers” in the datestr help.

2-819

datevec

Formats with 'Q' are not accepted by datevec. datevec returns an
m-by-6 matrix of date vectors, where m is the number of date strings in S.

Certain formats may not contain enough information to compute a date
vector. In those cases, hours, minutes, and seconds default to 0, days
default to 1, months default to January, and years default to the current
year. Date strings with two character years are interpreted to be within
the 100 years centered around the current year.

V = datevec(S, F, P) converts the date string S to a date vector V
using date format F and pivot year P. The pivot year is the starting year
of the 100-year range in which a two-character year resides. The default
pivot year is the current year minus 50 years.

V = datevec(S, P, F) is the same as the syntax shown above, except
the order of the last two arguments are switched.

[Y, M, D, H, MN, S] = datevec(...) takes any of the two syntaxes
shown above and returns the components of the date vector as
individual variables. datevec does not return milliseconds in a separate
output, but as a fractional part of the seconds (S) output.

V = datevec(S) converts date string S to date vector V. Input argument
S must be in one of the date formats 0, 1, 2, 6, 13, 14, 15, 16, or 23 as
defined in the reference page for the datestr function. This calling
syntax is provided for backward compatibility, and is significantly
slower than the syntax which specifies the format string. If the format
is known, the V = datevec(S, F) syntax is recommended.

V = datevec(S, P) converts the date string S using pivot year P. If the
format is known, the V = datevec(S, F, P) or V = datevec(S, P,
F) syntax should be used.

Note If more than one input argument is used, the first argument must
be a date string or array of date strings.

When creating your own date vector, you need not make the components
integers. Any components that lie outside their conventional ranges

2-820

datevec

affect the next higher component (so that, for instance, the anomalous
June 31 becomes July 1). A zeroth month, with zero days, is allowed.

Note The vectorized calling syntax can offer significant performance
improvement for large arrays.

Examples Obtain a date vector using a string as input:

format short g

datevec('March 28, 2005 3:37:07.952 PM')
ans =

2005 3 28 15 37 7.952

Obtain a date vector using a serial date number as input:

t = datenum('March 28, 2005 3:37:07.952 PM')
t =

7.324e+005

datevec(t)
ans =

2005 3 28 15 37 7.952

Assign elements of the returned date vector:

[y, m, d, h, mn, s] = datevec('March 28, 2005 3:37:07.952 PM');

sprintf('Date: %d/%d/%d Time: %d:%d:%2.3f\n', m, d, y, h, mn, s)

ans =

Date: 3/28/2005 Time: 15:37:7.952

2-821

datevec

Use free-form date format 'dd.mm.yyyy' to indicate how you want a
nonstandard date string interpreted:

datevec('28.03.2005', 'dd.mm.yyyy')

ans = 2005 3 28 0 0 0

See Also datenum, datestr, date, clock, now, datetick

2-822

dbclear

Purpose Clear breakpoints

GUI
Alternatives

In the Editor, click to clear a breakpoint, or to clear all breakpoints.
For details, see “Disabling and Clearing Breakpoints”.

Syntax dbclear all
dbclear in mfile ...
dbclear if error ...
dbclear if warning ...
dbclear if naninf
dbclear if infnan

Description dbclear all removes all breakpoints in all M-files, as well as
breakpoints set for errors, caught errors, caught error identifiers,
warnings, warning identifiers, and naninf/infnan.

dbclear in mfile ... formats are listed here:

Format Action

dbclear in mfile Removes all breakpoints in mfile. mfile must
be the name of an M-file, and can include a
MATLAB partialpath. If the command includes the
-completenames option, then mfile need not be on the
path, as long as it is a fully qualified file name. (On
Microsoft Windows platforms, this is a file name that
begins with \\ or with a drive % letter followed by a colon.
On UNIX platforms, this is a file name that begins with /
or ~.) mfile can include a filemarker to specify the path
to a particular subfunction or to a nested function within
an M-file.

dbclear in mfile at
lineno

Removes the breakpoint set at line number lineno in
mfile.

dbclear in mfile at
lineno@

Removes the breakpoint set in the anonymous function at
line number lineno in mfile.

2-823

dbclear

Format Action

dbclear in mfile at
lineno@n

Removes the breakpoint set in the nthe anonymous
function at line number lineno in mfile.

dbclear in mfile at
subfun

Removes all breakpoints in subfunction subfun in mfile.

dbclear if error ... formats are listed here:

Format Action

dbclear if error Removes the breakpoints set using the dbstop if error
and dbstop if error identifier statements.

dbclear if error
identifier

Removes the breakpoint set using dbstop if error
identifier for the specified identifier. Running this
produces an error if dbstop if error or dbstop if
error all is set.

dbclear if caught error Removes the breakpoints set using the dbstop if caught
error and dbstop if caught error identifier
statements.

dbclear if caught error
identifier

Removes the breakpoints set using the dbstop if caught
error identifier statement for the specified identifier.
Running this produces an error if dbstop if caught
error or dbstop if caught error all is set.

dbclear if warning ... formats are listed here:

dbclear if warning Removes the breakpoints set using the dbstop if
warning and dbstop if warning identifier statements.

dbclear if warning
identifier

Removes the breakpoint set using dbstop if warning
identifier for the specified identifier. Running this
produces an error if dbstop if warning or dbstop if
warning all is set.

dbclear if naninf removes the breakpoint set by dbstop if naninf
or dbstop if infnan.

2-824

dbclear

dbclear if infnan removes the breakpoint set by dbstop if infnan
or dbstop if naninf.

Remarks The at and in keywords are optional.

In the syntax, mfile can be an M-file, or the path to a function within
a file. For example

dbclear in foo>myfun

clears the breakpoint at the myfun function in the file foo.m on Windows
platforms.

See Also dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup, filemarker,partialpath

2-825

dbcont

Purpose Resume execution

GUI
Alternatives

Select Debug > Continue from most desktop tools, or in the Editor,
click .

Syntax dbcont

Description dbcont resumes execution of an M-file from a breakpoint. Execution
continues until another breakpoint is encountered, a pause condition
is met, an error occurs, or MATLAB software returns to the base
workspace prompt.

Note If you want to edit an M-file as a result of debugging, it is best to
first quit debug mode and then edit and save changes to the M-file. If
you edit an M-file while paused in debug mode, you can get unexpected
results when you resume execution of the file and the results might
not be reliable.

See Also dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-826

dbdown

Purpose Change local workspace context when in debug mode

GUI
Alternatives

Use the Stack field in the Editor or in the Workspace
browser.

Syntax dbdown

Description dbdown changes the current workspace context to the workspace of the
called M-file when a breakpoint is encountered. You must have issued
the dbup function at least once before you issue this function. dbdown is
the opposite of dbup.

Multiple dbdown functions change the workspace context to each
successively executed M-file on the stack until the current workspace
context is the current breakpoint. It is not necessary, however, to move
back to the current breakpoint to continue execution or to step to the
next line.

See Also dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-827

dblquad

Purpose Numerically evaluate double integral

Syntax q = dblquad(fun,xmin,xmax,ymin,ymax)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)

Description q = dblquad(fun,xmin,xmax,ymin,ymax) calls the quad function to
evaluate the double integral fun(x,y) over the rectangle xmin <= x
<= xmax, ymin <= y <= ymax. fun is a function handle. See “Function
Handles” in the MATLAB Programming documentation for more
information. fun(x,y) must accept a vector x and a scalar y and return
a vector of values of the integrand.

“Parametrizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function fun, if necessary.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol) uses a tolerance tol
instead of the default, which is 1.0e-6.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) uses the
quadrature function specified as method, instead of the default quad.
Valid values for method are @quadl or the function handle of a
user-defined quadrature method that has the same calling sequence
as quad and quadl.

Example Pass M-file function handle @integrnd to dblquad:

Q = dblquad(@integrnd,pi,2*pi,0,pi);

where the M-file integrnd.m is

function z = integrnd(x, y)
z = y*sin(x)+x*cos(y);

Pass anonymous function handle F to dblquad:

F = @(x,y)y*sin(x)+x*cos(y);
Q = dblquad(F,pi,2*pi,0,pi);

2-828

dblquad

The integrnd function integrates y*sin(x)+x*cos(y) over the square
pi <= x <= 2*pi, 0 <= y <= pi. Note that the integrand can be
evaluated with a vector x and a scalar y.

Nonsquare regions can be handled by setting the integrand to zero
outside of the region. For example, the volume of a hemisphere is

dblquad(@(x,y)sqrt(max(1-(x.^2+y.^2),0)), -1, 1, -1, 1)

or

dblquad(@(x,y)sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1), -1, 1, -1, 1)

See Also quad, quadgk, quadl, triplequad, function_handle (@), “Anonymous
Functions”

2-829

dbmex

Purpose Enable MEX-file debugging

Syntax dbmex on
dbmex off
dbmex stop

Description dbmex on enables MEX-file debugging for UNIX4 platforms. It is not
supported on the Sun Solaris platform.

To use this option, first start the MATLAB software from a debugger
by typing matlab -Ddebugger, where debugger is the name of the
debugger.

dbmex off disables MEX-file debugging.

dbmex stop returns to the debugger prompt.

Remarks On Solaris, dbmex is not supported. See
the Technical Support solution 1-17Z0R at
http://www.mathworks.com/support/solutions/data/1-17Z0R.html
for an alternative method of debugging.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbtype, dbup

4. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-830

http://www.mathworks.com/support/solutions/data/1-17Z0R.html

dbquit

Purpose Quit debug mode

GUI
Alternative

From most desktop tools, select Debug > Exit Debug Mode, or in
the Editor, click .

Syntax dbquit
dbquit('all')
dbquit all

Description dbquit terminates debug mode. The Command Window then displays
the standard prompt (>>). The M-file being processed is not completed
and no results are returned. All breakpoints remain in effect. As an
alternative to dbquit, press Shift+F5.

If you debug file1 and step into file2, running dbquit terminates
debugging for both files. However, if you debug file3 and also debug
file4, running dbquit terminates debugging for file4, but file3
remains in debug mode until you run dbquit again.

dbquit('all') or the command form, dbquit all, ends debugging
for all files at once.

Examples This example illustrates the use of dbquit relative to dbquit('all').
Set breakpoints in and run file1 and file2:

>> dbstop in file1
>> dbstop in file2
>> file1
K>> file2
K>> dbstack

MATLAB software returns

K>> dbstack
In file1 at 11
In file2 at 22

If you use the dbquit syntax

2-831

dbquit

K>> dbquit

MATLAB ends debugging for file2 but file1 is still in debug mode
as shown here

K>> dbstack
in file1 at 11

Run dbquit again to exit debug mode for file1.

Alternatively, dbquit('all') ends debugging for both files at once:

K>> dbstack
In file1 at 11
In file2 at 22

dbquit('all')
dbstack

returns no result.

See Also dbclear, dbcont, dbdown, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-832

dbstack

Purpose Function call stack

GUI
Alternative

Use the Stack field in the Editor or in the Workspace
browser.

Syntax dbstack
dbstack(n)
dbstack('-completenames')
[ST,I] = dbstack

Description dbstack displays the line numbers and M-file names of the function
calls that led to the current breakpoint, listed in the order in which they
were executed. The display lists the line number of the most recently
executed function call (at which the current breakpoint occurred) first,
followed by its calling function, which is followed by its calling function,
and so on. This continues until the topmost M-file function is reached.
Each line number is a hyperlink you can click to go directly to that line
in the Editor. The notation functionname>subfunctionname is used to
describe the subfunction location.

dbstack(n) omits the first n frames from the display. This is useful
when issuing a dbstack from within an error handler, for example.

dbstack('-completenames') outputs the “complete name“ (the absolute
file name and the entire sequence of functions that nests the function in
the stack frame) of each function in the stack.

Either none, one, or both n and '-completenames' can appear. If both
appear, the order is irrelevant.

[ST,I] = dbstack returns the stack trace information in an m-by-1
structure ST with the fields:

file The file in which the function appears. This field is the
empty string if there is no file.

name Function name within the file.
line Function line number.

2-833

dbstack

The current workspace index is returned in I.

If you step past the end of an M-file, dbstack returns a negative line
number value to identify that special case. For example, if the last line
to be executed is line 15, then the dbstack line number is 15 before you
execute that line and -15 afterwards.

Remarks In addition to using dbstack while debugging, you can also use dbstack
within an M-file outside the context of debugging. In this case, to get
and analyze information about the current M-file stack. For example, to
get the name of the calling M-file, use dbstack with an output argument
within the file being called. For example:

st=dbstack;

Examples This example shows the information returned when you issue dbstack
while debugging an M-file:

dbstack

In /usr/local/matlab/toolbox/matlab/cond.m at line 13
In test1.m at line 2
In test.m at line 3

See Also dbclear, dbcont, dbdown, dbquit, dbstatus, dbstep, dbstop, dbtype,
dbup, evalin, mfilename, whos

MATLAB Desktop Tools and Development Environment Documentation

• “Editing and Debugging M-Files”

• “Examining Values”

2-834

dbstatus

Purpose List all breakpoints

GUI
Alternative

Breakpoint line numbers are displayed graphically via the breakpoint
icons when the file is open in the Editor.

Syntax dbstatus
dbstatus mfile
dbstatus(-completenames)
s = dbstatus(...)

Description dbstatus lists all the breakpoints in effect including errors, caught
errors, warnings, and naninfs.

dbstatus mfile displays a list of the line numbers for which
breakpoints are set in the specified M-file, where mfile is an M-file
function name or a MATLAB relative partial path. Each line number is
a hyperlink you can click to go directly to that line in the Editor.

dbstatus(-completenames) displays, for each breakpoint, the
absolute file name and the sequence of functions that nest the function
containing the breakpoint.

s = dbstatus(...) returns breakpoint information in an m-by-1
structure with the fields listed in the following table. Use this
syntax to save breakpoint status and restore it at a later time using
dbstop(s)—see dbstop for an example.

name Function name.
file Full path for file containing breakpoints.
line Vector of breakpoint line numbers.
anonymous Vector of integers representing the anonymous

functions in the line field. For example, 2 means
the second anonymous function in that line. A
value of 0 means the breakpoint is at the start of
the line, not in an anonymous function.

2-835

dbstatus

expression Cell vector of breakpoint conditional expression
strings corresponding to lines in the line field.

cond Condition string ('error', 'caught error',
'warning', or 'naninf').

identifier When cond is 'error', 'caught error', or
'warning', a cell vector of MATLAB message
identifier strings for which the particular cond
state is set.

Use dbstatus class/function, dbstatus private/function, or
dbstatus class/private/function to determine the status for methods,
private functions, or private methods (for a class named class).

In all forms you can further qualify the function name with a
subfunction name, as in dbstatus function>subfunction.

Remarks In the syntax, mfile can be an M-file, or the path to a function within
a file. For example

Breakpoint for foo>mfun is on line 9

means there is a breakpoint at the myfun subfunction, which is line
9 in the file foo.m.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstep, dbstop, dbtype,
dbup, error, partialpath, warning

2-836

dbstep

Purpose Execute one or more lines from current breakpoint

GUI
Alternatives

As an alternative to dbstep, you can select Debug > Step or Step In
in most desktop tools, or click the Step or Step In buttons on the Editor
toolbar.

Syntax dbstep
dbstep nlines
dbstep in
dbstep out

Description This function allows you to debug an M-file by following its execution
from the current breakpoint. At a breakpoint, the dbstep function steps
through execution of the current M-file one line at a time or at the rate
specified by nlines.

dbstep executes the next executable line of the current M-file. dbstep
steps over the current line, skipping any breakpoints set in functions
called by that line.

dbstep nlines executes the specified number of executable lines.

dbstep in steps to the next executable line. If that line contains a call
to another M-file function, execution will step to the first executable line
of the called M-file function. If there is no call to an M-file on that line,
dbstep in is the same as dbstep.

dbstep out runs the rest of the function and stops just after leaving
the function.

For all forms, MATLAB software also stops execution at any breakpoint
it encounters.

2-837

dbstep

Note If you want to edit an M-file as a result of debugging, it is best to
first quit debug mode and then edit and save changes to the M-file. If
you edit an M-file while paused in debug mode, you can get unexpected
results when you resume execution of the file and the results might
not be reliable.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype,
dbup

2-838

dbstop

Purpose Set breakpoints

GUI
Alternative

Use the Debug menu in most desktop tools, or the context menu in
Editor. See “Setting Breakpoints”.

Syntax dbstop in mfile ...
dbstop in nonmfile
dbstop if error ...
dbstop if warning ...
dbstop if naninf
dbstop if infnan
dbstop(s)

Description dbstop in mfile ... formats are listed here:

2-839

dbstop

Format Action Additional Information

dbstop in mfile Temporarily stops execution
of the running mfile at the
first executable line, putting
MATLAB software in debug
mode. mfile must be the name
of an M-file, and can include
a MATLAB partialpath. If
the command includes the
-completenames option, then
mfile need not be on the path,
as long as it is a fully qualified
file name. (On Microsoft
Windows, this is a file name
that begins with \\ or with
a drive % letter followed by a
colon. On UNIX platforms, this
is a file name that begins with
/ or ~.) mfile can include a
filemarker to specify the path
to a particular subfunction or
to a nested function within
an M-file. The in keyword is
optional.

If you have graphical
debugging enabled, the
MATLAB Debugger opens
with a breakpoint at the first
executable line of mfile. You
can then use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

2-840

dbstop

Format Action Additional Information

dbstop in mfile at
lineno

Temporarily stops execution
of running mfile just prior
to execution of the line whose
number is lineno, putting
MATLAB in debug mode. If
that line is not executable,
execution stops and the
breakpoint is set at the next
executable line following
lineno. mfile must be in
a directory that is on the
search path, or in the current
directory. The at keyword is
optional.

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at line
lineno. When execution stops,
you can use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode

dbstop in mfile at
lineno@

Stops just after any call to the
first anonymous function in the
specified line number in mfile.

dbstop in mfile at
lineno@n

Stops just after any call to the
nthe anonymous function in the
specified line number in mfile.

dbstop in mfile at
subfun

Temporarily stops execution
of running mfile just prior to
execution of the subfunction
subfun, putting MATLAB in
debug mode. mfile must be
in a directory that is on the
search path, or in the current
directory.

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at the
subfunction subfun. You
can then use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

2-841

dbstop

Format Action Additional Information

dbstop in mfile
at lineno if
expression

Temporarily stops execution
of running mfile, just prior
to execution of the line
whose number is lineno,
putting MATLAB in debug
mode. Execution stops
only if expression evaluates
to true. expression is
evaluated (as if by eval), in
mfile’s workspace when the
breakpoint is encountered,
and must evaluate to a scalar
logical value (1 or 0 for true
or false). If that line is not
executable, execution stops
and the breakpoint is set
at the next executable line
following lineno. mfile must
be in a directory that is on the
search path, or in the current
directory.

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at line
lineno. When execution stops,
you can use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

dbstop in mfile
at lineno@ if
expression

Stops just after any call to the
first anonymous function in
the specified line number in
mfile if expression evaluates
to logical 1 (true).

dbstop in mfile
at lineno@n if
expression

Stops just after any call to the
nthe anonymous function in
the specified line number in
mfile if expression evaluates
to logical 1 (true).

2-842

dbstop

Format Action Additional Information

dbstop in mfile if
expression

Temporarily stops execution
of running mfile, at the
first executable line, putting
MATLAB in debug mode.
Execution stops only if
expression evaluates to
logical 1 (true). expression
is evaluated (as if by eval),
in mfile’s workspace when
the breakpoint is encountered,
and must evaluate to a scalar
logical value (0 or 1 for true
or false). mfile must be in a
directory on the search path, or
in the current directory

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at the first
executable line of mfile. You
can then use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

dbstop in mfile
at subfun if
expression

Temporarily stops execution
of running mfile, just prior to
execution of the subfunction
subfun, putting MATLAB in
debug mode. Execution stops
only if expression evaluates
to logical 1 (true). expression
is evaluated (as if by eval),
in mfile’s workspace when
the breakpoint is encountered,
and must evaluate to a scalar
logical value (0 or 1 for true
or false). mfile must be in a
directory on the search path, or
in the current directory

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at the
subfunction specified by
subfun. You can then use the
debugging utilities, review the
workspace, or issue any valid
MATLAB function. Use dbcont
or dbstep to resume execution
of mfile. Use dbquit to exit
from debug mode.

dbstop in nonmfile temporarily stops execution of the running
M-file at the point where nonmfile is called. This puts MATLAB in
debug mode, where nonmfile is, for example, a built-in or MDL-file.
MATLAB issues a warning because it cannot actually stop in the file;

2-843

dbstop

rather MATLAB stops prior to the file’s execution. Once stopped,
you can examine values and code around that point in the execution.
Use dbstop in nonmfile with caution because the debugger stops in
M-files it uses for running and debugging if they contain nonmfile. As
a result, some debugging features do not operate as expected, such as
typing help functionname at the K>> prompt.

dbstop if error ... formats are listed here:

Format Action

dbstop if error Stops execution when any M-file you subsequently run produces
a run-time error, putting MATLAB in debug mode, paused at the
line that generated the error. The errors that stop execution do not
include run-time errors that are detected within a try...catch
block. You cannot resume execution after an uncaught run-time
error. Use dbquit to exit from debug mode.

dbstop if error
identifier

Stops execution when any M-file you subsequently run produces a
run-time error whose message identifier is identifier, putting
MATLAB in debug mode, paused at the line that generated the
error. The errors that stop execution do not include run-time
errors that are detected within a try...catch block. You cannot
resume execution after an uncaught run-time error. Use dbquit
to exit from debug mode.

dbstop if caught
error

Stops execution when any M-file you subsequently run produces a
run-time error, putting MATLAB in debug mode, paused at the line
in the try portion of the block that generated the error. The errors
that stop execution are those detected within a try...catch block.

dbstop if caught
error identifier

Stops execution when any M-file you subsequently run produces a
run-time error whose message identifier is identifier, putting
MATLAB in debug mode, paused at the line in the try portion of
the block that generated the error. The errors that stop execution
are those detected within a try...catch block.

dbstop if warning ... formats are listed here:

2-844

dbstop

Format Action

dbstop if warning Stops execution when any M-file you subsequently run produces
a run-time warning, putting MATLAB in debug mode, paused at
the line that generated the warning. Use dbcont or dbstep to
resume execution.

dbstop if warning
identifier

Stops execution when any M-file you subsequently run produces a
runtime warning whose message identifier is identifier, putting
MATLAB in debug mode, paused at the line that generated the
warning. Use dbcont or dbstep to resume execution.

dbstop if naninf or dbstop if infnan stops execution when any
M-file you subsequently run produces an infinite value (Inf) or a
value that is not a number (NaN) as a result of an operator, function
call, or scalar assignment, putting MATLAB in debug mode, paused
immediately after the line where Inf or NaN was encountered. For
convenience, you can use either naninf or infnan—they perform in
exactly the same manner. Use dbcont or dbstep to resume execution.
Use dbquit to exit from debug mode.

dbstop(s) restores breakpoints previously saved to the structure s
using s=dbstatus. The files for which the breakpoints have been saved
need to be on the search path or in the current directory. In addition,
because the breakpoints are assigned by line number, the lines in the
file need to be the same as when the breakpoints were saved, or the
results are unpredictable. See the example “Restore Saved Breakpoints”
on page 2-848 and dbstatus for more information.

Remarks Note that MATLAB could become nonresponsive if it stops at a
breakpoint while displaying a modal dialog box or figure that your
M-file creates. In that event, use Ctrl+C to go the MATLAB prompt.

To open the M-file in the Editor when execution reaches a breakpoint,
select Debug > Open M-Files When Debugging.

To stop at each pass through a for loop, do not set the breakpoint at
the for statement. For example, in

2-845

dbstop

for n = 1:10
m = n+1;

end

MATLAB executes the for statement only once, which is efficient.
Therefore, when you set a breakpoint at the for statement and step
through the file, you only stop at the for statement once. Instead place
the breakpoint at the next line, m=n+1 to stop at each pass through
the loop.

Examples The file buggy, used in these examples, consists of three lines.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Stop at First Executable Line

The statements

dbstop in buggy
buggy(2:5)

stop execution at the first executable line in buggy:

n = length(x);

The function

dbstep

advances to the next line, at which point you can examine the value of n.

Stop if Error

Because buggy only works on vectors, it produces an error if the input x
is a full matrix. The statements

dbstop if error
buggy(magic(3))

2-846

dbstop

produce

??? Error using ==> ./
Matrix dimensions must agree.
Error in ==> c:\buggy.m
On line 3 ==> z = (1:n)./x;
K>>

and put MATLAB in debug mode.

Stop if InfNaN

In buggy, if any of the elements of the input x is zero, a division by
zero occurs. The statements

dbstop if naninf
buggy(0:2)

produce

Warning: Divide by zero.
> In c:\buggy.m at line 3
K>>

and put MATLAB in debug mode.

Stop at Function in File

In this example, MATLAB stops at the newTemp function in the M-file
yearlyAvgs:

dbstop in yearlyAvgs>newTemp

Stop at Non M-File

In this example, MATLAB stops at the built-in function clear when
you run myfile.m.

dbstop in clear; myfile

MATLAB issues a warning, but permits the stop:

2-847

dbstop

Warning: MATLAB debugger can only stop in M-files, and
"m_interpreter>clear" is not an M-file.
Instead, the debugger will stop at the point right before
"m_interpreter>clear" is called.

Execution stops in myfile at the point where the clear function is
called.

Restore Saved Breakpoints

1 Set breakpoints in myfile as follows:

dbstop at 12 in myfile
dbstop if error

2 Running dbstatus shows

Breakpoint for myfile is on line 12.
Stop if error.

3 Save the breakpoints to the structure s, and then save s to the
MAT-file myfilebrkpnts.

s = dbstatus
save myfilebrkpnts s

Use s=dbstatus('completenames') to save absolute paths and the
breakpoint function nesting sequence.

4 At this point, you can end the debugging session and clear all
breakpoints, or even end the MATLAB session.

When you want to restore the breakpoints, be sure all of the files
containing the breakpoints are on the search path or in the current
directory. Then load the MAT-file, which adds s to the workspace,
and restore the breakpoints as follows:

load myfilebrkpnts
dbstop(s)

2-848

dbstop

5 Verify the breakpoints by running dbstatus, which shows

dbstop at 12 in myfile
dbstop if error

If you made changes to myfile after saving the breakpoints, the
results from restoring the breakpoints are not predictable. For
example, if you added a new line prior to line 12 in myfile, the
breakpoint will now be set at the new line 12.

See Also assignin, break, dbclear, dbcont, dbdown, dbquit, dbstack,
dbstatus, dbstep, dbtype, dbup, evalin, filemarker,keyboard,
partialpath, return, whos

2-849

dbtype

Purpose List M-file with line numbers

GUI
Alternatives

As an alternative to the dbtype function, you can see an M-file with line
numbers by opening it in the Editor.

Syntax dbtype mfilename
dbtype mfilename start:end

Description The dbtype command is used to list an M-file with line numbers, which
is helpful when setting breakpoints with dbstop.

dbtype mfilename displays the contents of the specified M-file, with
the line number preceding each line. mfilename must be the full path
name of an M-file, or a MATLAB relative partialpath.

dbtype mfilename start:end displays the portion of the M-file
specified by a range of line numbers from start to end.

You cannot use dbtype for built-in functions.

Examples To see only the input and output arguments for a function, that is, the
first line of the M-file, use the syntax

dbtype mfilename 1

For example,

dbtype fileparts 1

returns

1 function [path, fname, extension,version] = fileparts(name)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbup, partialpath

2-850

dbup

Purpose Change local workspace context

GUI
Alternative

As an alternative to the dbup function, you can select a different
workspace from the Stack field in the Editor toolbar.

Syntax dbup

Description This function allows you to examine the calling M-file to determine
what caused the arguments to be passed to the called function.

dbup changes the current workspace context, while the user is in the
debug mode, to the workspace of the calling M-file.

Multiple dbup functions change the workspace context to each previous
calling M-file on the stack until the base workspace context is reached.
(It is not necessary, however, to move back to the current breakpoint to
continue execution or to step to the next line.)

Remarks If your receive an error message such as the following, it means that
the parent workspace is under construction so that the value of x is
unavailable:

??? Reference to a called function result under construction x

For more information, see “Problems Viewing Variable Values from
Parent Workspace”.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbtype

2-851

dde23

Purpose Solve delay differential equations (DDEs) with constant delays

Syntax sol = dde23(ddefun,lags,history,tspan)
sol = dde23(ddefun,lags,history,tspan,options)

Arguments ddefun Function handle that evaluates the
right side of the differential equations

.
The function must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current ,
y is a column vector that approximates

, and Z(:,j) approximates
for delay = lags(j). The output
is a column vector corresponding to

.
lags Vector of constant, positive delays .
history Specify history in one of three ways:

• A function of such that y = history(t)

returns the solution for as a
column vector

• A constant column vector, if is
constant

• The solution sol from a previous
integration, if this call continues that
integration

2-852

dde23

tspan Interval of integration from t0=tspan(1) to
tf=tspan(end) with t0 < tf.

options Optional integration argument. A structure
you create using the ddeset function. See
ddeset for details.

Description sol = dde23(ddefun,lags,history,tspan) integrates the system
of DDEs

on the interval , where are constant, positive delays
and . ddefun is a function handle. See “Function Handles” in
the MATLAB Programming documentation for more information.

“Parametrizing Functions” in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function ddefun, if necessary.

dde23 returns the solution as a structure sol. Use the auxiliary
function deval and the output sol to evaluate the solution at specific
points tint in the interval tspan = [t0,tf].

yint = deval(sol,tint)

The structure sol returned by dde23 has the following fields.

sol.x Mesh selected by dde23
sol.y Approximation to at the mesh points in

sol.x.
sol.yp Approximation to at the mesh points in

sol.x

sol.solver Solver name, 'dde23'

2-853

dde23

sol = dde23(ddefun,lags,history,tspan,options) solves as above
with default integration properties replaced by values in options,
an argument created with ddeset. See ddeset and “DDEs” in the
MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol'
(1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all
components are 1e-6 by default).

Use the 'Jumps' option to solve problems with discontinuities in
the history or solution. Set this option to a vector that contains the
locations of discontinuities in the solution prior to t0 (the history) or in
coefficients of the equations at known values of after t0.

Use the 'Events' option to specify a function that dde23 calls to find
where functions vanish. This
function must be of the form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth
event function in events:

• value(k) is the value of the kth event function.

• isterminal(k) = 1 if you want the integration to terminate at a
zero of this event function and 0 otherwise.

• direction(k) = 0 if you want dde23 to compute all zeros of this
event function, +1 if only zeros where the event function increases,
and -1 if only zeros where the event function decreases.

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

2-854

dde23

sol.xe Row vector of locations of all events, i.e., times
when an event function vanished

sol.ye Matrix whose columns are the solution values
corresponding to times in sol.xe

sol.ie Vector containing indices that specify which event
occurred at the corresponding time in sol.xe

Examples This example solves a DDE on the interval [0, 5] with lags 1 and 0.2.
The function ddex1de computes the delay differential equations, and
ddex1hist computes the history for t <= 0.

Note The demo ddex1 contains the complete code for this example. To
see the code in an editor, click the example name, or type edit ddex1 at
the command line. To run the example type ddex1 at the command line.

sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[0, 5]);

This code evaluates the solution at 100 equally spaced points in the
interval [0,5], then plots the result.

tint = linspace(0,5);
yint = deval(sol,tint);
plot(tint,yint);

ddex1 shows how you can code this problem using subfunctions. For
more examples see ddex2.

Algorithm dde23 tracks discontinuities and integrates with the explicit
Runge-Kutta (2,3) pair and interpolant of ode23. It uses iteration to
take steps longer than the lags.

See Also ddesd, ddeget, ddeset, deval, function_handle (@)

2-855

dde23

References [1] Shampine, L.F. and S. Thompson, “Solving DDEs in MATLAB,
“Applied Numerical Mathematics, Vol. 37, 2001, pp. 441-458.

[2] Kierzenka, J., L.F. Shampine, and S. Thompson, “Solving
Delay Differential Equations with DDE23,” available at
www.mathworks.com/dde_tutorial.

2-856

http://www.mathworks.com/dde_tutorial

ddeget

Purpose Extract properties from delay differential equations options structure

Syntax val = ddeget(options,'name')
val = ddeget(options,'name',default)

Description val = ddeget(options,'name') extracts the value of the named
property from the structure options, returning an empty matrix if
the property value is not specified in options. It is sufficient to type
only the leading characters that uniquely identify the property. Case is
ignored for property names. [] is a valid options argument.

val = ddeget(options,'name',default) extracts the named property
as above, but returns val = default if the named property is not
specified in options. For example,

val = ddeget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also dde23, ddesd, ddeset

2-857

ddesd

Purpose Solve delay differential equations (DDEs) with general delays

Syntax sol = ddesd(ddefun,delays,history,tspan)
sol = ddesd(ddefun,delays,history,tspan,options)

Arguments ddefun Function handle that evaluates the
right side of the differential equations

.
The function must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current , y is a
column vector that approximates , and
Z(:,j) approximates for delay
given as component of delays(t,y). The
output is a column vector corresponding to

.
delays Function handle that returns a column vector of

delays . The delays can depend on both
and . ddesd imposes the requirement that

by using min(,).

If all the delay functions have the form
, you can set the argument

delays to a constant vector delays .
With delay functions of this form, ddesd is used
exactly like dde23.

2-858

ddesd

history Specify history in one of three ways:

• A function of such that y = history(t)

returns the solution for as a
column vector

• A constant column vector, if is constant

• The solution sol from a previous integration,
if this call continues that integration

tspan Interval of integration from t0=tspan(1) to
tf=tspan(end) with t0 < tf.

options Optional integration argument. A structure you
create using the ddeset function. See ddeset
for details.

Description sol = ddesd(ddefun,delays,history,tspan) integrates the system
of DDEs

on the interval , where delays can depend on both and
, and . Inputs ddefun and delays are function handles.

See “Function Handles” in the MATLAB Programming documentation
for more information.

“Parametrizing Functions” in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
functions ddefun, delays, and history, if necessary.

ddesd returns the solution as a structure sol. Use the auxiliary
function deval and the output sol to evaluate the solution at specific
points tint in the interval tspan = [t0,tf].

yint = deval(sol,tint)

The structure sol returned by ddesd has the following fields.

2-859

ddesd

sol.x Mesh selected by ddesd
sol.y Approximation to at the mesh points in

sol.x.
sol.yp Approximation to at the mesh points in

sol.x

sol.solver Solver name, 'ddesd'

sol = ddesd(ddefun,delays,history,tspan,options) solves as
above with default integration properties replaced by values in options,
an argument created with ddeset. See ddeset and “DDEs” in the
MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol'
(1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all
components are 1e-6 by default).

Use the 'Events' option to specify a function that ddesd calls to find
where functions vanish. This
function must be of the form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth
event function in events:

• value(k) is the value of the kth event function.

• isterminal(k) = 1 if you want the integration to terminate at a
zero of this event function and 0 otherwise.

• direction(k) = 0 if you want ddesd to compute all zeros of this
event function, +1 if only zeros where the event function increases,
and -1 if only zeros where the event function decreases.

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

2-860

ddesd

sol.xe Row vector of locations of all events, i.e., times
when an event function vanished

sol.ye Matrix whose columns are the solution values
corresponding to times in sol.xe

sol.ie Vector containing indices that specify which event
occurred at the corresponding time in sol.xe

Examples The equation

sol = ddesd(@ddex1de,@ddex1delays,@ddex1hist,[0,5]);

solves a DDE on the interval [0,5] with delays specified by the function
ddex1delays and differential equations computed by ddex1de. The
history is evaluated for by the function ddex1hist. The solution is
evaluated at 100 equally spaced points in [0,5]:

tint = linspace(0,5);
yint = deval(sol,tint);

and plotted with

plot(tint,yint);

This problem involves constant delays. The delay function has the form

function d = ddex1delays(t,y)
%DDEX1DELAYS Delays for using with DDEX1DE.
d = [t - 1

t - 0.2];

The problem can also be solved with the syntax corresponding to
constant delays

delays = [1, 0.2];
sol = ddesd(@ddex1de,delays,@ddex1hist,[0, 5]);

or using dde23:

2-861

ddesd

sol = dde23(@ddex1de,delays,@ddex1hist,[0, 5]);

For more examples of solving delay differential equations see ddex2
and ddex3.

See Also dde23, ddeget, ddeset, deval, function_handle (@)

References [1] Shampine, L.F., “Solving ODEs and DDEs with Residual Control,”
Applied Numerical Mathematics, Vol. 52, 2005, pp. 113-127.

2-862

ddeset

Purpose Create or alter delay differential equations options structure

Syntax options = ddeset('name1',value1,'name2',value2,...)
options = ddeset(oldopts,'name1',value1,...)
options = ddeset(oldopts,newopts)
ddeset

Description options = ddeset('name1',value1,'name2',value2,...) creates
an integrator options structure options in which the named properties
have the specified values. Any unspecified properties have default
values. It is sufficient to type only the leading characters that uniquely
identify the property. ddeset ignores case for property names.

options = ddeset(oldopts,'name1',value1,...) alters an existing
options structure oldopts. This overwrites any values in oldopts that
are specified using name/value pairs and returns the modified structure
as the output argument.

options = ddeset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any values
set in newopts overwrite the corresponding values in oldopts.

ddeset with no input arguments displays all property names and their
possible values, indicating defaults with braces {}.

You can use the function ddeget to query the options structure for the
value of a specific property.

DDE
Properties

The following sections describe the properties that you can set using
ddeset. There are several categories of properties:

• Error control
• Solver output

• Step size

• Event location

• Discontinuities

2-863

ddeset

Error Control Properties

At each step, solvers dde23 and ddesd estimate an error e. dde23
estimates the local truncation error, and ddesd estimates the residual.
In either case, this error must be less than or equal to the acceptable
error, which is a function of the specified relative tolerance, RelTol, and
the specified absolute tolerance, AbsTol.

|e(i)| ≤ max(RelTol*abs(y(i)),AbsTol(i))

For routine problems, dde23 and ddesd deliver accuracy roughly
equivalent to the accuracy you request. They deliver less accuracy
for problems integrated over “long” intervals and problems that are
moderately unstable. Difficult problems may require tighter tolerances
than the default values. For relative accuracy, adjust RelTol. For
the absolute error tolerance, the scaling of the solution components is
important: if |y| is somewhat smaller than AbsTol, the solver is not
constrained to obtain any correct digits in y. You might have to solve a
problem more than once to discover the scale of solution components.

Roughly speaking, this means that you want RelTol correct digits in all
solution components except those smaller than thresholds AbsTol(i).
Even if you are not interested in a component y(i) when it is small,
you may have to specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more interesting
components

The following table describes the error control properties.

2-864

ddeset

DDE Error Control Properties

Property Value Description

RelTol Positive
scalar {1e-3}

A relative error tolerance that applies to all components
of the solution vector y. It is a measure of the error
relative to the size of each solution component. Roughly,
it controls the number of correct digits in all solution
components except those smaller than thresholds
AbsTol(i). The default, 1e-3, corresponds to 0.1%
accuracy.

The estimated error in each integration step satisfies
|e(i)|max(RelTol*abs(y(i)), AbsTol(i)).

AbsTol Positive
scalar or
vector {1e-6}

Absolute error tolerances that apply to the individual
components of the solution vector. AbsTol(i) is a
threshold below which the value of the ith solution
component is unimportant. The absolute error
tolerances determine the accuracy when the solution
approaches zero. Even if you are not interested in a
component y(i) when it is small, you may have to
specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more
interesting components.

If AbsTol is a vector, the length of AbsTol must be the
same as the length of the solution vector y. If AbsTol is
a scalar, the value applies to all components of y.

NormControl on | {off} Control error relative to norm of solution. Set
this property on to request that the solvers control
the error in each integration step with norm(e)<=
max(RelTol*norm(y),AbsTol). By default, solvers
dde23 and ddesd use a more stringent component-wise
error control.

2-865

ddeset

Solver Output Properties

You can use the solver output properties to control the output that the
solvers generate.

DDE Solver Output Properties

Property Value Description

OutputFcn Function
handle
{@odeplot}

The output function is a function that the solver calls
after every successful integration step. To specify
an output function, set 'OutputFcn' to a function
handle. For example,

options = ddeset('OutputFcn',...
@myfun)

sets ’OutputFcn’ to @myfun, a handle to the function
myfun. See “Function Handles” in the MATLAB
Programming documentation for more information.

The output function must be of the form

status = myfun(t,y,flag)

“Parametrizing Functions” in the MATLAB
Mathematics documentation, explains how to provide
additional parameters to myfun, if necessary.

The solver calls the specified output function with
the following flags. Note that the syntax of the call
differs with the flag. The function must respond
appropriately:

2-866

ddeset

DDE Solver Output Properties (Continued)

Property Value Description

• init— The solver calls myfun(tspan,y0,'init')
before beginning the integration to allow the output
function to initialize. tspan is the input argument
to solvers dde23 and ddesd. y0 is the initial value of
the solution, either from history(t0) or specified
in the initialY option.

• {none} — The solver calls status = myfun(t,y)
after each integration step on which output is
requested. t contains points where output was
generated during the step, and y is the numerical
solution at the points in t. If t is a vector, the ith
column of y corresponds to the ith element of t.

myfun must return a status output value of 0 or 1.
If literal > status, the solver halts integration. You
can use this mechanism, for instance, to implement
a Stop button.

• done — The solver calls myfun([],[],'done')
when integration is complete to allow the output
function to perform any cleanup chores.

You can use these general purpose output functions
or you can edit them to create your own. Type
help functionname at the command line for more
information.

• odeplot – time series plotting (default when you
call the solver with no output argument and you
have not specified an output function)

• odephas2 – two-dimensional phase plane plotting

• odephas3 – three-dimensional phase plane plotting

• odeprint – print solution as the solver computes it

2-867

ddeset

DDE Solver Output Properties (Continued)

Property Value Description

OutputSel Vector of
indices

Vector of indices specifying which components of the
solution vector the dde23 or ddesd solver passes to
the output function. For example, if you want to use
the odeplot output function, but you want to plot
only the first and third components of the solution,
you can do this using

options = ddeset...
('OutputFcn',@odeplot,...
'OutputSel',[1 3]);

By default, the solver passes all components of the
solution to the output function.

Stats on | {off} Specifies whether the solver should display statistics
about its computations. By default, Stats is off. If it
is on, after solving the problem the solver displays:

• The number of successful steps

• The number of failed attempts

• The number of times the DDE function was called

Step Size Properties

The step size properties let you specify the size of the first step the
solver tries, potentially helping it to better recognize the scale of the
problem. In addition, you can specify bounds on the sizes of subsequent
time steps.

The following table describes the step size properties.

2-868

ddeset

DDE Step Size Properties

Property Value Description

InitialStep Positive scalar Suggested initial step size. InitialStep sets an
upper bound on the magnitude of the first step size
the solver tries. If you do not set InitialStep, the
solver bases the initial step size on the slope of the
solution at the initial time tspan(1). The initial step
size is limited by the shortest delay. If the slope of
all solution components is zero, the procedure might
try a step size that is much too large. If you know
this is happening or you want to be sure that the
solver resolves important behavior at the start of the
integration, help the code start by providing a suitable
InitialStep.

2-869

ddeset

DDE Step Size Properties (Continued)

Property Value Description

Upper bound on solver step size. If the differential
equation has periodic coefficients or solutions, it may
be a good idea to set MaxStep to some fraction (such
as 1/4) of the period. This guarantees that the solver
does not enlarge the time step too much and step over
a period of interest. Do not reduce MaxStep:

• When the solution does not appear to be accurate
enough. Instead, reduce the relative error tolerance
RelTol, and use the solution you just computed
to determine appropriate values for the absolute
error tolerance vector AbsTol. (See “Error Control
Properties” on page 2-864 for a description of the
error tolerance properties.)

MaxStep Positive scalar
{0.1*
abs(t0-tf)}

• To make sure that the solver doesn’t step over
some behavior that occurs only once during the
simulation interval. If you know the time at which
the change occurs, break the simulation interval
into two pieces and call the solver (dde23 or ddesd)
twice. If you do not know the time at which the
change occurs, try reducing the error tolerances
RelTol and AbsTol. Use MaxStep as a last resort.

Event Location Property

In some DDE problems, the times of specific events are important.
While solving a problem, the dde23 and ddesd solvers can detect such
events by locating transitions to, from, or through zeros of user-defined
functions.

The following table describes the Events property.

2-870

ddeset

DDE Events Property

String Value Description

Events Function
handle

Handle to a function that includes one or more event
functions. See “Function Handles” in the MATLAB
Programming documentation for more information. The
function is of the form

[value,isterminal,direction] =
events(t,y,Z)

value, isterminal, and direction are vectors for which
the ith element corresponds to the ith event function:

2-871

ddeset

DDE Events Property (Continued)

String Value Description

• value(i) is the value of the ith event function.

• isterminal(i) = 1 if you want the integration to
terminate at a zero of this event function, and 0
otherwise.

• direction(i) = 0 if you want the solver (dde23 or
ddesd) to locate all zeros (the default), +1 if only zeros
where the event function is increasing, and -1 if only
zeros where the event function is decreasing.

If you specify an events function and events are
detected, the solver returns three additional fields in
the solution structure sol:

• sol.xe is a row vector of times at which events occur.

• sol.ye is a matrix whose columns are the solution
values corresponding to times in sol.xe.

• sol.ie is a vector containing indices that specify which
event occurred at the corresponding time in sol.xe.

For examples that use an event function while solving
ordinary differential equation problems, see “Event
Location” (ballode) and “Advanced Event Location”
(orbitode), in the MATLAB Mathematics documentation.

Discontinuity Properties

Solvers dde23 and ddesd can solve problems with discontinuities in the
history or in the coefficients of the equations. The following properties
enable you to provide these solvers with a different initial value, and,
for dde23, locations of known discontinuities. See “Discontinuities” in
the MATLAB Mathematics documentation for more information.

The following table describes the discontinuity properties.

2-872

ddeset

DDE Discontinuity Properties

String Value Description

Jumps Vector Location of discontinuities. Points where
the history or solution may have a jump
discontinuity in a low-order derivative. This
applies only to the dde23 solver.

InitialY Vector Initial value of solution. By default the initial
value of the solution is the value returned by
history at the initial point. Supply a different
initial value as the value of the InitialY
property.

Example To create an options structure that changes the relative error tolerance
of the solver from the default value of 1e-3 to 1e-4, enter

options = ddeset('RelTol', 1e-4);

To recover the value of 'RelTol' from options, enter

ddeget(options, 'RelTol')

ans =

1.0000e-004

See Also dde23, ddesd, ddeget, function_handle (@)

2-873

deal

Purpose Distribute inputs to outputs

Note Beginning with MATLAB Version 7.0 software, you can access
the contents of cell arrays and structure fields without using the deal
function. See Example 3, below.

Syntax [Y1, Y2, Y3, ...] = deal(X)
[Y1, Y2, Y3, ...] = deal(X1, X2, X3, ...)
[S.field] = deal(X)
[X{:}] = deal(A.field)
[Y1, Y2, Y3, ...] = deal(X{:})
[Y1, Y2, Y3, ...] = deal(S.field)

Description [Y1, Y2, Y3, ...] = deal(X) copies the single input to all the
requested outputs. It is the same as Y1 = X, Y2 = X, Y3 = X, ...

[Y1, Y2, Y3, ...] = deal(X1, X2, X3, ...) is the same as Y1 =
X1; Y2 = X2; Y3 = X3; ...

Remarks deal is most useful when used with cell arrays and structures via
comma-separated list expansion. Here are some useful constructions:

[S.field] = deal(X) sets all the fields with the name field in the
structure array S to the value X. If S doesn’t exist, use [S(1:m).field]
= deal(X).

[X{:}] = deal(A.field) copies the values of the field with name field
to the cell array X. If X doesn’t exist, use [X{1:m}] = deal(A.field).

[Y1, Y2, Y3, ...] = deal(X{:}) copies the contents of the cell
array X to the separate variables Y1, Y2, Y3, ...

[Y1, Y2, Y3, ...] = deal(S.field) copies the contents of the
fields with the name field to separate variables Y1, Y2, Y3, ...

2-874

deal

Examples Example 1 — Assign Data From a Cell Array

Use deal to copy the contents of a 4-element cell array into four
separate output variables.

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})

a =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

b =
1
1
1

c =
1 0 0
0 1 0
0 0 1

d =
0
0
0

Example 2 — Assign Data From Structure Fields

Use deal to obtain the contents of all the name fields in a structure
array:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[name1,name2] = deal(A(:).name)

name1 =
Pat

2-875

deal

name2 =
Tony

Example 3 — Doing the Same Without deal

Beginning with MATLAB Version 7.0 software, you can, in most cases,
access the contents of cell arrays and structure fields without using
the deal function. The two commands shown below perform the same
operation as those used in the previous two examples, except that these
commands do not require deal.

[a,b,c,d] = C{:}
[name1,name2] = A(:).name

See Also cell, iscell, celldisp, struct, isstruct, fieldnames, isfield,
orderfields, rmfield, cell2struct, struct2cell

2-876

deblank

Purpose Strip trailing blanks from end of string

Syntax str = deblank(str)
c = deblank(c)

Description str = deblank(str) removes all trailing whitespace and null
characters from the end of character string str. A whitespace is any
character for which the isspace function returns logical 1 (true).

c = deblank(c) when c is a cell array of strings, applies deblank to
each element of c.

The deblank function is useful for cleaning up the rows of a character
array.

Examples Example 1 – Removing Trailing Blanks From a String

Compose a string str that contains space, tab, and null characters:

NL = char(0); TAB = char(9);
str = [NL 32 TAB NL 'AB' 32 NL 'CD' NL 32 TAB NL 32];

Display all characters of the string between | symbols:

['|' str '|']
ans =

| AB CD |

Remove trailing whitespace and null characters, and redisplay the
string:

newstr = deblank(str);

['|' newstr '|']
ans =

| AB CD|

2-877

deblank

Example 2– Removing Trailing Blanks From a Cell Array of
Strings

A{1,1} = 'MATLAB ';
A{1,2} = 'SIMULINK ';
A{2,1} = 'Toolboxes ';
A{2,2} = 'The MathWorks ';
A =

'MATLAB ' 'SIMULINK '
'Toolboxes ' 'The MathWorks '

deblank(A)
ans =

'MATLAB' 'SIMULINK'
'Toolboxes' 'The MathWorks'

See Also strjust, strtrim

2-878

debug

Purpose List M-file debugging functions

GUI
Alternatives

Use the Debug menu in most desktop tools, or use the Editor.

Syntax debug

Description debug lists M-file debugging functions.

Use debugging functions (listed in the See Also section) to help you
identify problems in your M-files. Set breakpoints using dbstop.
When MATLAB software encounters a breakpoint during execution,
it enters debug mode, the Editor becomes active, and the prompt in
the Command Window changes to a K>>. Any MATLAB command is
allowed at the prompt. To resume execution, use dbcont or dbstep. To
exit from debug mode, use dbquit.

To open the M-File in the Editor when execution reaches a breakpoint,
select Debug > Open M-Files When Debugging.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbtype, dbup, evalin, whos

“Editing and Debugging M-Files” in the MATLAB Desktop Tools and
Development Environment documentation

2-879

dec2base

Purpose Convert decimal to base N number in string

Syntax str = dec2base(d, base)
str = dec2base(d, base, n)

Description str = dec2base(d, base) converts the nonnegative integer d to the
specified base. d must be a nonnegative integer smaller than 2^52, and
base must be an integer between 2 and 36. The returned argument
str is a string.

str = dec2base(d, base, n) produces a representation with at least
n digits.

Examples The expression dec2base(23, 2) converts 2310 to base 2, returning
the string '10111'.

See Also base2dec

2-880

dec2bin

Purpose Convert decimal to binary number in string

Syntax str = dec2bin(d)
str = dec2bin(d,n)

Description returns the

str = dec2bin(d) binary representation of d as a string. d must be a
nonnegative integer smaller than 2^52.

str = dec2bin(d,n) produces a binary representation with at least n
bits.

Examples Decimal 23 converts to binary 010111:

dec2bin(23)
ans =

10111

See Also bin2dec, dec2hex

2-881

dec2hex

Purpose Convert decimal to hexadecimal number in string

Syntax str = dec2hex(d)
str = dec2hex(d, n)

Description str = dec2hex(d) converts the decimal integer d to its hexadecimal
representation stored in a MATLAB string. d must be a nonnegative
integer smaller than 2^52.

str = dec2hex(d, n) produces a hexadecimal representation with
at least n digits.

Examples To convert decimal 1023 to hexadecimal,

dec2hex(1023)

ans =
3FF

See Also dec2bin, format, hex2dec, hex2num

2-882

decic

Purpose Compute consistent initial conditions for ode15i

Syntax [y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0)
[y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,

options)
[y0mod,yp0mod,resnrm] = decic(odefun,t0,y0,fixed_y0,yp0,

fixed_yp0...)

Description [y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0)
uses the inputs y0 and yp0 as initial guesses for an iteration to find
output values that satisfy the requirement ,
i.e., y0mod and yp0mod are consistent initial conditions. odefun is a
function handle. See “Function Handles” in the MATLAB Programming
documentation for more information. The function decic changes
as few components of the guesses as possible. You can specify that
decic holds certain components fixed by setting fixed_y0(i) = 1 if
no change is permitted in the guess for y0(i) and 0 otherwise. decic
interprets fixed_y0 = [] as allowing changes in all entries. fixed_yp0
is handled similarly.

“Parametrizing Functions” in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function odefun, if necessary.

You cannot fix more than length(y0) components. Depending on the
problem, it may not be possible to fix this many. It also may not be
possible to fix certain components of y0 or yp0. It is recommended that
you fix no more components than necessary.

[y0mod,yp0mod] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,options) computes
as above with default tolerances for consistent initial conditions,
AbsTol and RelTol, replaced by the values in options, a structure
you create with the odeset function.

[y0mod,yp0mod,resnrm] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0...) returns the

2-883

decic

norm of odefun(t0,y0mod,yp0mod) as resnrm. If the norm seems
unduly large, use options to decrease RelTol (1e-3 by default).

Examples These demos provide examples of the use of decic in solving implicit
ODEs: ihb1dae, iburgersode.

See Also ode15i, odeget, odeset, function_handle (@)

2-884

deconv

Purpose Deconvolution and polynomial division

Syntax [q,r] = deconv(v,u)

Description [q,r] = deconv(v,u) deconvolves vector u out of vector v, using long
division. The quotient is returned in vector q and the remainder in
vector r such that v = conv(u,q)+r .

If u and v are vectors of polynomial coefficients, convolving them is
equivalent to multiplying the two polynomials, and deconvolution is
polynomial division. The result of dividing v by u is quotient q and
remainder r.

Examples If

u = [1 2 3 4]
v = [10 20 30]

the convolution is

c = conv(u,v)
c =

10 40 100 160 170 120

Use deconvolution to recover u:

[q,r] = deconv(c,u)
q =

10 20 30
r =

0 0 0 0 0 0

This gives a quotient equal to v and a zero remainder.

Algorithm deconv uses the filter primitive.

See Also conv, residue

2-885

del2

Purpose Discrete Laplacian

Syntax L = del2(U)
-L = del2(U)
L = del2(U,h)
L = del2(U,hx,hy)
L = del2(U,hx,hy,hz,...)

Definition If the matrix U is regarded as a function evaluated at the point
on a square grid, then 4*del2(U) is a finite difference approximation of
Laplace’s differential operator applied to , that is:

where:

in the interior. On the edges, the same formula is applied to a cubic
extrapolation.

For functions of more variables , del2(U) is an
approximation,

where is the number of variables in .

Description L = del2(U) where U is a rectangular array is a discrete approximation
of

2-886

del2

The matrix L is the same size as U with each element equal to the
difference between an element of U and the average of its four neighbors.

-L = del2(U) when U is an multidimensional array, returns an
approximation of

where is ndims(u).

L = del2(U,h) where H is a scalar uses H as the spacing between points
in each direction (h=1 by default).

L = del2(U,hx,hy) when U is a rectangular array, uses the spacing
specified by hx and hy. If hx is a scalar, it gives the spacing between
points in the x-direction. If hx is a vector, it must be of length size(u,2)
and specifies the x-coordinates of the points. Similarly, if hy is a scalar,
it gives the spacing between points in the y-direction. If hy is a vector,
it must be of length size(u,1) and specifies the y-coordinates of the
points.

L = del2(U,hx,hy,hz,...) where U is multidimensional uses the
spacing given by hx, hy, hz, ...

Remarks MATLAB software computes the boundaries of the grid by extrapolating
the second differences from the interior. The algorithm used for this
computation can be seen in the del2M-file code. To view this code, type

type del2

Examples The function

2-887

del2

has

For this function, 4*del2(U) is also 4.

[x,y] = meshgrid(-4:4,-3:3);
U = x.*x+y.*y
U =

25 18 13 10 9 10 13 18 25
20 13 8 5 4 5 8 13 20
17 10 5 2 1 2 5 10 17
16 9 4 1 0 1 4 9 16
17 10 5 2 1 2 5 10 17
20 13 8 5 4 5 8 13 20
25 18 13 10 9 10 13 18 25

V = 4*del2(U)
V =

4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4

See Also diff, gradient

2-888

delaunay

Purpose Delaunay triangulation

Syntax TRI = delaunay(x,y)
TRI = delaunay(x,y,options)

Definition Given a set of data points, the Delaunay triangulation is a set of
lines connecting each point to its natural neighbors. The Delaunay
triangulation is related to the Voronoi diagram — the circle
circumscribed about a Delaunay triangle has its center at the vertex of
a Voronoi polygon.

Description TRI = delaunay(x,y) for the data points defined by vectors x and
y, returns a set of triangles such that no data points are contained
in any triangle’s circumscribed circle. Each row of the m-by-3 matrix
TRI defines one such triangle and contains indices into x and y. If the
original data points are collinear or x is empty, the triangles cannot be
computed and delaunay returns an empty matrix.

delaunay uses Qhull.

TRI = delaunay(x,y,options) specifies a cell array of strings
options to be used in Qhull via delaunayn. The default options are
{'Qt','Qbb','Qc'}.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default. For more information on Qhull
and its options, see http://www.qhull.org.

2-889

http://www.qhull.org

delaunay

Remarks The Delaunay triangulation is used by: griddata (to interpolate
scattered data), voronoi (to compute the voronoi diagram), and is
useful by itself to create a triangular grid for scattered data points.

The functions dsearch and tsearch search the triangulation to find
nearest neighbor points or enclosing triangles, respectively.

Visualization Use one of these functions to plot the output of delaunay:

triplot Displays the triangles defined in the m-by-3 matrix
TRI. See Example 1.

trisurf Displays each triangle defined in the m-by-3 matrix
TRI as a surface in 3-D space. To see a 2-D surface,
you can supply a vector of some constant value for the
third dimension. For example

trisurf(TRI,x,y,zeros(size(x)))

See Example 2.
trimesh Displays each triangle defined in the m-by-3 matrix

TRI as a mesh in 3-D space. To see a 2-D surface, you
can supply a vector of some constant value for the
third dimension. For example,

trimesh(TRI,x,y,zeros(size(x)))

produces almost the same result as triplot, except
in 3-D space. See Example 2.

Examples Example 1

Plot the Delaunay triangulation for 10 randomly generated points.

rand('state',0);
x = rand(1,10);
y = rand(1,10);
TRI = delaunay(x,y);

2-890

delaunay

subplot(1,2,1),...
triplot(TRI,x,y)
axis([0 1 0 1]);
hold on;
plot(x,y,'or');
hold off

Compare the Voronoi diagram of the same points:

[vx, vy] = voronoi(x,y,TRI);
subplot(1,2,2),...
plot(x,y,'r+',vx,vy,'b-'),...
axis([0 1 0 1])

Example 2

Create a 2-D grid then use trisurf to plot its Delaunay triangulation
in 3-D space by using 0s for the third dimension.

[x,y] = meshgrid(1:15,1:15);
tri = delaunay(x,y);

2-891

delaunay

trisurf(tri,x,y,zeros(size(x)))

Next, generate peaks data as a 15-by-15 matrix, and use that data with
the Delaunay triangulation to produce a surface in 3-D space.

z = peaks(15);
trisurf(tri,x,y,z)

2-892

delaunay

You can use the same data with trimesh to produce a mesh in 3-D space.

trimesh(tri,x,y,z)

2-893

delaunay

Example 3

The following example illustrates the options input for delaunay.

x = [-0.5 -0.5 0.5 0.5];
y = [-0.5 0.5 0.5 -0.5];

The command

T = delaunay(X);

returns the following error message.

??? qhull input error: can not scale last coordinate. Input is
cocircular

or cospherical. Use option 'Qz' to add a point at infinity.

The error message indicates that you should add 'Qz' to the default
Qhull options.

2-894

delaunay

tri = delaunay(x,y,{'Qt','Qbb','Qc','Qz'})

tri =

3 2 1
3 4 1

Algorithm delaunay is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also delaunay3, delaunay, dsearch, griddata, plot, triplot, trimesh,
trisurf, tsearch, voronoi

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-895

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

delaunay3

Purpose 3-D Delaunay tessellation

Syntax T = delaunay3(x,y,z)
T = delaunay3(x,y,z,options)

Description T = delaunay3(x,y,z) returns an array T, each row of which contains
the indices of the points in (x,y,z) that make up a tetrahedron in the
tessellation of (x,y,z). T is a numtes-by-4 array where numtes is the
number of facets in the tessellation. x, y, and z are vectors of equal
length. If the original data points are collinear or x, y, and z define an
insufficient number of points, the triangles cannot be computed and
delaunay3 returns an empty matrix.

delaunay3 uses Qhull.

T = delaunay3(x,y,z,options) specifies a cell array of strings
options to be used in Qhull via delaunay3. The default options are
{'Qt','Qbb','Qc'}.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default. For more information on Qhull
and its options, see http://www.qhull.org.

Visualization Use tetramesh to plot delaunay3 output. tetramesh displays the
tetrahedrons defined in T as mesh. tetramesh uses the default
transparency parameter value 'FaceAlpha' = 0.9.

Examples Example 1

This example generates a 3-dimensional Delaunay tessellation, then
uses tetramesh to plot the tetrahedrons that form the corresponding
simplex. camorbit rotates the camera position to provide a meaningful
view of the figure.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];

2-896

http://www.qhull.org

delaunay3

% [x,y,z] are corners of a cube plus the center.
Tes = delaunay3(x,y,z)

Tes =

9 1 5 6
3 9 1 5
2 9 1 6
2 3 9 4
2 3 9 1
7 9 5 6
7 3 9 5
8 7 9 6
8 2 9 6
8 2 9 4
8 3 9 4
8 7 3 9

X = [x(:) y(:) z(:)];
tetramesh(Tes,X);camorbit(20,0)

2-897

delaunay3

Example 2

The following example illustrates the options input for delaunay3.

X = [-0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 0.5];
Y = [-0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5];
Z = [-0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5];

The command

T = delaunay3(X);

returns the following error message.

??? qhull input error: can not scale last coordinate. Input is
cocircular

2-898

delaunay3

or cospherical. Use option 'Qz' to add a point at infinity.

The error message indicates that you should add 'Qz' to the default
Qhull options.

T = delaunay3(X, Y, Z, {'Qt', 'Qbb', 'Qc', 'Qz'})

T =

4 3 5 1
4 2 5 1
4 7 3 5
4 7 8 5
4 6 2 5
4 6 8 5

Algorithm delaunay3 is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also delaunay, delaunayn

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-899

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

delaunayn

Purpose N-D Delaunay tessellation

Syntax T = delaunayn(X)
T = delaunayn(X, options)

Description T = delaunayn(X) computes a set of simplices such that no data
points of X are contained in any circumspheres of the simplices. The
set of simplices forms the Delaunay tessellation. X is an m-by-n array
representing m points in n-dimensional space. T is a numt-by-(n+1)
array where each row contains the indices into X of the vertices of the
corresponding simplex.

delaunayn uses Qhull.

T = delaunayn(X, options) specifies a cell array of strings options
to be used as options in Qhull. The default options are:

• {'Qt','Qbb','Qc'} for 2- and 3-dimensional input

• {'Qt','Qbb','Qc','Qx'} for 4 and higher-dimensional input

If options is [], the default options used. If options is {''}, no options
are used, not even the default. For more information on Qhull and its
options, see http://www.qhull.org.

Visualization Plotting the output of delaunayn depends of the value of n:

• For n = 2, use triplot, trisurf, or trimesh as you would for
delaunay.

• For n = 3, use tetramesh as you would for delaunay3.

For more control over the color of the facets, use patch to plot the
output.

• You cannot plot delaunayn output for n > 3.

2-900

http://www.qhull.org

delaunayn

Examples Example 1

This example generates an n-dimensional Delaunay tessellation, where
n = 3.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
X = [x(:) y(:) z(:)];
Tes = delaunayn(X)

Tes =
9 1 5 6
3 9 1 5
2 9 1 6
2 3 9 4
2 3 9 1
7 9 5 6
7 3 9 5
8 7 9 6
8 2 9 6
8 2 9 4
8 3 9 4
8 7 3 9

You can use tetramesh to visualize the tetrahedrons that form the
corresponding simplex. camorbit rotates the camera position to provide
a meaningful view of the figure.

tetramesh(Tes,X);camorbit(20,0)

2-901

delaunayn

Example 2

The following example illustrates the options input for delaunayn.

X = [-0.5 -0.5 -0.5;...
-0.5 -0.5 0.5;...
-0.5 0.5 -0.5;...
-0.5 0.5 0.5;...
0.5 -0.5 -0.5;...
0.5 -0.5 0.5;...
0.5 0.5 -0.5;...
0.5 0.5 0.5];

The command

T = delaunayn(X);

2-902

delaunayn

returns the following error message.

??? qhull input error: can not scale last coordinate. Input is cocircular
or cospherical. Use option ’Qz’ to add a point at infinity.

This suggests that you add 'Qz' to the default options.

T = delaunayn(X,{'Qt','Qbb','Qc','Qz'});

To visualize this answer you can use the tetramesh function:

tetramesh(T,X)

2-903

delaunayn

Algorithm delaunayn is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhulln, delaunayn, delaunay3, tetramesh, voronoin

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-904

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

delete

Purpose Remove files or graphics objects

Graphical
Interface

As an alternative to the delete function, you can delete files using the
Current Directory browser.

Syntax delete filename
delete(h)
delete(handle_array)
delete('filename')

Description delete filename deletes the named file from the disk. The filename
can include an absolute path or a path relative to the current directory.
The filename can also include wildcards, (*).

delete(h) deletes the graphics object with handle h. The function
deletes the object without requesting verification, even if the object
is a window.

delete(handle_array) is a method of the handle class. It removes
from memory the handle objects referenced by handle_array.

Once deleted, any references to the objects in handle_array become
invalid. You can remove the handle variables using the clear function.

delete('filename') is the function form of delete. Use this form
when the file name is stored in a string.

Remarks
Note The MATLAB software does not ask for confirmation when you
use delete. To avoid accidentally losing files or graphics objects, make
sure you have accurately specified the items you want deleted, or use
the recycle preference and the recycle function.

The action that the delete function takes on deleted files depends upon
the setting of the recycle state in MATLAB. If you set the recycle state
to on, MATLAB moves deleted files to your recycle bin or temporary

2-905

delete

directory. With the recycle state set to off (the default), deleted files
are permanently removed from the system.

To set the recycle state for all MATLAB sessions, use preferences—select
File > Preferences > General. To enable or disable recycling, use
Move files to the Recycle Bin or Delete files permanently. See
“Setting General Preferences for the MATLAB Application” in the
Desktop Tools and Development Environment documentation for more
information.

The delete function deletes files and handles to graphics objects only.
Use the rmdir function to delete directories.

Examples To delete all files with a .mat extension in the ../mytests/ directory,
type

delete('../mytests/*.mat')

To delete a directory, use rmdir rather than delete:

rmdir mydirectory

See Also recycle, dir, edit, fileparts, mkdir, rmdir, type

“Managing Files and Working with the Current Directory”

2-906

delete (COM)

Purpose Remove COM control or server

Syntax h.delete
delete(h)

Description h.delete releases all interfaces derived from the specified COM server
or control, and then deletes the server or control itself. This is different
from releasing an interface, which releases and invalidates only that
interface.

delete(h) is an alternate syntax.

Remarks COM functions are available on Microsoft Windows systems only.

Examples Create a Microsoft Calender application. Then create a TitleFont
interface and use it to change the appearance of the font of the
calendar’s title:

f = figure('position',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 0 500 500], f);
TFont = cal.TitleFont

MATLAB software displays information similar to:

TFont =
Interface.Microsoft_Forms_2.0_Object_Library.Font

Make the following changes and observe the results:

TFont.Name = 'Viva BoldExtraExtended';
TFont.Bold = 0;

When you’re finished working with the title font, release the TitleFont
interface:

TFont.release;

2-907

delete (COM)

Now create a GridFont interface and use it to modify the size of the
calendar’s date numerals:

GFont = cal.GridFont

MATLAB displays:

GFont =
Interface.Microsoft_Forms_2.0_Object_Library.Font

Make the following changes and observe the results:

GFont.Size = 16;

When you’re done, delete the cal object and the figure window. Deleting
the cal object also releases all interfaces to the object (for example,
GFont):

cal.delete;
delete(f);
clear f;

Note that, although the object and interfaces themselves have been
destroyed, the variables assigned to them still reside in the MATLAB
workspace until you remove them with clear:

whos

MATLAB displays (in part):

Name Size Bytes Class

GFont 1x1 0 handle
TFont 1x1 0 handle
cal 1x1 0 handle

See Also release, save (COM), load (COM), actxcontrol, actxserver

2-908

delete (ftp)

Purpose Remove file on FTP server

Syntax delete(f,'filename’)

Description delete(f,'filename’) removes the file filename from the current
directory of the FTP server f, where f was created using ftp.

Examples Connect to server testsite.

test=ftp('ftp.testsite.com')

Change the current directory to testdir and view the contents.

cd(test,'testdir');
dir(test)

See Also ftp

2-909

delete (handle)

Purpose Handle object destructor function

Syntax delete(h)

Description delete(h) optional method you can implement to perform cleanup
tasks just before the handle object is destroyed. The MATLAB runtime
calls the delete method of any handle object (if it exists) when the
object is destroyed. h is a scalar handle object.

A delete method should not generate errors or create new handles
to the object being destroyed. If the delete method has a different
signature (having output arguments or more than one input argument)
it is not called when the handle objects is destroyed.

See “Handle Class Delete Methods” for more information.

See Also handle, isvalid

2-910

delete (serial)

Purpose Remove serial port object from memory

Syntax delete(obj)

Description delete(obj) removes obj from memory, where obj is a serial port
object or an array of serial port objects.

Remarks When you delete obj, it becomes an invalid object. Because you cannot
connect an invalid serial port object to the device, you should remove it
from the workspace with the clear command. If multiple references
to obj exist in the workspace, then deleting one reference invalidates
the remaining references.

If obj is connected to the device, it has a Status property value of
open. If you issue delete while obj is connected, then the connection
is automatically broken. You can also disconnect obj from the device
with the fclose function.

If you use the help command to display help for delete, then you need
to supply the pathname shown below.

help serial/delete

Example This example creates the serial port object s, connects s to the device,
writes and reads text data, disconnects s from the device, removes s
from memory using delete, and then removes s from the workspace
using clear.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)
delete(s)
clear s

2-911

delete (serial)

See Also Functions

clear, fclose, isvalid

Properties

Status

2-912

delete (timer)

Purpose Remove timer object from memory

Syntax delete(obj)

Description delete(obj) removes the timer object, obj, from memory. If obj is an
array of timer objects, delete removes all the objects from memory.

When you delete a timer object, it becomes invalid and cannot be
reused. Use the clear command to remove invalid timer objects from
the workspace.

If multiple references to a timer object exist in the workspace, deleting
the timer object invalidates the remaining references. Use the clear
command to remove the remaining references to the object from the
workspace.

See Also clear, isvalid(timer), timer

2-913

deleteproperty

Purpose Remove custom property from COM object

Syntax h.deleteproperty('propertyname')
deleteproperty(h, 'propertyname')

Description h.deleteproperty('propertyname') deletes the property specified in
the string propertyname from the custom properties belonging to object
or interface, h.

deleteproperty(h, 'propertyname') is an alternate syntax.

Note You can only delete properties that have been created with
addproperty.

Remarks COM functions are available on Microsoft Windows systems only.

Examples Create an mwsamp control and display its properties:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get

MATLAB software displays:

Label: 'Label'
Radius: 20

Add a new property named Position to the control. Assign an array
value to the property:

h.addproperty('Position');
h.Position = [200 120];
h.get

MATLAB displays (in part):

2-914

deleteproperty

Label: 'Label'
Radius: 20

Position: [200 120]

Delete the custom Position property:

h.deleteproperty('Position');
h.get

MATLAB displays:

Label: 'Label'
Radius: 20

See Also addproperty, get (COM), set (COM), inspect

2-915

delevent

Purpose Remove tsdata.event objects from timeseries object

Syntax ts = delevent(ts,event)
ts = delevent(ts,events)
ts = delevent(ts,event,n)

Description ts = delevent(ts,event) removes the tsdata.event object from the
ts.events property, where event is an event name string.

ts = delevent(ts,events) removes the tsdata.event object from the
ts.events property, where events is a cell array of event name strings.

ts = delevent(ts,event,n) removes the nth tsdata.event object
from the ts.events property. event is the name of the tsdata.event
object.

Examples The following example shows how to remove an event from a
timeseries object:

1 Create a time series.

ts = timeseries(rand(5,4))

2 Create an event object called 'test' such that the event occurs at
time 3.

e = tsdata.event('test',3)

3 Add the event object to the time series ts.

ts = addevent(ts,e)

4 Remove the event object from the time series ts.

ts = delevent(ts,'test')

See Also addevent, timeseries, tsdata.event, tsprops

2-916

delsample

Purpose Remove sample from timeseries object

Syntax ts = delsample(ts,'Index',N)
ts = delsample(ts,'Value',Time)

Description ts = delsample(ts,'Index',N) deletes samples from the timeseries
object ts. N specifies the indices of the ts time vector that correspond to
the samples you want to delete.

ts = delsample(ts,'Value',Time) deletes samples from the
timeseries object ts. Time specifies the time values that correspond to
the samples you want to delete.

See Also addsample

2-917

delsamplefromcollection

Purpose Remove sample from tscollection object

Syntax tsc = delsamplefromcollection(tsc,'Index',N)
tsc = delsamplefromcollection(tsc,'Value',Time)

Description tsc = delsamplefromcollection(tsc,'Index',N) deletes samples
from the tscollection object tsc. N specifies the indices of the tsc time
vector that correspond to the samples you want to delete.

tsc = delsamplefromcollection(tsc,'Value',Time) deletes
samples from the tscollection object tsc. Time specifies the time
values that correspond to the samples you want to delete.

See Also addsampletocollection, tscollection

2-918

demo

Purpose Access product demos via Help browser

GUI
Alternatives

As an alternative to the demo function, you can select Help > Demos
from any desktop tool, or click the Demos tab when the Help browser
is open.

Syntax demo
demo 'subtopic'
demo 'subtopic category'
demo('subtopic', 'category')

Description demo opens the Demos pane in the Help browser, listing demos for
all installed products that are selected in the Help browser product
filter preference. To access demos from the Demos pane, expand
the listing for a product area (for example, MATLAB). Within that
product area, expand the listing for a product or product category (for
example, MATLAB Mathematics). Select a specific demo from the
list (for example, Square Wave from Sine Waves). In the right pane,
view instructions for using the demo. For more information, see the
topic “Viewing and Running Demos” in the MATLAB Desktop Tools
and Development Environment documentation. To run a demo from
the command line, type the demo name. To run an M-file demo, open
it in the Editor and run it using Cell > Evaluate Current Cell and
Advance, or run echodemo followed by the demo name.

demo 'subtopic' opens the Demos pane in the Help browser with the
specified subtopic expanded. Subtopics are matlab, toolbox, simulink,
blockset, and links and targets. If no products in subtopic are
installed, or if none are selected in the Help browser product filter
preference, an error page appears.

demo 'subtopic category' opens the Demos pane in the Help
browser to the specified product or category within the subtopic. The
demo function uses the full name displayed in the Demo pane for
category. If the product specified by category is not installed, or
is not selected in the Help browser product filter preference, an error
page appears.

2-919

demo

demo('subtopic', 'category') is the function form of the syntax.

This illustration shows the result of running

demo matlab graphics

and then selecting the Square Wave from Sine Waves example.

2-920

demo

2-921

demo

Examples Accessing Toolbox Demos

To find the demos relating to Communications Toolbox™ product, type

demo toolbox communications

The Help browser opens to the Demos pane with the Toolbox subtopic
expanded and with the Communications entry highlighted and
expanded to show the available demos.

Accessing Simulink Demos

To access the demos within the Simulink product, type

demo simulink automotive

The Demos pane opens with the subtopic for Simulink open and the
Automotive category expanded.

Function Form of demo

To access the Simulink® Parameter Estimation™ demos, run

demo('simulink', 'simulink parameter estimation')

which displays

2-922

demo

Running a Demo from the Command Line

Type

2-923

demo

vibes

to run a visualization demonstration showing an animated L-shaped
membrane.

Running an M-File Demo from the Command Line

Type

quake

to run an earthquake data demo. Not much appears to happen because
quake is an M-file demo and executes from start to end without stopping.

It displays a link in the Command Window: View the published
version of this demo. Click the link to view and run the demo from
the Help browser.

You can view the M-file, quake.m, by typing

edit quake

The first line, that is, the H1 line for quake, is

%% Loma Prieta Earthquake

The %% indicates that quake is an M-file demo. You can step through the
demo cell-by-cell, from the Editor—select Cell > Evaluate Current
Cell and Advance.

Alternatively, run

echodemo quake

and the quake demo runs step-by-step in the Command Window.

See Also echodemo, grabcode, help, helpbrowser

“Viewing and Running Demos”

2-924

depdir

Purpose List dependent directories of M-file or P-file

Syntax list = depdir('file_name')
[list, prob_files, prob_sym,

prob_strings] = depdir('file_name')
[...] = depdir('file_name1', 'file_name2',...)

Description The depdir function lists the directories of all the functions that a
specified M-file or P-file needs to operate. This function is useful for
finding all the directories that need to be included with a run-time
application and for determining the run-time path.

list = depdir('file_name') creates a cell array of strings containing
the directories of all the M-files and P-files that file_name.m or
file_name.p uses. This includes the second-level files that are called
directly by file_name, as well as the third-level files that are called by
the second-level files, and so on.

[list, prob_files, prob_sym, prob_strings] =
depdir('file_name') creates three additional cell arrays
containing information about any problems with the depdir
search. prob_files contains filenames that depdir was unable to
parse. prob_sym contains symbols that depdir was unable to find.
prob_strings contains callback strings that depdir was unable to
parse.

[...] = depdir('file_name1', 'file_name2',...) performs the
same operation for multiple files. The dependent directories of all files
are listed together in the output cell arrays.

Example list = depdir('mesh')

See Also depfun

2-925

depfun

Purpose List dependencies of M-file or P-file

Syntax list = depfun('fun')
[list, builtins, classes] = depfun('fun')
[list, builtins, classes, prob_files, prob_sym, eval_strings,

... called_from, java_classes] = depfun('fun')
[...] = depfun('fun1', 'fun2',...)
[...] = depfun({'fun1', 'fun2', ...})
[...] = depfun('fig_file')
[...] = depfun(..., options)

Description The depfun function lists the paths of all files a specified M-file or P-file
needs to operate.

Note It cannot be guaranteed that depfun will find every dependent
file. Some dependent files can be hidden in callbacks, or can be
constructed dynamically for evaluation, for example. Also note that the
list of functions returned by depfun often includes extra files that would
never be called if the specified function were actually evaluated.

list = depfun('fun') creates a cell array of strings containing
the paths of all the files that function fun uses. This includes the
second-level files that are called directly by fun, and the third-level files
that are called by the second-level files, and so on.

Function fun must be on the MATLAB path, as determined by the
which function. If the MATLAB path contains any relative directories,
then files in those directories will also have a relative path.

Note If MATLAB returns a parse error for any of the input functions, or
if the prob_files output below is nonempty, then the rest of the output
of depfun might be incomplete. You should correct the problematic files
and invoke depfun again.

2-926

depfun

[list, builtins, classes] = depfun('fun') creates three cell
arrays containing information about dependent functions. list
contains the paths of all the files that function fun and its subordinates
use. builtins contains the built-in functions that fun and its
subordinates use. classes contains the MATLAB classes that fun and
its subordinates use.

[list, builtins, classes, prob_files, prob_sym,
eval_strings,... called_from, java_classes] =
depfun('fun') creates additional cell arrays or structure arrays
containing information about any problems with the depfun search
and about where the functions in list are invoked. The additional
outputs are

• prob_files — Indicates which files depfun was unable to parse,
find, or access. Parsing problems can arise from MATLAB syntax
errors. prob_files is a structure array having these fields:

- name (path to the file)

- listindex (index of the file in list)

- errmsg (problems encountered)

• unused — This is a placeholder for an output argument that is not
fully implemented at this time. MATLAB returns an empty structure
array for this output.

• called_from— Cell array of the same length as list that indicates
which functions call other functions. This cell array is arranged so
that the following statement returns all functions in function fun
that invoke the function list{i}:

list(called_from{i})

• java_classes — Cell array of Java class names used by fun and
its subordinate functions.

2-927

depfun

[...] = depfun('fun1', 'fun2',...) performs the same operation
for multiple functions. The dependent functions of all files are listed
together in the output arrays.

[...] = depfun({'fun1', 'fun2', ...}) performs the same
operation, but on a cell array of functions. The dependent functions of
all files are listed together in the output array.

[...] = depfun('fig_file') looks for dependent functions among
the callback strings of the GUI elements that are defined in the figure
file named fig_file.

[...] = depfun(..., options) modifies the depfun operation
according to the options specified (see table below).

Option Description

'-all' Computes all possible left-side arguments and
displays the results in the report(s). Only the
specified arguments are returned.

'-calltree' Returns a call list in place of a called_from
list. This is derived from the called_from list
as an extra step.

'-expand' Includes both indices and full paths in the call
or called_from list.

'-print', 'file' Prints a full report to file.
'-quiet' Displays only error and warning messages, and

not a summary report.
'-toponly' Examines only the files listed explicitly as input

arguments. It does not examine the files on
which they depend.

'-verbose' Outputs additional internal messages.

Examples list = depfun('mesh'); % Files mesh.m depends on
list = depfun('mesh','-toponly') % Files mesh.m depends on
directly

2-928

depfun

[list,builtins,classes] = depfun('gca');

See Also depdir

2-929

det

Purpose Matrix determinant

Syntax d = det(X)

Description d = det(X) returns the determinant of the square matrix X. If X
contains only integer entries, the result d is also an integer.

Remarks Using det(X) == 0 as a test for matrix singularity is appropriate
only for matrices of modest order with small integer entries. Testing
singularity using abs(det(X)) <= tolerance is not recommended as
it is difficult to choose the correct tolerance. The function cond(X) can
check for singular and nearly singular matrices.

Algorithm The determinant is computed from the triangular factors obtained by
Gaussian elimination

[L,U] = lu(A)
s = det(L) % This is always +1 or -1
det(A) = s*prod(diag(U))

Examples The statement A = [1 2 3; 4 5 6; 7 8 9]

produces

A =
1 2 3
4 5 6
7 8 9

This happens to be a singular matrix, so d = det(A) produces d = 0.
Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix.
Now d = det(A) produces d = 27.

See Also cond, condest, inv, lu, rref

The arithmetic operators \, /

2-930

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/book/arithmeticoperators.html

detrend

Purpose Remove linear trends

Syntax y = detrend(x)
y = detrend(x,'constant')
y = detrend(x,'linear',bp)

Description detrend removes the mean value or linear trend from a vector or
matrix, usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and
returns it in y. If x is a matrix, detrend removes the trend from each
column.

y = detrend(x,'constant') removes the mean value from vector x or,
if x is a matrix, from each column of the matrix.

y = detrend(x,'linear',bp) removes a continuous, piecewise linear
trend from vector x or, if x is a matrix, from each column of the matrix.
Vector bp contains the indices of the breakpoints between adjacent
linear segments. The breakpoint between two segments is defined as
the data point that the two segments share.

detrend(x,'linear'), with no breakpoint vector specified, is the same
as detrend(x).

Example sig = [0 1 -2 1 0 1 -2 1 0]; % signal with no linear trend
trend = [0 1 2 3 4 3 2 1 0]; % two-segment linear trend

2-931

detrend

x = sig+trend; % signal with added trend
y = detrend(x,'linear',5) % breakpoint at 5th element

y =

-0.0000
1.0000

-2.0000
1.0000
0.0000
1.0000

-2.0000
1.0000

-0.0000

Note that the breakpoint is specified to be the fifth element, which is
the data point shared by the two segments.

Algorithm detrend computes the least-squares fit of a straight line (or composite
line for piecewise linear trends) to the data and subtracts the resulting
function from the data. To obtain the equation of the straight-line fit,
use polyfit.

See Also polyfit

2-932

detrend (timeseries)

Purpose Subtract mean or best-fit line and all NaNs from time series

Syntax ts = detrend(ts1,method)
ts = detrend(ts1,Method,Index)

Description ts = detrend(ts1,method) subtracts either a mean or a best-fit line
from time-series data, usually for FFT processing. Method is a string
that specifies the detrend method and has two possible values:

• 'constant' — Subtracts the mean

• 'linear' — Subtracts the best-fit line

ts = detrend(ts1,Method,Index) uses the optional Index
integer array to specify the columns or rows to detrend. When
ts.IsTimeFirst is true, Index specifies one or more data columns.
When ts.IsTimeFirst is false, Index specifies one or more data rows.

Remarks You cannot apply detrend to time-series data with more than two
dimensions.

2-933

deval

Purpose Evaluate solution of differential equation problem

Syntax sxint = deval(sol,xint)
sxint = deval(xint,sol)
sxint = deval(sol,xint,idx)
sxint = deval(xint,sol,idx)
[sxint, spxint] = deval(...)

Description sxint = deval(sol,xint) and sxint = deval(xint,sol) evaluate
the solution of a differential equation problem. sol is a structure
returned by one of these solvers:

• An initial value problem solver (ode45, ode23, ode113, ode15s,
ode23s, ode23t, ode23tb, ode15i)

• A delay differential equations solver (dde23 or ddesd),

• The boundary value problem solver (bvp4c or bvp5c).

xint is a point or a vector of points at which you want the solution. The
elements of xint must be in the interval [sol.x(1),sol.x(end)]. For
each i, sxint(:,i) is the solution at xint(i).

sxint = deval(sol,xint,idx) and sxint = deval(xint,sol,idx)
evaluate as above but return only the solution components with indices
listed in the vector idx.

[sxint, spxint] = deval(...) also returns spxint, the value of the
first derivative of the polynomial interpolating the solution.

Note For multipoint boundary value problems, the solution obtained
by bvp4c or bvp5c might be discontinuous at the interfaces. For an
interface point xc, deval returns the average of the limits from the left
and right of xc. To get the limit values, set the xint argument of deval
to be slightly smaller or slightly larger than xc.

2-934

deval

Example This example solves the system using ode45, and
evaluates and plots the first component of the solution at 100 points in
the interval [0,20].

sol = ode45(@vdp1,[0 20],[2 0]);
x = linspace(0,20,100);
y = deval(sol,x,1);
plot(x,y);

See Also ODE solvers: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb,
ode15i

DDE solvers: dde23, ddesd

BVP solver: bvp4c, bvp5c

2-935

diag

Purpose Diagonal matrices and diagonals of matrix

Syntax X = diag(v,k)
X = diag(v)
v = diag(X,k)
v = diag(X)

Description X = diag(v,k) when v is a vector of n components, returns a square
matrix X of order n+abs(k), with the elements of v on the kth diagonal.
k = 0 represents the main diagonal, k > 0 above the main diagonal,
and k < 0 below the main diagonal.

X = diag(v) puts v on the main diagonal, same as above with k = 0.

v = diag(X,k) for matrix X, returns a column vector v formed from the
elements of the kth diagonal of X.

v = diag(X) returns the main diagonal of X, same as above with k = 0 .

Remarks diag(diag(X)) is a diagonal matrix.

sum(diag(X)) is the trace of X.

diag([]) generates an empty matrix, ([]).

diag(m-by-1,k) generates a matrix of size m+abs(k)-by-m+abs(k).

2-936

diag

diag(1-by-n,k) generates a matrix of size n+abs(k)-by-n+abs(k).

Examples The statement

diag(-m:m)+diag(ones(2*m,1),1)+diag(ones(2*m,1),-1)

produces a tridiagonal matrix of order 2*m+1.

See Also spdiags, tril, triu, blkdiag

2-937

dialog

Purpose Create and display dialog box

Syntax h = dialog('PropertyName',PropertyValue,...)

Description h = dialog('PropertyName',PropertyValue,...) returns a handle
to a dialog box. This function creates a figure graphics object and sets
the figure properties recommended for dialog boxes. You can specify any
valid figure property value except DockControls, which is always off.

Note By default, the dialog box is modal. A modal dialog box prevents
the user from interacting with other windows before responding. For
more information, see WindowStyle in the MATLAB Figure Properties.

See Also errordlg, helpdlg, inputdlg, listdlg, msgbox, questdlg, warndlg

figure, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-108 for related functions

2-938

diary

Purpose Save session to file

Syntax diary
diary('filename')
diary off
diary on
diary filename

Description The diary function creates a log of keyboard input and the resulting
text output, with some exceptions (see “Remarks” on page 2-939 for
details). The output of diary is an ASCII file, suitable for searching in,
printing, inclusion in most reports and other documents. If you do not
specify filename, the MATLAB software creates a file named diary in
the current directory.

diary toggles diary mode on and off. To see the status of diary, type
get(0,'Diary'). MATLAB returns either on or off indicating the
diary status.

diary('filename') writes a copy of all subsequent keyboard input and
the resulting output (except it does not include graphics) to the named
file, where filename is the full pathname or filename is in the current
MATLAB directory. If the file already exists, output is appended to the
end of the file. You cannot use a filename called off or on. To see the
name of the diary file, use get(0,'DiaryFile').

diary off suspends the diary.

diary on resumes diary mode using the current filename, or the default
filename diary if none has yet been specified.

diary filename is the unquoted form of the syntax.

Remarks Because the output of diary is plain text, the file does not exactly
mirror input and output from the Command Window:

• Output does not include graphics (figure windows).

• Syntax highlighting and font preferences are not preserved.

2-939

diary

• Hidden components of Command Window output such as hyperlink
information generated with matlab: are shown in plain text. For
example, if you enter the following statement

str = sprintf('%s%s', ...
'', ...
'Generate magic square');

disp(str)

MATLAB displays

However, the diary file, when viewed in a text editor, shows

str = sprintf('%s%s', ...
'', ...
'Generate magic square');

disp(str)
Generate magic square

If you view the output of diary in the Command Window, the
Command Window interprets the <a href ...> statement and
displays it as a hyperlink.

• Viewing the output of diary in a console window might produce
different results compared to viewing diary output in the desktop
Command Window. One example is using the \r option for the
fprintf function; using the \n option might alleviate that problem.

See Also evalc

“Command History Window” in the MATLAB Desktop Tools and
Development Environment documentation

2-940

diff

Purpose Differences and approximate derivatives

Syntax Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)

Description Y = diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element shorter than
X, of differences between adjacent elements:

[X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)]

If X is a matrix, then diff(X) returns a matrix of row differences:

[X(2:m,:)-X(1:m-1,:)]

In general, diff(X) returns the differences calculated along the first
non-singleton (size(X,dim) > 1) dimension of X.

Y = diff(X,n) applies diff recursively n times, resulting in the nth
difference. Thus, diff(X,2) is the same as diff(diff(X)).

Y = diff(X,n,dim) is the nth difference function calculated along the
dimension specified by scalar dim. If order n equals or exceeds the
length of dimension dim, diff returns an empty array.

Remarks Since each iteration of diff reduces the length of X along dimension
dim, it is possible to specify an order n sufficiently high to reduce dim to
a singleton (size(X,dim) = 1) dimension. When this happens, diff
continues calculating along the next nonsingleton dimension.

Examples The quantity diff(y)./diff(x) is an approximate derivative.

x = [1 2 3 4 5];
y = diff(x)
y =

1 1 1 1

2-941

diff

z = diff(x,2)
z =

0 0 0

Given,

A = rand(1,3,2,4);

diff(A) is the first-order difference along dimension 2.

diff(A,3,4) is the third-order difference along dimension 4.

See Also gradient, prod, sum

2-942

diffuse

Purpose Calculate diffuse reflectance

Syntax R = diffuse(Nx,Ny,Nz,S)

Description R = diffuse(Nx,Ny,Nz,S) returns the reflectance of a surface with
normal vector components [Nx,Ny,Nz]. S specifies the direction to the
light source. You can specify these directions as three vectors[x,y,z]
or two vectors [Theta Phi (in spherical coordinates).

Lambert’s Law: R = cos(PSI) where PSI is the angle between the
surface normal and light source.

See Also specular, surfnorm, surfl

“Lighting as a Visualization Tool”

2-943

dir

Purpose Directory listing

GUI
Alternatives

As an alternative to the dir function, you can use the Current Directory
browser to view directory contents.

Syntax dir
dir name
files = dir('dirname')

Description dir lists the files in the current working directory. Results are not
sorted, but presented in the order returned by the operating system.

dir name lists the specified files. The name argument can be a path or
file name, or can include both. You can use absolute and relative path
names and wildcards (*).

files = dir('dirname') returns the list of files in the specified
directory (or the current directory, if dirname is not specified) to an
m-by-1 structure with the fields listed here.

Field Name Description Data Type

name File name char array
date Modification date

timestamp
char array

bytes Number of bytes allocated
to the file

double

isdir 1 if name is a directory; 0
if not

logical

datenum Modification date as
serial date number

double

Remarks Listing Drives

On Microsoft Windows platforms, you can obtain a list of available
drives using the DOS net use command. In the Command Window, run

2-944

dir

dos('net use')

Or run

[s,r] = dos('net use')

to return the results to the character array r.

DOS File Names

The MATLAB dir function is consistent with the Microsoft Windows
OS dir command in that both support short file names generated by
DOS. For example, both of the following commands are equivalent in
both Windows and MATLAB:

dir long_matlab_mfile_name.m
long_matlab_mfile_name.m

dir long_m~1.m
long_matlab_m-file_name.m

Structure Results for Nonexistent Files

When you run dir with an output argument and the results include a
nonexistent file or a file that dir cannot query for some other reason,
dir returns the following default values:

date: ''
bytes: []
isdir: 0
datenum: []

2-945

dir

The most common occurrence is on UNIX5 platforms when dir queries a
file that is a symbolic link and the symbolic link points to a nonexistent
target. A nonexistent target is when a target has been moved, removed,
or renamed. For example, if my_file in my_dir is a symbolic link to
another file that has been deleted, then running

r = dir('my_dir')

includes this result for my_file:

r(n) =
name: 'my_file'
date: ''
bytes: []
isdir: 0
datenum: []

where n is the index for my_file, found by searching r by the name field.
See also the example “Excluding Files That Cannot Be Queried” on
page 2-948

Examples Listing Directory Contents

To view the contents of the matlab/audiovideo directory, type

dir(fullfile(matlabroot, 'toolbox/matlab/audiovideo'))

Using Wildcard and File Extension

To view the MAT-files in your current working directory that include
the term java, type

dir *java*.mat

MATLAB returns all file names that match this specification:

java_array.mat javafrmobj.mat testjava.mat

5. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-946

dir

Using a Relative Path Name

To view the M-files in the MATLAB audiovideo directory, type

dir(fullfile(matlabroot,'toolbox/matlab/audiovideo/*.m'))

MATLAB returns

Contents.m aviinfo.m render_uimgraudiotoolbar.m

audiodevinfo.m aviread.m sound.m

audioplayerreg.m lin2mu.m soundsc.m

audiorecorderreg.m mmcompinfo.m wavfinfo.m

audiouniquename.m mmfileinfo.m wavplay.m

aufinfo.m movie2avi.m wavread.m

auread.m mu2lin.m wavrecord.m

auwrite.m prefspanel.m wavwrite.m

avifinfo.m render_fullaudiotoolbar.m

Returning File List to Structure

To return the list of files to the variable av_files, type

av_files = dir(fullfile(matlabroot, ...
'toolbox/matlab/audiovideo/*.m'))

MATLAB returns the information in a structure array:

av_files =
24x1 struct array with fields:

name
date
bytes
isdir
datenum

Index into the structure to access a particular item. For example:

av_files(3).name
ans =

audioplayerreg.m

2-947

dir

Excluding Files That Cannot Be Queried

To return the list of files excluding those that cannot be queried, run
the following:

y = dir;
y = y(find(~cellfun(@isempty,{y(:).date})));

See Also cd, copyfile, delete, fileattrib, filebrowser, fileparts, genpath,
isdir, ls, matlabroot, mkdir, mfilename, movefile, rmdir, type, what

“Managing Files and Working with the Current Directory”

2-948

dir (ftp)

Purpose Directory contents on FTP server

Syntax dir(f,'dirname')
d = dir(...)

Description dir(f,'dirname') lists the files in the specified directory, dirname,
on the FTP server f, where f was created using ftp. If dirname is
unspecified, dir lists the files in the current directory of f.

d = dir(...) returns the results in an m-by-1 structure with the
following fields for each file:

Fieldname Description Data Type

name Filename char array
date Modification date

timestamp
char array

bytes Number of bytes allocated
to the file

double

isdir 1 if name is a directory; 0
if not

logical

datenum Modification date as serial
date number

char array

Examples Connect to the MathWorks FTP server and view the contents.

tmw=ftp('ftp.mathworks.com');
dir(tmw)

README incoming matlab outgoing pub pubs

Change to the directory pub/pentium.

cd(tmw,'pub/pentium')

2-949

dir (ftp)

View the contents of that directory.

dir(tmw)

. Intel_resp.txt NYT_2.txt

.. Intel_support.txt NYT_Dec14.uu

Andy_Grove.txt Intel_white.ps New_York_Times.txt

Associated_Press.txt MathWorks_press.txt Nicely_1.txt

CNN.html Mathisen.txt Nicely_2.txt

Coe.txt Moler_1.txt Nicely_3.txt

Cygnus.txt Moler_2.txt Pratt.txt

EE_Times.txt Moler_3.txt README.txt

FAQ.txt Moler_4.txt SPSS.txt

IBM_study.txt Moler_5.txt Smith.txt

Intel_FAX.txt Moler_6.ps p87test.txt

Intel_fix.txt Moler_7.txt p87test.zip

Intel_replace.txt Myths.txt test

Or return the results to the structure m.

m=dir(tmw)

m =

37x1 struct array with fields:
name
date
bytes
isdir
datanum

View element 17.

m(17)

ans =

name: 'Moler_1.txt'

2-950

dir (ftp)

date: '1995 Mar 27'
bytes: 3427
isdir: 0

datenum: 728745

See Also ftp, mkdir (ftp), rmdir (ftp)

2-951

disp

Purpose Display text or array

Syntax disp(X)

Description disp(X) displays an array, without printing the array name. If X
contains a text string, the string is displayed.

Another way to display an array on the screen is to type its name, but
this prints a leading "X=," which is not always desirable.

Note that disp does not display empty arrays.

Examples One use of disp in an M-file is to display a matrix with column labels:

disp(' Corn Oats Hay')
disp(rand(5,3))

which results in

Corn Oats Hay
0.2113 0.8474 0.2749
0.0820 0.4524 0.8807
0.7599 0.8075 0.6538
0.0087 0.4832 0.4899
0.8096 0.6135 0.7741

You also can use the disp command to display a hyperlink in the
Command Window. Include the full hypertext string on a single line
as input to disp:

disp('The MathWorks Web Site')

which generates this hyperlink in the Command Window:

The MathWorks Web Site

Click the link to display The MathWorks home page in a MATLAB
Web browser.

2-952

http://www.mathworks.com

disp

See Also format, int2str, matlabcolon, num2str, rats, sprintf

2-953

disp (memmapfile)

Purpose Information about memmapfile object

Syntax disp(obj)

Description disp(obj) displays all properties and their values for memmapfile
object obj.

The MATLAB software also displays this information when you
construct a memmapfile object or set any of the object’s property values,
provided you do not terminate the command to do so with a semicolon.

Examples Construct an object m of class memmapfile:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

Use disp to display all the object’s current properties:

disp(m)
Filename: 'd:\matlab\mfiles\records.dat'
Writable: false

Offset: 2048
Format: {'int16' [2 2] 'model'

'uint32' [1 1] 'serialno'
'single' [1 3] 'expenses'}

Repeat: Inf
Data: 753x1 struct array with fields:

model
serialno
expenses

See Also memmapfile, get(memmapfile)

2-954

disp (MException)

Purpose Display MException object

Syntax disp(ME)
disp(ME.property)

Description disp(ME) displays all properties (fields) of MException object ME.

disp(ME.property) displays the specified property of MException
object ME.

Examples Using the surf command without input arguments throws an exception.
Use disp to display the identifier, message, stack, and cause
properties of the MException object:

try
surf

catch ME
disp(ME)

end

MException object with properties:

identifier: 'MATLAB:nargchk:notEnoughInputs'
message: 'Not enough input arguments.'

stack: [1x1 struct]
cause: {}

Display only the stack property:

disp(ME.stack)
file: 'X:\bat\Akernel\perfect\matlab\toolbox\matlab\

graph3d\surf.m'
name: 'surf'
line: 54

See Also try, catch, error, assert, MException, getReport(MException),
throw(MException), rethrow(MException),

2-955

disp (MException)

throwAsCaller(MException), addCause(MException),
isequal(MException), eq(MException), ne(MException),
last(MException),

2-956

disp (serial)

Purpose Serial port object summary information

Syntax obj
disp(obj)

Description obj or disp(obj) displays summary information for obj, a serial port
object or an array of serial port objects.

Remarks In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when:

• Creating a serial port object

• Configuring property values using the dot notation

Use the display summary to quickly view the communication settings,
communication state information, and information associated with read
and write operations.

Example The following commands display summary information for the serial
port object s.

s = serial('COM1')
s.BaudRate = 300
s

2-957

disp (timer)

Purpose Information about timer object

Syntax disp(obj)
obj

Description disp(obj) displays summary information for the timer object, obj.

If obj is an array of timer objects, disp outputs a table of summary
information about the timer objects in the array.

obj, that is, typing the object name alone, does the same as disp(obj)

In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when

• Creating a timer object, using the timer function

• Configuring property values using the dot notation

Examples The following commands display summary information for timer object
t.

t = timer

Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot

Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: []
ErrorFcn: []
StartFcn: []
StopFcn: []

2-958

disp (timer)

This example shows the format of summary information displayed for
an array of timer objects.

t2 = timer;
disp(timerfind)

Timer Object Array
Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1
2 singleShot 1 '' timer-2

See Also timer, get(timer)

2-959

display

Purpose Display text or array (overloaded method)

Syntax display(X)

Description display(X) prints the value of a variable or expression, X. The
MATLAB software calls display(X) when it interprets a variable or
expression, X, that is not terminated by a semicolon. For example,
sin(A) calls display, while sin(A); does not.

If X is an instance of a MATLAB class, then MATLAB calls the display
method of that class, if such a method exists. If the class has no display
method or if X is not an instance of a MATLAB class, then the MATLAB
built-in display function is called.

Examples A typical implementation of display calls disp to do most of the work
and looks like this.

function display(X)
if isequal(get(0,'FormatSpacing'),'compact')

disp([inputname(1) ' =']);
disp(X)

else
disp(' ')
disp([inputname(1) ' =']);
disp(' ');
disp(X)

end

The expression magic(3), with no terminating semicolon, calls this
function as display(magic(3)).

magic(3)

ans =

8 1 6
3 5 7
4 9 2

2-960

display

As an example of a class display method, the function below
implements the display method for objects of the MATLAB class
polynom.

function display(p)
% POLYNOM/DISPLAY Command window display of a polynom
disp(' ');
disp([inputname(1),' = '])
disp(' ');
disp([' ' char(p)])
disp(' ');

The statement

p = polynom([1 0 -2 -5])

creates a polynom object. Since the statement is not terminated with
a semicolon, the MATLAB interpreter calls display(p), resulting in
the output

p =

x^3 - 2*x - 5

See Also disp, ans, sprintf, special characters

2-961

divergence

Purpose Compute divergence of vector field

Syntax div = divergence(X,Y,Z,U,V,W)
div = divergence(U,V,W)
div = divergence(X,Y,U,V)
div = divergence(U,V)

Description div = divergence(X,Y,Z,U,V,W) computes the divergence of a 3-D
vector field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W
and must be monotonic and 3-D plaid (as if produced by meshgrid).

div = divergence(U,V,W) assumes X, Y, and Z are determined by the
expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

div = divergence(X,Y,U,V) computes the divergence of a 2-D vector
field U, V. The arrays X, Y define the coordinates for U, V and must be
monotonic and 2-D plaid (as if produced by meshgrid).

div = divergence(U,V) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

Examples This example displays the divergence of vector volume data as slice
planes, using color to indicate divergence.

load wind
div = divergence(x,y,z,u,v,w);
slice(x,y,z,div,[90 134],[59],[0]);
shading interp
daspect([1 1 1])
camlight

2-962

divergence

See Also streamtube, curl, isosurface

“Volume Visualization” on page 1-106 for related functions

“Example – Displaying Divergence with Stream Tubes” for another
example

2-963

dlmread

Purpose Read ASCII-delimited file of numeric data into matrix

Graphical
Interface

As an alternative to dlmread, use the Import Wizard. To activate the
Import Wizard, select Import data from the File menu.

Syntax M = dlmread(filename)
M = dlmread(filename, delimiter)
M = dlmread(filename, delimiter, R, C)
M = dlmread(filename, delimiter, range)

Description M = dlmread(filename) reads from the ASCII-delimited numeric
data file filename to output matrix M. The filename input is a string
enclosed in single quotes. The delimiter separating data elements
is inferred from the formatting of the file. Comma (,) is the default
delimiter.

M = dlmread(filename, delimiter) reads numeric data from the
ASCII-delimited file filename, using the specified delimiter. Use \t
to specify a tab delimiter.

Note When a delimiter is inferred from the formatting of the file,
consecutive whitespaces are treated as a single delimiter. By contrast, if
a delimiter is specified by the delimiter input, any repeated delimiter
character is treated as a separate delimiter.

M = dlmread(filename, delimiter, R, C) reads numeric data from
the ASCII-delimited file filename, using the specified delimiter. The
values R and C specify the row and column where the upper left corner of
the data lies in the file. R and C are zero based, so that R=0, C=0 specifies
the first value in the file, which is the upper left corner.

2-964

dlmread

Note dlmread reads numeric data only. The file being read may contain
nonnumeric data, but this nonnumeric data cannot be within the range
being imported.

M = dlmread(filename, delimiter, range) reads the range specified
by range = [R1 C1 R2 C2] where (R1,C1) is the upper left corner of
the data to be read and (R2,C2) is the lower right corner. You can also
specify the range using spreadsheet notation, as in range = 'A1..B7'.

Remarks If you want to specify an R, C, or range input, but not a delimiter, set
the delimiter argument to the empty string, (two consecutive single
quotes with no spaces in between, ''). For example,

M = dlmread('myfile.dat', '', 5, 2)

Using this syntax enables you to specify the starting row and column
or range to read while having dlmread treat repeated whitespaces as a
single delimiter.

dlmread fills empty delimited fields with zero. Data files having lines
that end with a nonspace delimiter, such as a semicolon, produce a
result that has an additional last column of zeros.

dlmread imports any complex number as a whole into a complex
numeric field, converting the real and imaginary parts to the specified
numeric type. Valid forms for a complex number are

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j

Embedded white-space in a complex number is invalid and is regarded
as a field delimiter.

2-965

dlmread

Examples Example 1

Export the 5-by-8 matrix M to a file, and read it with dlmread, first with
no arguments other than the filename:

rand('state', 0); M = rand(5,8); M = floor(M * 100);
dlmwrite('myfile.txt', M, 'delimiter', '\t')

dlmread('myfile.txt')
ans =

95 76 61 40 5 20 1 41
23 45 79 93 35 19 74 84
60 1 92 91 81 60 44 52
48 82 73 41 0 27 93 20
89 44 17 89 13 19 46 67

Now read a portion of the matrix by specifying the row and column of
the upper left corner:

dlmread('myfile.txt', '\t', 2, 3)
ans =

91 81 60 44 52
41 0 27 93 20
89 13 19 46 67

This time, read a different part of the matrix using a range specifier:

dlmread('myfile.txt', '\t', 'C1..G4')
ans =

61 40 5 20 1
79 93 35 19 74
92 91 81 60 44
73 41 0 27 93

Example 2

Export matrix M to a file, and then append an additional matrix to the
file that is offset one row below the first:

M = magic(3);

2-966

dlmread

dlmwrite('myfile.txt', [M*5 M/5], ' ')

dlmwrite('myfile.txt', rand(3), '-append', ...
'roffset', 1, 'delimiter', ' ')

type myfile.txt

80 10 15 65 3.2 0.4 0.6 2.6
25 55 50 40 1 2.2 2 1.6
45 35 30 60 1.8 1.4 1.2 2.4
20 70 75 5 0.8 2.8 3 0.2

0.99008 0.49831 0.32004
0.78886 0.21396 0.9601
0.43866 0.64349 0.72663

When dlmread imports these two matrices from the file, it pads the
smaller matrix with zeros:

dlmread('myfile.txt')
40.0000 5.0000 30.0000 1.6000 0.2000 1.2000
15.0000 25.0000 35.0000 0.6000 1.0000 1.4000
20.0000 45.0000 10.0000 0.8000 1.8000 0.4000
0.6038 0.0153 0.9318 0 0 0
0.2722 0.7468 0.4660 0 0 0
0.1988 0.4451 0.4187 0 0 0

See Also dlmwrite, textscan, csvread, csvwrite, wk1read, wk1write

2-967

dlmwrite

Purpose Write matrix to ASCII-delimited file

Syntax dlmwrite(filename, M)
dlmwrite(filename, M, 'D')
dlmwrite(filename, M, 'D', R, C)
dlmwrite(filename, M, 'attrib1', value1, 'attrib2', value2,

...)
dlmwrite(filename, M, '-append')
dlmwrite(filename, M, '-append', attribute-value list)

Description dlmwrite(filename, M) writes matrix M into an ASCII format file
using the default delimiter (,) to separate matrix elements. The data is
written starting at the first column of the first row in the destination
file, filename. The filename input is a string enclosed in single quotes.

dlmwrite(filename, M, 'D') writes matrix M into an ASCII format
file, using delimiter D to separate matrix elements. The data is written
starting at the first column of the first row in the destination file,
filename. A comma (,) is the default delimiter. Use \t to produce
tab-delimited files.

dlmwrite(filename, M, 'D', R, C) writes matrix M into an ASCII
format file, using delimiter D to separate matrix elements. The data is
written starting at row R and column C in the destination file, filename.
R and C are zero based, so that R=0, C=0 specifies the first value in the
file, which is the upper left corner.

dlmwrite(filename, M, 'attrib1', value1, 'attrib2', value2,
...) is an alternate syntax to those shown above, in which you specify
any number of attribute-value pairs in any order in the argument list.
Each attribute must be immediately followed by a corresponding value
(see the table below).

Attribute Value

delimiter Delimiter string to be used in separating
matrix elements

2-968

dlmwrite

Attribute Value

newline Character(s) to use in terminating each line
(see table below)

roffset Offset, in rows, from the top of the destination
file to where matrix data is to be written.
Offset is zero based.

coffset Offset, in columns, from the left side of the
destination file to where matrix data is to be
written. Offset is zero based.

precision Numeric precision to use in writing data to
the file. Specify the number of significant
digits or a C-style format string starting in
%, such as '%10.5f'.

This table shows which values you can use when setting the newline
attribute.

Line Terminator Description

’pc’ PC terminator (implies carriage return/line
feed (CR/LF))

’unix’ UNIX terminator (implies line feed (LF))

dlmwrite(filename, M, '-append') appends the matrix to the file. If
you do not specify '-append', dlmwrite overwrites any existing data
in the file.

dlmwrite(filename, M, '-append', attribute-value list) is the
same as the syntax shown above, but accepts a list of attribute-value
pairs. You can place the '-append' flag in the argument list anywhere
between attribute-value pairs, but not in between an attribute
and its value.

Remarks The resulting file is readable by spreadsheet programs.

2-969

dlmwrite

Examples Example 1

Export matrix M to a file delimited by the tab character and using a
precision of six significant digits:

dlmwrite('myfile.txt', M, 'delimiter', '\t', ...
'precision', 6)

type myfile.txt

0.893898 0.284409 0.582792 0.432907
0.199138 0.469224 0.423496 0.22595
0.298723 0.0647811 0.515512 0.579807
0.661443 0.988335 0.333951 0.760365

Example 2

Export matrix M to a file using a precision of six decimal places and the
conventional line terminator for the PC platform:

dlmwrite('myfile.txt', m, 'precision', '%.6f', ...
'newline', 'pc')

type myfile.txt

16.000000,2.000000,3.000000,13.000000
5.000000,11.000000,10.000000,8.000000
9.000000,7.000000,6.000000,12.000000
4.000000,14.000000,15.000000,1.000000

Example 3

Export matrix M to a file, and then append an additional matrix to the
file that is offset one row below the first:

M = magic(3);
dlmwrite('myfile.txt', [M*5 M/5], ' ')

dlmwrite('myfile.txt', rand(3), '-append', ...
'roffset', 1, 'delimiter', ' ')

type myfile.txt

2-970

dlmwrite

40 5 30 1.6 0.2 1.2
15 25 35 0.6 1 1.4
20 45 10 0.8 1.8 0.4

0.81472 0.91338 0.2785
0.90579 0.63236 0.54688
0.12699 0.09754 0.95751

When dlmread imports these two matrices from the file, it pads the
smaller matrix with zeros:

dlmread('myfile.txt')
40.0000 5.0000 30.0000 1.6000 0.2000 1.2000
15.0000 25.0000 35.0000 0.6000 1.0000 1.4000
20.0000 45.0000 10.0000 0.8000 1.8000 0.4000
0.8147 0.9134 0.2785 0 0 0
0.9058 0.6324 0.5469 0 0 0
0.1270 0.0975 0.9575 0 0 0

See Also dlmread, csvwrite, csvread, wk1write, wk1read

2-971

dmperm

Purpose Dulmage-Mendelsohn decomposition

Syntax p = dmperm(A)
[p,q,r,s,cc,rr] = dmperm(A)

Description p = dmperm(A) finds a vector p such that p(j) = i if column j is
matched to row i, or zero if column j is unmatched. If A is a square
matrix with full structural rank, p is a maximum matching row
permutation and A(p,:) has a zero-free diagonal. The structural rank
of A is sprank(A) = sum(p>0).

[p,q,r,s,cc,rr] = dmperm(A) where A need not be square or full
structural rank, finds the Dulmage-Mendelsohn decomposition of A. p
and q are row and column permutation vectors, respectively, such that
A(p,q) has a block upper triangular form. r and s are index vectors
indicating the block boundaries for the fine decomposition. cc and rr
are vectors of length five indicating the block boundaries of the coarse
decomposition.

C = A(p,q) is split into a 4-by-4 set of coarse blocks:

A11 A12 A13 A14
0 0 A23 A24
0 0 0 A34
0 0 0 A44

where A12, A23, and A34 are square with zero-free diagonals.
The columns of A11 are the unmatched columns, and the rows
of A44 are the unmatched rows. Any of these blocks can be
empty. In the coarse decomposition, the (i,j)th block is
C(rr(i):rr(i+1)-1,cc(j):cc(j+1)-1). For a linear system,

• [A11 A12] is the underdetermined part of the system—it is always
rectangular and with more columns and rows, or 0-by-0,

• A23 is the well-determined part of the system—it is always square,
and

2-972

dmperm

• [A34 ; A44] is the overdetermined part of the system—it is always
rectangular with more rows than columns, or 0-by-0.

The structural rank of A is sprank(A) = rr(4)-1, which is
an upper bound on the numerical rank of A. sprank(A) =
rank(full(sprand(A))) with probability 1 in exact arithmetic.

The A23 submatrix is further subdivided into block upper triangular
form via the fine decomposition (the strongly connected components
of A23). If A is square and structurally nonsingular, A23 is the entire
matrix.

C(r(i):r(i+1)-1,s(j):s(j+1)-1) is the (i,j)th block of the fine
decomposition. The (1,1) block is the rectangular block [A11 A12],
unless this block is 0-by-0. The (b,b) block is the rectangular block
[A34 ; A44], unless this block is 0-by-0, where b = length(r)-1.
All other blocks of the form C(r(i):r(i+1)-1,s(i):s(i+1)-1) are
diagonal blocks of A23, and are square with a zero-free diagonal.

Remarks If A is a reducible matrix, the linear system Ax=b can be solved by
permuting A to a block upper triangular form, with irreducible diagonal
blocks, and then performing block backsubstitution. Only the diagonal
blocks of the permuted matrix need to be factored, saving fill and
arithmetic in the blocks above the diagonal.

In graph theoretic terms, dmperm finds a maximum-size matching in the
bipartite graph of A, and the diagonal blocks of A(p,q) correspond to
the strong Hall components of that graph. The output of dmperm can
also be used to find the connected or strongly connected components
of an undirected or directed graph. For more information see Pothen
and Fan [1].

dmperm uses CSparse [2].

References [1] Pothen, Alex and Chin-Ju Fan “Computing the Block Triangular
Form of a Sparse Matrix” ACM Transactions on Mathematical Software
Vol 16, No. 4 Dec. 1990, pp. 303-324.

2-973

dmperm

[2] T.A. Davis Direct Methods for for Sparse Linear
Systems. SIAM, Philadelphia: 2006. Software available
at:http://www.cise.ufl.edu/research/sparse/CSparse.

See Also sprank

2-974

http://www.cise.ufl.edu/research/sparse/CSparse

doc

Purpose Reference page in Help browser

GUI
Alternatives

As an alternative to the doc function, use the Help browser search field.
Type the function name and press Enter.

Syntax doc
doc functionname
doc toolboxdirname
doc toolboxdirname/functionname
doc classname.methodname
doc userclassname

Description doc opens the Help browser, if it is not already running, or brings
the window to the top, displaying the Contents pane when the Help
browser is already open.

doc functionname displays the reference page for the MATLAB function
functionname in the Help browser. For example, you are looking at
the reference page for the doc function. Here functionname can be
a function, block, property, method, or object. If functionname is
overloaded, that is, if functionname appears in multiple directories on
the search path MATLAB uses, doc displays the reference page for the
first functionname on the search path and displays a hyperlinked list
of the other functions and their directories in the MATLAB Command
Window. Overloaded functions within the same product are not listed
— use the overloaddirectory form of the syntax. If a reference page
for functionname does not exist, doc displays its M-file help in the
Help browser. The doc function is intended only for help files supplied
by The MathWorks, and is not supported for use with HTML files you
create yourself; to display HTML files for functions you create, use the
web function.

doc toolboxdirname displays the roadmap page for toolboxdirname
in the Help browser, which provides a summary of the most
pertinent documentation for that product located in toolboxdirname.
toolboxdirname is the directory name for a product in
matlabroot/toolbox. If you do not know toolboxdirname for a

2-975

doc

product, run which functionname, where functionname is the
name of a function in that product; MATLAB returns the full
path to functionname, and toolboxdirname is the directory after
matlabroot/toolbox.

doc toolboxdirname/functionname displays the reference page for the
functionname that belongs to the specified toolboxdirname, in the
Help browser. This is useful for overloaded functions.

doc classname.methodname displays the reference page for the
methodname that is a member of classname.

doc userclassname displays the help comments from the class
definition M-file in an HTML format in the Help browser. To go directly
to help for a method, property, or event of classname, use dot notation,
as in doc userclassname.methodname. For more information, see
“Help for User-Created Classes”.

Note If there is a function called name as well as a toolbox directory
called name, the roadmap page for the toolbox directory called name
displays. To see the reference page for the function called name, use
doc toolboxdirname/name, where toolboxdirname is the name of
the toolbox directory in which the function name resides. For example,
doc matlab displays the roadmap page for MATLAB (that is, the
matlab toolbox directory), while doc matlab/matlabunix displays the
reference page for the matlab startup function for UNIX6 platforms,
which is in the MATLAB product.

Examples Run doc abs to display the reference page for the abs function. If the
Simulink and Signal Processing Toolbox™ products are installed and
on the search path, the Command Window lists hyperlinks for the abs
function in those products:

doc signal/abs

6. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-976

doc

doc simulink/abs

Run doc signal/abs to display the reference page for the abs function
in the Signal Processing Toolbox product.

Run doc signal to display the roadmap page for Signal Processing
Toolbox product.

Run doc serial.get to display the reference page for the get method
located in the serial directory of MATLAB. This syntax is required
because there is at least one other get function in MATLAB.

Run doc sads to display the help comments in the sads.m class
definition file for the user-created sads class. Run doc sads.steer to
go directly to help for the steer method of the user-created sads class.
Run sads.Spacing to go directly to help for the Spacing property of
the user-created sads class.

See Also docopt, docsearch, help, helpbrowser, lookfor, type, web

Related topics in the MATLAB Desktop Tools and Development
Environment documentation:

• “Assistance While Entering Statements”, including function hints
and the Function Browser

• “Help and Related Resources”

• “Help for the Files You and Other Users Create”

2-977

docopt

Purpose Web browser for UNIX platforms

Syntax docopt
doccmd = docopt

Description docopt displays the Web browser used with the MATLAB software
when running on UNIX7 platforms, except for the Apple Macintosh
platform, with the default being netscape (for the Netscape Navigator®
application). For UNIX platforms (other than the Macintosh platform),
you can modify the docopt.m file to specify the Web browser MATLAB
uses. The Web browser is used with the web function and its -browser
option. It is also used for links to external Web sites from the Help.

doccmd = docopt returns a string containing the command that web
-browser uses to invoke a Web browser.

To change the browser, edit the docopt.m file and change line 51. For
example,

50 elseif isunix % UNIX
51 % doccmd = '';

Remove the comment symbol. In the quote, enter the command that
starts your Web browser, and save the file. For example,

51 doccmd = 'mozilla';

specifies Mozilla® as the Web browser MATLAB uses.

See Also doc, edit, helpbrowser, web

7. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-978

docsearch

Purpose Open Help browser and search for specified term

GUI
Alternatives

As an alternative to the docsearch function, select Desktop > Help,
type in the search field, and press Enter.

Syntax docsearch
docsearch word
docsearch('word1 word2 ...')
docsearch('"word1 word2" ...')
docsearch('wo*rd ...')
docsearch('word1 word2 BOOLEANOP word3')

Description docsearch opens the Help browser to the Search Results pane, or if
the Help browser is already open to that pane, brings it to the top.

docsearch word executes a Help browser full-text search for word,
displaying results in the Help browser Search Results pane. If word
is a functionname or blockname, the first entry in Search Results
is its reference page.

docsearch('word1 word2 ...') executes a Help browser full-text
search for pages containing word1 and word2 and any other specified
words, displaying results in the Help browser Search Results pane.

docsearch('"word1 word2" ...') executes a Help browser full-text
search for pages containing the exact phrase word1 word2 and any
other specified words, displaying results in the Help browser Search
Results pane.

docsearch('wo*rd ...') executes a Help browser full-text search for
pages containing words that begin with wo and end with rd, and any
other specified words, displaying results in the Help browser Search
Results pane. This is also called a wildcard or partial word search. You
can use a wildcard symbol (*) multiple times within a word. You cannot
use the wildcard symbol within an exact phrase. You must use at least
two letters or digits with a wildcard symbol.

docsearch('word1 word2 BOOLEANOP word3') executes a Help
browser full-text search for the term word1 word2 BOOLEANOP word3,

2-979

docsearch

where BOOLEANOP is a Boolean operator (AND, NOT, OR) used to refine
the search. docsearch evaluates NOTs first, then ORs, and finally ANDs.
Results display in the Help browser Search Results pane.

Examples docsearch plot finds all pages that contain the word plot.

docsearch('plot tools') finds all pages that contain the words plot
and tools anywhere in the page.

docsearch('"plot tools"') finds all pages that contain the exact
phrase plot tools.

docsearch('plot* tools') finds all pages that contain the word tools
and the word plot or variations of plot, such as plotting, and plots.

docsearch('"plot tools" NOT "time series"') finds all pages
that contain the exact phrase plot tools, but only if the pages do not
contain the exact phrase time series.

See Also builddocsearchdb, doc, helpbrowser

Related topics in the MATLAB Desktop Tools and Development
Environment documentation:

• “Searching Documentation and Demos with the Help Browser”

• “Finding Functions Using the Function Browser”

• “Help and Related Resources”

• “Adding HTML Help Files for Your Own Toolbox”

2-980

dos

Purpose Execute DOS command and return result

Syntax dos command
status = dos('command')
[status,result] = dos('command')
[status,result] = dos('command','-echo')

Description dos command calls upon the shell to execute the given command for
Microsoft Windows platforms.

status = dos('command') returns completion status to the status
variable.

[status,result] = dos('command') in addition to completion status,
returns the result of the command to the result variable.

[status,result] = dos('command','-echo') forces the output to the
Command Window, even though it is also being assigned into a variable.

Both console (DOS) programs and Windows programs may be executed,
but the syntax causes different results based on the type of programs.
Console programs have stdout and their output is returned to the
result variable. They are always run in an iconified DOS or Command
Prompt Window except as noted below. Console programs never execute
in the background. Also, the MATLAB software always waits for the
stdout pipe to close before continuing execution. Windows programs
may be executed in the background as they have no stdout.

The ampersand, &, character has special meaning. For console programs
this causes the console to open. Omitting this character will cause
console programs to run iconically. For Windows programs, appending
this character will cause the application to run in the background.
MATLAB will continue processing.

2-981

dos

Note Running dos with a command that relies upon the current directory
will fail when the current directory is specified using a UNC pathname.
This is because DOS does not support UNC pathnames. In that
event, MATLAB returns this error: ??? Error using ==> dos DOS
commands may not be executed when the current directory is
a UNC pathname. To work around this limitation, change the directory
to a mapped drive prior to running dos or a function that calls dos.

Examples The following example performs a directory listing, returning a zero
(success) in s and the string containing the listing in w.

[s, w] = dos('dir');

To open the DOS 5.0 editor in a DOS window

dos('edit &')

To open the Microsoft Notepad editor and return control immediately to
MATLAB, run

dos('notepad file.m &')

The next example returns a one in s and an error message in w because
foo is not a valid shell command.

[s, w] = dos('foo')

This example echoes the results of the dir command to the Command
Window as it executes as well as assigning the results to w.

[s, w] = dos('dir', '-echo');

See Also ! (exclamation point), perl, system, unix, winopen

“Running External Programs” in the MATLAB Desktop Tools and
Development Environment documentation

2-982

dot

Purpose Vector dot product

Syntax C = dot(A,B)
C = dot(A,B,dim)

Description C = dot(A,B) returns the scalar product of the vectors A and B. A and
B must be vectors of the same length. When A and B are both column
vectors, dot(A,B) is the same as A'*B.

For multidimensional arrays A and B, dot returns the scalar product
along the first non-singleton dimension of A and B. A and B must have
the same size.

C = dot(A,B,dim) returns the scalar product of A and B in the
dimension dim.

Examples The dot product of two vectors is calculated as shown:

a = [1 2 3]; b = [4 5 6];
c = dot(a,b)

c =
32

See Also cross

2-983

double

Purpose Convert to double precision

Syntax double(x)

Description double(x) returns the double-precision value for X. If X is already a
double-precision array, double has no effect.

Remarks double is called for the expressions in for, if, and while loops if the
expression isn’t already double-precision. double should be overloaded
for any object when it makes sense to convert it to a double-precision
value.

2-984

dragrect

Purpose Drag rectangles with mouse

Syntax [finalrect] = dragrect(initialrect)
[finalrect] = dragrect(initialrect,stepsize)

Description [finalrect] = dragrect(initialrect) tracks one or more rectangles
anywhere on the screen. The n-by-4 matrix initialrect defines the
rectangles. Each row of initialrect must contain the initial rectangle
position as [left bottom width height] values. dragrect returns the
final position of the rectangles in finalrect.

[finalrect] = dragrect(initialrect,stepsize) moves the
rectangles in increments of stepsize. The lower left corner of the first
rectangle is constrained to a grid of size equal to stepsize starting at
the lower left corner of the figure, and all other rectangles maintain
their original offset from the first rectangle.

[finalrect] = dragrect(...) returns the final positions of the
rectangles when the mouse button is released. The default step size is 1.

Remarks dragrect returns immediately if a mouse button is not currently
pressed. Use dragrect in a ButtonDownFcn, or from the command line
in conjunction with waitforbuttonpress, to ensure that the mouse
button is down when dragrect is called. dragrect returns when you
release the mouse button.

If the drag ends over a figure window, the positions of the rectangles
are returned in that figure’s coordinate system. If the drag ends over a
part of the screen not contained within a figure window, the rectangles
are returned in the coordinate system of the figure over which the drag
began.

Note You cannot use normalized figure units with dragrect.

2-985

dragrect

Example Drag a rectangle that is 50 pixels wide and 100 pixels in height.

waitforbuttonpress
point1 = get(gcf,'CurrentPoint') % button down detected
rect = [point1(1,1) point1(1,2) 50 100]
[r2] = dragrect(rect)

See Also rbbox, waitforbuttonpress

“Region of Interest” on page 1-105 for related functions

2-986

drawnow

Purpose Flush event queue and update figure window

Syntax drawnow
drawnow expose
drawnow update

Description drawnow causes figure windows and their children to update, and flushes
the system event queue. Any callbacks generated by incoming events
(e.g., mouse or key events) are dispatched before drawnow returns.

drawnow expose causes only graphics objects to refresh, if needed. It
does not allow callbacks to execute and does not process other events in
the queue.

drawnow update causes only non graphics objects to refresh, if needed.
It does not allow callbacks to execute and does not process other events
in the queue.

You can combine the expose and update options to obtain both effects:

drawnow expose update

Other Events That Cause Event Queue Processing

Other events that cause the MATLAB software to flush the event queue
and draw the figure include:

• Returning to the MATLAB prompt

• Executing the following functions:

- figure

- getframe

- input

- keyboard

- pause

• Functions that wait for user input (i.e., waitforbuttonpress,
waitfor, ginput)

2-987

drawnow

• Any code that causes one of the above functions to execute. For
example, suppose h is the handle of an axes. Calling axes(h) causes
its parent figure to be made the current figure and brought to the
front of all displayed figures, which results in the event queue being
flushed.

Examples Using drawnow in a loop causes the display to update while the loop
executes:

t = 0:pi/20:2*pi;
y = exp(sin(t));
h = plot(t,y,'YDataSource','y');
for k = 1:.1:10
y = exp(sin(t.*k));
refreshdata(h,'caller') % Evaluate y in the function workspace
drawnow; pause(.1)

end

See Also snapnow, waitfor, waitforbuttonpress

2-988

dsearch

Purpose Search Delaunay triangulation for nearest point

Syntax K = dsearch(x,y,TRI,xi,yi)
K = dsearch(x,y,TRI,xi,yi,S)

Description K = dsearch(x,y,TRI,xi,yi) returns the index into x and y of the
nearest point to the point (xi,yi). dsearch requires a triangulation TRI
of the points x,y obtained using delaunay. If xi and yi are vectors, K is
a vector of the same size.

K = dsearch(x,y,TRI,xi,yi,S) uses the sparse matrix S instead of
computing it each time:

S = sparse(TRI(:,[1 1 2 2 3 3]),TRI(:,[2 3 1 3 1 2]),1,nxy,nxy)

where nxy = prod(size(x)).

See Also delaunay, tsearch, voronoi

2-989

dsearchn

Purpose N-D nearest point search

Syntax k = dsearchn(X,T,XI)
k = dsearchn(X,T,XI,outval)
k = dsearchn(X,XI)
[k,d] = dsearchn(X,...)

Description k = dsearchn(X,T,XI) returns the indices k of the closest points in
X for each point in XI. X is an m-by-n matrix representing m points in
n-dimensional space. XI is a p-by-n matrix, representing p points
in n-dimensional space. T is a numt-by-n+1 matrix, a tessellation of
the data X generated by delaunayn. The output k is a column vector
of length p.

k = dsearchn(X,T,XI,outval) returns the indices k of the closest
points in X for each point in XI, unless a point is outside the convex hull.
If XI(J,:) is outside the convex hull, then K(J) is assigned outval, a
scalar double. Inf is often used for outval. If outval is [], then k is
the same as in the case k = dsearchn(X,T,XI).

k = dsearchn(X,XI) performs the search without using a tessellation.
With large X and small XI, this approach is faster and uses much less
memory.

[k,d] = dsearchn(X,...) also returns the distances d to the closest
points. d is a column vector of length p.

Algorithm dsearchn is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also tsearch, dsearch, tsearchn, griddatan, delaunayn

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa,
“The Quickhull Algorithm for Convex Hulls,” ACM
Transactions on Mathematical Software, Vol. 22, No.
4, Dec. 1996, p. 469-483. Available in PDF format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/.

2-990

http://www.qhull.org/
http://www.qhull.org/COPYING.txt
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/

dynamicprops

Purpose Abstract class used to derive handle class with dynamic properties

Syntax classdef myclass < dynamicprops

Description classdef myclass < dynamicprops makes myclass a subclass of the
dynamicprops class, which is a subclass of the handle class.

Use the dynamicprops class to derive classes that can define dynamic
properties (instance properties), which are associated with a specific
objects, but have no effect on the objects class definition. Dynamic
properties are useful for attaching temporary data to one or more
objects.

dynamicprops Methods

This class defines one method addprop and, as a subclass of the handle
class, inherits all the handle class methods.

• addprop— adds the named property to the specified handle objects.
See “Dynamic Properties — Adding Properties to an Instance” for
more information.

See Also handle

2-991

echo

Purpose Echo M-files during execution

Syntax echo on
echo off
echo
echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

Description The echo command controls the echoing of M-files during execution.
Normally, the commands in M-files are not displayed on the screen
during execution. Command echoing is useful for debugging or for
demonstrations, allowing the commands to be viewed as they execute.

The echo command behaves in a slightly different manner for script
files and function files. For script files, the use of echo is simple; echoing
can be either on or off, in which case any script used is affected.

echo on Turns on the echoing of commands in all script
files

echo off Turns off the echoing of commands in all script
files

echo Toggles the echo state

With function files, the use of echo is more complicated. If echo is
enabled on a function file, the file is interpreted, rather than compiled.
Each input line is then displayed as it is executed. Since this results in
inefficient execution, use echo only for debugging.

echo fcnname on Turns on echoing of the named function file
echo fcnname
off

Turns off echoing of the named function file

echo fcnname Toggles the echo state of the named function file

2-992

echo

echo on all Sets echoing on for all function files
echo off all Sets echoing off for all function files

See Also function

2-993

echodemo

Purpose Run M-file demo step-by-step in Command Window

GUI
Alternatives

As an alternative to the echodemo function, select the demo in the Help
browserDemos tab and click the Run in the Command Window link.

Syntax echodemo filename
echodemo('filename', cellindex)

Description echodemo filename runs the M-file demo filename step-by-step in
the Command Window. At each step, follow links in the Command
Window to proceed. Depending on the size of the Command Window,
you might have to scroll up to see the links. The script filename was
created in the Editor using cells. (The associated HTML demo file for
filename that appears in the Help browser Demos pane was created
using the MATLAB cell publishing feature.) The link to filename also
shows the current cell number, n, and the total number of cells, m, as
n/m, and when clicked, opens filename in the Editor. To end the demo,
click the Stop link.

echodemo('filename', cellindex) runs the M-file type demo
filename, starting with the cell number specified by cellindex.
Because steps prior to cellindex are not run, this statement might
produce an error or unexpected result, depending on the demo.

Note M-file demos run as scripts. Therefore, the variables are part of
the base workspace, which could result in problems if you have any
variables of the same name. For more information, see “Running Demos
and Base Workspace Variables” in the Desktop Tools and Development
Environment documentation.

Examples echodemo quake runs the MATLAB Loma Prieta Earthquake demo.

echodemo ('quake', 6) runs the MATLAB Loma Prieta Earthquake
demo, starting at cell 6.

2-994

echodemo

echodemo ('intro', 3) produces an error because cell 3 of the
MATLAB demo intro requires data created when cells 1 and 2 run.

See Also demo, helpbrowser

2-995

edit

Purpose Edit or create M-file

GUI
Alternatives

As an alternative to the edit function, select File > New or Open in
the MATLAB desktop or any desktop tool.

Syntax edit
edit fun.m
edit file.ext
edit fun1 fun2 fun3 ...
edit classname/fun
edit private/fun
edit classname/private/fun
edit +packagename/classname/fun
edit('my file.m')

Description edit opens a new editor window.

edit fun.m opens the M-file fun.m in the default editor. The fun.m
file specification can include a MATLAB partialpath, complete path,
relative path, or no path. Be aware of the following:

• If you do not specify a path, the current directory is the default.

• If you specify a path, the directory must exist; otherwise MATLAB
returns an error.

• If you specify a path and the directory exits, but the specified file does
not, a prompt opens such as shown in the following image:

2-996

edit

To create a blank file named fun.m in the specified directory, click Yes.
To suppress the prompt, select Do not show this prompt again. To
reinstate the prompt after suppressing it, open the Preferences dialog
box by selecting File > Preferences > General > Confirmation
Dialogs and then selecting Prompt when editing files that do not
exist in the pane on the right.

edit file.ext opens the specified file.

edit fun1 fun2 fun3 ... opens fun1.m, fun2.m, fun3.m, and so on,
in the default editor.

edit classname/fun, or edit private/fun, or edit
classname/private/fun opens a method, private function, or private
method for the named class.

edit +packagename/classname/fun opens a method for the named
class in the named package.

edit('my file.m') opens the M-file my file.m in the default editor.
This form of the edit function is useful when a file name contains a
space; you cannot use the command form in such a case.

Remarks To specify the default editor for MATLAB, select Preferences from the
File menu. On the Editor/Debugger pane, select MATLAB Editor
or specify another editor.

UNIX Users

If you run MATLAB with the -nodisplay startup option, or run
without the DISPLAY environment variable set, edit uses the
External Editor command. It does not use the MATLAB Editor,
but instead uses the default editor defined for your system in
matlabroot/X11/app-defaults/Matlab.

You can specify the editor that the edit function uses or specify editor
options by adding the following line to your own.Xdefaults file, located
in ~home:

matlab*externalEditorCommand: $EDITOR -option $FILE

2-997

edit

where

• $EDITOR is the name of your default editor, for example, emacs;
leaving it as $EDITOR means your default system editor will be used.

• -option is a valid option flag you can include for the specified editor.

• $FILE means the file name you type with the edit command will
open in the specified editor.

For example,

emacs $FILE

means that when you type edit foo, the file foo will open in the emacs
editor.

After adding the line to your.Xdefaults file, you must run the following
before starting MATLAB:

xrdb -merge ~home/.Xdefaults

See Also open, type

2-998

eig

Purpose Eigenvalues and eigenvectors

Syntax d = eig(A)
d = eig(A,B)
[V,D] = eig(A)
[V,D] = eig(A,'nobalance')
[V,D] = eig(A,B)
[V,D] = eig(A,B,flag)

Description d = eig(A) returns a vector of the eigenvalues of matrix A.

d = eig(A,B) returns a vector containing the generalized eigenvalues,
if A and B are square matrices.

Note If S is sparse and symmetric, you can use d = eig(S) to return
the eigenvalues of S. If S is sparse but not symmetric, or if you want to
return the eigenvectors of S, use the function eigs instead of eig.

[V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors
(V) of matrix A, so that A*V = V*D. Matrix D is the canonical form of A—
a diagonal matrix with A’s eigenvalues on the main diagonal. Matrix V
is the modal matrix— its columns are the eigenvectors of A.

If W is a matrix such that W'*A = D*W', the columns of W are the left
eigenvectors of A. Use [W,D] = eig(A.'); W = conj(W) to compute
the left eigenvectors.

[V,D] = eig(A,'nobalance') finds eigenvalues and eigenvectors
without a preliminary balancing step. This may give more accurate
results for certain problems with unusual scaling. Ordinarily, balancing
improves the conditioning of the input matrix, enabling more accurate
computation of the eigenvectors and eigenvalues. However, if a matrix
contains small elements that are really due to roundoff error, balancing
may scale them up to make them as significant as the other elements
of the original matrix, leading to incorrect eigenvectors. Use the

2-999

eig

nobalance option in this event. See the balance function for more
details.

[V,D] = eig(A,B) produces a diagonal matrix D of generalized
eigenvalues and a full matrix V whose columns are the corresponding
eigenvectors so that A*V = B*V*D .

[V,D] = eig(A,B,flag) specifies the algorithm used to compute
eigenvalues and eigenvectors. flag can be:

’chol’ Computes the generalized eigenvalues of A and
B using the Cholesky factorization of B. This
is the default for symmetric (Hermitian) A and
symmetric (Hermitian) positive definite B.

’qz’ Ignores the symmetry, if any, and uses the
QZ algorithm as it would for nonsymmetric
(non-Hermitian) A and B.

Note For eig(A), the eigenvectors are scaled so that the norm of each
is 1.0. For eig(A,B), eig(A,'nobalance'), and eig(A,B,flag), the
eigenvectors are not normalized.

Also note that if A is symmetric, eig(A,'nobalance') ignores the
nobalance option since A is already balanced.

Remarks The eigenvalue problem is to determine the nontrivial solutions of the
equation

where is an n-by-n matrix, is a length n column vector, and is a
scalar. The n values of that satisfy the equation are the eigenvalues,
and the corresponding values of are the right eigenvectors.
TheMATLAB function eig solves for the eigenvalues , and optionally
the eigenvectors .

2-1000

eig

The generalized eigenvalue problem is to determine the nontrivial
solutions of the equation

where both and are n-by-n matrices and is a scalar. The values
of that satisfy the equation are the generalized eigenvalues and the
corresponding values of are the generalized right eigenvectors.

If is nonsingular, the problem could be solved by reducing it to a
standard eigenvalue problem

Because can be singular, an alternative algorithm, called the QZ
method, is necessary.

When a matrix has no repeated eigenvalues, the eigenvectors are
always independent and the eigenvector matrix V diagonalizes the
original matrix A if applied as a similarity transformation. However, if
a matrix has repeated eigenvalues, it is not similar to a diagonal matrix
unless it has a full (independent) set of eigenvectors. If the eigenvectors
are not independent then the original matrix is said to be defective.
Even if a matrix is defective, the solution from eig satisfies A*X = X*D.

Examples The matrix

B = [3 -2 -.9 2*eps
-2 4 1 -eps
-eps/4 eps/2 -1 0
-.5 -.5 .1 1];

has elements on the order of roundoff error. It is an example for
which the nobalance option is necessary to compute the eigenvectors
correctly. Try the statements

[VB,DB] = eig(B)
B*VB - VB*DB
[VN,DN] = eig(B,'nobalance')

2-1001

eig

B*VN - VN*DN

Algorithm Inputs of Type Double

For inputs of type double, MATLAB software uses the following
LAPACK routines to compute eigenvalues and eigenvectors.

Case Routine

Real symmetric A DSYEV

Real nonsymmetric A:
• With preliminary balance step DGEEV (with the scaling factor

SCLFAC = 2 in DGEBAL, instead of
the LAPACK default value of 8)

• d = eig(A,'nobalance') DGEHRD, DHSEQR
• [V,D] = eig(A,'nobalance') DGEHRD, DORGHR, DHSEQR, DTREVC
Hermitian A ZHEEV

Non-Hermitian A:

• With preliminary balance step ZGEEV (with SCLFAC = 2 instead
of 8 in ZGEBAL)

• d = eig(A,'nobalance') ZGEHRD, ZHSEQR
• [V,D] = eig(A,'nobalance') ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC
Real symmetric A, symmetric
positive definite B.

DSYGV

Special case: eig(A,B,'qz')
for real A, B (same as real
nonsymmetric A, real general B)

DGGEV

Real nonsymmetric A, real
general B

DGGEV

Complex Hermitian A,
Hermitian positive definite
B.

ZHEGV

2-1002

eig

Case Routine

Special case: eig(A,B,'qz') for
complex A or B (same as complex
non-Hermitian A, complex B)

ZGGEV

Complex non-Hermitian A,
complex B

ZGGEV

Inputs of Type Single

For inputs of type single, MATLAB software uses the following
LAPACK routines to compute eigenvalues and eigenvectors.

Case Routine

Real symmetric A SSYEV

Real nonsymmetric A:
• With preliminary balance step SGEEV (with the scaling factor

SCLFAC = 2 in SGEBAL, instead of
the LAPACK default value of 8)

• d = eig(A,'nobalance') SGEHRD, SHSEQR
• [V,D] = eig(A,'nobalance') SGEHRD, SORGHR, SHSEQR, STREVC
Hermitian A CHEEV

Non-Hermitian A:

• With preliminary balance step CGEEV

• d = eig(A,'nobalance') CGEHRD, CHSEQR
• [V,D] = eig(A,'nobalance') CGEHRD, CUNGHR, CHSEQR, CTREVC
Real symmetric A, symmetric
positive definite B.

CSYGV

Special case: eig(A,B,'qz')
for real A, B (same as real
nonsymmetric A, real general B)

SGGEV

2-1003

eig

Case Routine

Real nonsymmetric A, real
general B

SGGEV

Complex Hermitian A, Hermitian
positive definite B.

CHEGV

Special case: eig(A,B,'qz') for
complex A or B (same as complex
non-Hermitian A, complex B)

CGGEV

Complex non-Hermitian A,
complex B

CGGEV

See Also balance, condeig, eigs, hess, qz, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-1004

http://www.netlib.org/lapack/lug/lapack_lug.html

eigs

Purpose Largest eigenvalues and eigenvectors of a matrix

Syntax d = eigs(A)
[V,D] = eigs(A)
[V,D,flag] = eigs(A)
eigs(A,B)
eigs(A,k)
eigs(A,B,k)
eigs(A,k,sigma)
eigs(A,B,k,sigma)
eigs(A,K,sigma,opts)
eigs(A,B,k,sigma,opts)
eigs(Afun,n,...)

Description d = eigs(A) returns a vector of A’s six largest magnitude eigenvalues.
A must be a square matrix. A should be large and sparse, though eigs
will work on full matrices as well. See “Remarks” below.

[V,D] = eigs(A) returns a diagonal matrix D of A’s six largest
magnitude eigenvalues and a matrix V whose columns are the
corresponding eigenvectors.

[V,D,flag] = eigs(A) also returns a convergence flag. If flag is 0
then all the eigenvalues converged; otherwise not all converged.

eigs(A,B) solves the generalized eigenvalue problem A*V == B*V*D.
B must be symmetric (or Hermitian) positive definite and the same
size as A. eigs(A,[],...) indicates the standard eigenvalue problem
A*V == V*D.

eigs(A,k) and eigs(A,B,k) return the k largest magnitude
eigenvalues.

eigs(A,k,sigma) and eigs(A,B,k,sigma) return k eigenvalues based
on sigma, which can take any of the following values:

2-1005

eigs

scalar (real
or complex,
including 0)

The eigenvalues closest to sigma. If A is a function,
Afun must return Y = (A-sigma*B)\x (i.e., Y = A\x
when sigma = 0). Note, B need only be symmetric
(Hermitian) positive semi-definite.

’lm’ Largest magnitude (default).
’sm’ Smallest magnitude. Same as sigma = 0. If A is a

function, Afun must return Y = A\x. Note, B need
only be symmetric (Hermitian) positive semi-definite.

For real symmetric problems, the following are also options:
’la’ Formerly largest algebraic ('lr')
’sa’ Formerly smallest algebraic ('sr')
’be’ Both ends (one more from high end if k is odd)
For nonsymmetric and complex problems, the following are also
options:
’lr’ Largest real part
’sr’ Smallest real part
’li’ Largest imaginary part
’si’ Smallest imaginary part

Note The syntax eigs(A,k,...) is not valid when A is scalar. To pass
a value for k, you must specify B as the second argument and k as the
third (eigs(A,B,k,...)). If necessary, you can set B equal to [], the
default.

eigs(A,K,sigma,opts) and eigs(A,B,k,sigma,opts) specify an
options structure. Default values are shown in brackets ({}).

2-1006

eigs

Parameter Description Values

options.issym 1 if A or A-sigma*B
represented by Afun is
symmetric, 0 otherwise.

[{0} | 1]

options.isreal 1 if A or A-sigma*B
represented by Afun is
real, 0 otherwise.

[0 | {1}]

options.tol Convergence: Ritz estimate
residual <= tol*norm(A).

[scalar |
{eps}]

options.maxit Maximum number of
iterations.

[integer |
{300}]

options.p Number of Lanczos basis
vectors.
p >= 2k (p >= 2k+1 real
nonsymmetric) advised. p
must satisfy k < p <= n for
real symmetric, k+1 < p <=
n otherwise.
Note: If you do not specify a p
value, the default algorithm
uses at least 20 Lanczos
vectors.

[integer |
{2*k}]

options.v0 Starting vector. Randomly
generated by
ARPACK

options.disp Diagnostic information
display level.

[0 | {1} | 2]

options.cholB 1 if B is really its Cholesky
factor chol(B), 0 otherwise.

[{0} | 1]

options.permB Permutation vector permB
if sparse B is really
chol(B(permB,permB)).

[permB | {1:n}]

2-1007

eigs

eigs(Afun,n,...) accepts the function handle Afun instead of the
matrix A. See “Function Handles” in the MATLAB Programming
documentation for more information. Afun must accept an input vector
of size n.

y = Afun(x) should return:

A*x if sigma is not specified, or is a string other than
'sm'

A\x if sigma is 0 or 'sm'
(A-sigma*I)\x if sigma is a nonzero scalar (standard eigenvalue

problem). I is an identity matrix of the same
size as A.

(A-sigma*B)\x if sigma is a nonzero scalar (generalized
eigenvalue problem)

“Parametrizing Functions” in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function Afun, if necessary.

The matrix A, A-sigma*I or A-sigma*B represented by Afun is assumed
to be real and nonsymmetric unless specified otherwise by opts.isreal
and opts.issym. In all the eigs syntaxes, eigs(A,...) can be replaced
by eigs(Afun,n,...).

Remarks d = eigs(A,k) is not a substitute for

d = eig(full(A))
d = sort(d)
d = d(end-k+1:end)

but is most appropriate for large sparse matrices. If the problem fits
into memory, it may be quicker to use eig(full(A)).

Algorithm eigs provides the reverse communication required by the Fortran
library ARPACK, namely the routines DSAUPD, DSEUPD, DNAUPD, DNEUPD,
ZNAUPD, and ZNEUPD.

2-1008

eigs

Examples Example 1

A = delsq(numgrid('C',15));
d1 = eigs(A,5,'sm')

returns

Iteration 1: a few Ritz values of the 20-by-20 matrix:
0
0
0
0
0

Iteration 2: a few Ritz values of the 20-by-20 matrix:
1.8117
2.0889
2.8827
3.7374
7.4954

Iteration 3: a few Ritz values of the 20-by-20 matrix:
1.8117
2.0889
2.8827
3.7374
7.4954

d1 =

0.5520
0.4787
0.3469
0.2676
0.1334

2-1009

eigs

Example 2

This example replaces the matrix A in example 1 with a handle to a
function dnRk. The example is contained in an M-file run_eigs that

• Calls eigs with the function handle @dnRk as its first argument.

• Contains dnRk as a nested function, so that all variables in run_eigs
are available to dnRk.

The following shows the code for run_eigs:

function d2 = run_eigs
n = 139;
opts.issym = 1;
R = 'C';
k = 15;
d2 = eigs(@dnRk,n,5,'sm',opts);

function y = dnRk(x)
y = (delsq(numgrid(R,k))) \ x;

end
end

Example 3

west0479 is a real 479-by-479 sparse matrix with both real and pairs of
complex conjugate eigenvalues. eig computes all 479 eigenvalues. eigs
easily picks out the largest magnitude eigenvalues.

This plot shows the 8 largest magnitude eigenvalues of west0479 as
computed by eig and eigs.

load west0479
d = eig(full(west0479))
dlm = eigs(west0479,8)
[dum,ind] = sort(abs(d));
plot(dlm,'k+')
hold on
plot(d(ind(end-7:end)),'ks')

2-1010

eigs

hold off
legend('eigs(west0479,8)','eig(full(west0479))')

Example 4

A = delsq(numgrid('C',30)) is a symmetric positive definite matrix
of size 632 with eigenvalues reasonably well-distributed in the interval
(0 8), but with 18 eigenvalues repeated at 4. The eig function computes
all 632 eigenvalues. It computes and plots the six largest and smallest
magnitude eigenvalues of A successfully with:

A = delsq(numgrid('C',30));
d = eig(full(A));
[dum,ind] = sort(abs(d));
dlm = eigs(A);
dsm = eigs(A,6,'sm');

2-1011

eigs

subplot(2,1,1)
plot(dlm,'k+')
hold on
plot(d(ind(end:-1:end-5)),'ks')
hold off
legend('eigs(A)','eig(full(A))',3)
set(gca,'XLim',[0.5 6.5])

subplot(2,1,2)
plot(dsm,'k+')
hold on
plot(d(ind(1:6)),'ks')
hold off
legend('eigs(A,6,''sm'')','eig(full(A))',2)
set(gca,'XLim',[0.5 6.5])

2-1012

eigs

However, the repeated eigenvalue at 4 must be handled more carefully.
The call eigs(A,18,4.0) to compute 18 eigenvalues near 4.0 tries
to find eigenvalues of A - 4.0*I. This involves divisions of the form
1/(lambda - 4.0), where lambda is an estimate of an eigenvalue of A.
As lambda gets closer to 4.0, eigs fails. We must use sigma near but
not equal to 4 to find those 18 eigenvalues.

sigma = 4 - 1e-6
[V,D] = eigs(A,18,sigma)

The plot shows the 20 eigenvalues closest to 4 that were computed
by eig, along with the 18 eigenvalues closest to 4 - 1e-6 that were
computed by eigs.

2-1013

eigs

See Also eig, svds, function_handle (@)

References [1] Lehoucq, R.B. and D.C. Sorensen, “Deflation Techniques for an
Implicitly Re-Started Arnoldi Iteration,” SIAM J. Matrix Analysis and
Applications, Vol. 17, 1996, pp. 789-821.

[2] Lehoucq, R.B., D.C. Sorensen, and C. Yang, ARPACK Users’ Guide:
Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods, SIAM Publications, Philadelphia, 1998.

[3] Sorensen, D.C., “Implicit Application of Polynomial Filters in a
k-Step Arnoldi Method,” SIAM J. Matrix Analysis and Applications,
Vol. 13, 1992, pp. 357-385.

2-1014

ellipj

Purpose Jacobi elliptic functions

Syntax [SN,CN,DN] = ellipj(U,M)
[SN,CN,DN] = ellipj(U,M,tol)

Definition The Jacobi elliptic functions are defined in terms of the integral:

Then

Some definitions of the elliptic functions use the modulus instead of
the parameter . They are related by

k m2 2= = sin α

where α is the modular angle.

The Jacobi elliptic functions obey many mathematical identities; for a
good sample, see [1].

Description [SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN,
CN, and DN, evaluated for corresponding elements of argument U and
parameter M. Inputs U and M must be the same size (or either can be
scalar).

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions
to accuracy tol. The default is eps; increase this for a less accurate but
more quickly computed answer.

Algorithm ellipj computes the Jacobi elliptic functions using the method of the
arithmetic-geometric mean [1]. It starts with the triplet of numbers:

2-1015

ellipj

ellipj computes successive iterates with

Next, it calculates the amplitudes in radians using:

being careful to unwrap the phases correctly. The Jacobian elliptic
functions are then simply:

Limitations The ellipj function is limited to the input domain . Map
other values of M into this range using the transformations described in
[1], equations 16.10 and 16.11. U is limited to real values.

See Also ellipke

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, 17.6.

2-1016

ellipke

Purpose Complete elliptic integrals of first and second kind

Syntax K = ellipke(M)
[K,E] = ellipke(M)
[K,E] = ellipke(M,tol)

Definition The complete elliptic integral of the first kind [1] is

where , the elliptic integral of the first kind, is

The complete elliptic integral of the second kind

is

Some definitions of K and E use the modulus instead of the parameter
. They are related by

k m2 2= = sin α

where α is the modular angle.

Description K = ellipke(M) returns the complete elliptic integral of the first kind
for the elements of M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first
and second kinds.

2-1017

ellipke

[K,E] = ellipke(M,tol) computes the complete elliptic integral to
accuracy tol. The default is eps; increase this for a less accurate but
more quickly computed answer.

Algorithm ellipke computes the complete elliptic integral using the method of
the arithmetic-geometric mean described in [1], section 17.6. It starts
with the triplet of numbers

ellipke computes successive iterations of , , and with

stopping at iteration when , within the tolerance specified by
eps. The complete elliptic integral of the first kind is then

Limitations ellipke is limited to the input domain .

See Also ellipj

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, 17.6.

2-1018

ellipsoid

Purpose Generate ellipsoid

Syntax [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n)
[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr)
ellipsoid(axes_handle,...)
ellipsoid(...)

Description [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n) generates a surface
mesh described by three n+1-by-n+1 matrices, enabling surf(x,y,z)
to plot an ellipsoid with center (xc,yc,zc) and semi-axis lengths
(xr,yr,zr).

[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr) uses n = 20.

ellipsoid(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

ellipsoid(...) with no output arguments plots the ellipsoid as a
surface.

Algorithm ellipsoid generates the data using the following equation:

Note that ellipsoid(0,0,0, .5,.5,.5) is equivalent to a unit sphere.

2-1019

ellipsoid

Example Generate ellipsoid with size and proportions of a standard U.S. football:

[x, y, z] = ellipsoid(0,0,0,5.9,3.25,3.25,30);
surfl(x, y, z)
colormap copper
axis equal

See Also cylinder, sphere, surf

“Polygons and Surfaces” on page 1-94 for related functions

2-1020

else

Purpose Execute statements if condition is false

Syntax if expression, statements1, else statements2, end

Description if expression, statements1, else statements2, end evaluates
expression and, if the evaluation yields logical 1 (true) or a nonzero
result, executes one or more MATLAB commands denoted here as
statements1 or, if the evaluation yields logical 0 (false), executes the
commands in statements2. else is used to delineate the alternate
block of statements..

A true expression has either a logical 1 (true) or nonzero value. For
nonscalar expressions, (for example, “if (matrix A is less than matrix
B)”), true means that every element of the resulting matrix has a true
or nonzero value.

Expressions usually involve relational operations such as (count <
limit) or isreal(A). Simple expressions can be combined by logical
operators (&,|,~) into compound expressions such as (count < limit)
& ((height - offset) >= 0).

See “Program Control Statements” in the MATLAB Programming
Fundamentals documentation for more information on controlling the
flow of your program code.

Examples In this example, if both of the conditions are not satisfied, then the
student fails the course.

if ((attendance >= 0.90) & (grade_average >= 60))
pass = 1;

else
fail = 1;

end;

See Also if, elseif, end, for, while, switch, break, return, relational
operators, logical operators (elementwise and short-circuit)

2-1021

elseif

Purpose Execute statements if additional condition is true

Syntax if expression1, statements1, elseif expression2,
statements2,

end

Description if expression1, statements1, elseif expression2,
statements2, end evaluates expression1 and, if the evaluation
yields logical 1 (true) or a nonzero result, executes one or more
MATLAB commands denoted here as statements1. If expression1
is false, MATLAB evaluates the elseif expression, expression2.
If expression2 evaluates to true or a nonzero result, executes the
commands in statements2.

A true expression has either a logical 1 (true) or nonzero value. For
nonscalar expressions, (for example, is matrix A less then matrix B),
true means that every element of the resulting matrix has a true or
nonzero value.

Expressions usually involve relational operations such as (count <
limit) or isreal(A). Simple expressions can be combined by logical
operators (&,|,~) into compound expressions such as (count < limit)
& ((height - offset) >= 0).

See “Program Control Statements” in the MATLAB Programming
Fundamentals documentation for more information on controlling the
flow of your program code.

Remarks The commands else and if, with a space or line break between them,
differ from elseif, with no space. The former introduces a new, nested
if that requires a matching end statement. The latter is used in a linear
sequence of conditional statements with only one terminating end.

The two segments shown below produce identical results. Exactly one
of the four assignments to x is executed, depending upon the values of
the three logical expressions, A, B, and C.

if A if A
x = a x = a

2-1022

elseif

else elseif B
if B x = b

x = b elseif C
else x = c

if C else
x = c x = d

else end
x = d

end
end

end

Examples Here is an example showing if, else, and elseif.

for m = 1:k
for n = 1:k

if m == n
a(m,n) = 2;

elseif abs(m-n) == 2
a(m,n) = 1;

else
a(m,n) = 0;

end
end

end

For k=5 you get the matrix

a =

2 0 1 0 0
0 2 0 1 0
1 0 2 0 1
0 1 0 2 0
0 0 1 0 2

See Also if, else, end, for, while, switch, break, return, relational operators,
logical operators (elementwise and short-circuit)

2-1023

enableservice

Purpose Enable, disable, or report status of Automation server

Syntax state = enableservice('AutomationServer',enable)
state = enableservice('AutomationServer')

Description state = enableservice('AutomationServer',enable) enables or
disables the MATLAB Automation server.

If enable is logical 1 (true), enableservice converts an existing
MATLAB session into an Automation server. If enable is logical 0
(false), enableservice disables the MATLAB Automation server.

state indicates the previous state of the Automation server. If state =
1, MATLAB was an Automation server. If state is logical 0 (false),
MATLAB was not an Automation server.

state = enableservice('AutomationServer') returns the current
state of the Automation server. If state is logical 1 (true), MATLAB
is an Automation server.

Remarks COM functions are available on Microsoft Windows systems only.

Examples Enable an Automation Server Example

Enable the Automation server in the current MATLAB session:

state = enableservice('AutomationServer',true);

Next, show the current state of the MATLAB session:

state = enableservice('AutomationServer')

MATLAB displays state = 1 (true), showing that MATLAB is an
Automation server.

Finally, enable the Automation server and show the previous state
by typing

state = enableservice('AutomationServer',true)

2-1024

enableservice

MATLAB displays state = 1 (true), showing that MATLAB previously
was an Automation server.

Note the previous state may be the same as the current state. As seen
in this case, state = 1 shows MATLAB was, and still is, an Automation
server.

See Also actxserver

2-1025

end

Purpose Terminate block of code, or indicate last array index

Syntax end

Description end is used to terminate for, while, switch, try, and if statements.
Without an end statement, for, while, switch, try, and if wait for
further input. Each end is paired with the closest previous unpaired
for, while, switch, try, or if and serves to delimit its scope.

end also marks the termination of an M-file function, although in most
cases, it is optional. end statements are required only in M-files that
employ one or more nested functions. Within such an M-file, every
function (including primary, nested, private, and subfunctions) must
be terminated with an end statement. You can terminate any function
type with end, but doing so is not required unless the M-file contains a
nested function.

The end function also serves as the last index in an indexing expression.
In that context, end = (size(x,k)) when used as part of the kth index.
Examples of this use are X(3:end) and X(1,1:2:end-1). When using
end to grow an array, as in X(end+1)=5, make sure X exists first.

You can overload the end statement for a user object by defining an
end method for the object. The end method should have the calling
sequence end(obj,k,n), where obj is the user object, k is the index in
the expression where the end syntax is used, and n is the total number
of indices in the expression. For example, consider the expression

A(end-1,:)

The MATLAB software calls the end method defined for A using the
syntax

end(A,1,2)

Examples This example shows end used with the for and if statements.

for k = 1:n
if a(k) == 0

2-1026

end

a(k) = a(k) + 2;
end

end

In this example, end is used in an indexing expression.

A = magic(5)

A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

B = A(end,2:end)

B =

18 25 2 9

See Also break, for, if, return, switch, try, while

2-1027

eomday

Purpose Last day of month

Syntax E = eomday(Y, M)

Description E = eomday(Y, M) returns the last day of the year and month given
by corresponding elements of arrays Y and M.

Examples Because 1996 is a leap year, the statement eomday(1996,2) returns 29.

To show all the leap years in the twentieth century, try:

y = 1900:1999;
E = eomday(y, 2);
y(find(E == 29))

ans =
Columns 1 through 6

1904 1908 1912 1916 1920 1924

Columns 7 through 12
1928 1932 1936 1940 1944 1948

Columns 13 through 18
1952 1956 1960 1964 1968 1972

Columns 19 through 24
1976 1980 1984 1988 1992 1996

See Also datenum, datevec, weekday

2-1028

eps

Purpose Floating-point relative accuracy

Syntax eps
d = eps(X)
eps('double')
eps('single')

Description eps returns the distance from 1.0 to the next largest double-precision
number, that is eps = 2^(-52).

d = eps(X) is the positive distance from abs(X) to the next larger in
magnitude floating point number of the same precision as X. X may be
either double precision or single precision. For all X,

eps(X) = eps(-X) = eps(abs(X))

eps('double') is the same as eps or eps(1.0).

eps('single') is the same as eps(single(1.0)) or single(2^-23).

Except for numbers whose absolute value is smaller than realmin , if
2^E <= abs(X) < 2^(E+1), then

eps(X) = 2^(E-23) if isa(X,'single')
eps(X) = 2^(E-52) if isa(X,'double')

For all X of class double such that abs(X) <= realmin, eps(X) =
2^(-1074). Similarly, for all X of class single such that abs(X) <=
realmin('single'), eps(X) = 2^(-149).

Replace expressions of the form

if Y < eps * ABS(X)

with

if Y < eps(X)

Examples double precision
eps(1/2) = 2^(-53)

2-1029

eps

eps(1) = 2^(-52)
eps(2) = 2^(-51)
eps(realmax) = 2^971
eps(0) = 2^(-1074)

if(abs(x)) <= realmin, eps(x) = 2^(-1074)
eps(realmin/2) = 2^(-1074)
eps(realmin/16) = 2^(-1074)
eps(Inf) = NaN
eps(NaN) = NaN

single precision
eps(single(1/2)) = 2^(-24)
eps(single(1)) = 2^(-23)
eps(single(2)) = 2^(-22)
eps(realmax('single')) = 2^104
eps(single(0)) = 2^(-149)
eps(realmin('single')/2) = 2^(-149)
eps(realmin('single')/16) = 2^(-149)
if(abs(x)) <= realmin('single'), eps(x) = 2^(-149)
eps(single(Inf)) = single(NaN)
eps(single(NaN)) = single(NaN)

See Also realmax, realmin

2-1030

eq

Purpose Test for equality

Syntax A == B
eq(A, B)

Description A == B compares each element of array A for equality with the
corresponding element of array B, and returns an array with elements
set to logical 1 (true) where A and B are equal, or logical 0 (false)
where they are not equal. Each input of the expression can be an array
or a scalar value.

If both A and B are scalar (i.e., 1-by-1 matrices), then the MATLAB
software returns a scalar value.

If both A and B are nonscalar arrays, then these arrays must have
the same dimensions, and MATLAB returns an array of the same
dimensions as A and B.

If one input is scalar and the other a nonscalar array, then the scalar
input is treated as if it were an array having the same dimensions as
the nonscalar input array. In other words, if input A is the number 100,
and B is a 3-by-5 matrix, then A is treated as if it were a 3-by-5 matrix
of elements, each set to 100. MATLAB returns an array of the same
dimensions as the nonscalar input array.

eq(A, B) is called for the syntax A == B when either A or B is an object.

Examples Create two 6-by-6 matrices, A and B, and locate those elements of A that
are equal to the corresponding elements of B:

A = magic(6);
B = repmat(magic(3), 2, 2);

A == B
ans =

0 1 1 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
1 0 0 0 0 0

2-1031

eq

0 1 0 0 0 0
1 0 0 0 0 0

See Also ne, le, ge, lt, gt, relational operators

2-1032

eq (MException)

Purpose Compare MException objects for equality

Syntax eObj1 == eObj2

Description eObj1 == eObj2 tests scalar MException objects eObj1 and eObj2 for
equality, returning logical 1 (true) if the two objects are identical,
otherwise returning logical 0 (false).

See Also try, catch, error, assert, MException, isequal(MException),
ne(MException), getReport(MException), disp(MException),
throw(MException), rethrow(MException),
throwAsCaller(MException), addCause(MException),
last(MException)

2-1033

erf, erfc, erfcx, erfinv, erfcinv

Purpose Error functions

Syntax Y = erf(X)
Y = erfc(X)
Y = erfcx(X)
X = erfinv(Y)
X = erfcinv(Y)

Definition The error function erf(X) is twice the integral of the Gaussian
distribution with 0 mean and variance of .

The complementary error function erfc(X) is defined as

The scaled complementary error function erfcx(X) is defined as

For large X, erfcx(X) is approximately

Description Y = erf(X) returns the value of the error function for each element
of real array X.

Y = erfc(X) computes the value of the complementary error function.

Y = erfcx(X) computes the value of the scaled complementary error
function.

X = erfinv(Y) returns the value of the inverse error function for each
element of Y. Elements of Ymust be in the interval [-1 1]. The function
erfinv satisfies for and .

2-1034

erf, erfc, erfcx, erfinv, erfcinv

X = erfcinv(Y) returns the value of the inverse of the complementary
error function for each element of Y. Elements of Y must be in the
interval [0 2]. The function erfcinv satisfies for

and .

Remarks The relationship between the complementary error function erfc and
the standard normal probability distribution returned by the Statistics
Toolbox function normcdf is

The relationship between the inverse complementary error function
erfcinv and the inverse standard normal probability distribution
returned by the Statistics Toolbox function norminv is

Examples erfinv(1) is Inf

erfinv(-1) is -Inf.

For abs(Y) > 1, erfinv(Y) is NaN.

Algorithms For the error functions, the MATLAB code is a translation of a
Fortran program by W. J. Cody, Argonne National Laboratory,
NETLIB/SPECFUN, March 19, 1990. The main computation evaluates
near-minimax rational approximations from [1].

For the inverse of the error function, rational approximations accurate
to approximately six significant digits are used to generate an initial
approximation, which is then improved to full accuracy by one step
of Halley’s method.

References [1] Cody, W. J., “Rational Chebyshev Approximations for the Error
Function,” Math. Comp., pgs. 631-638, 1969

2-1035

error

Purpose Display message and abort function

Syntax error('msgID', 'errmsg', v1, v2 ...)
error('errmsg', v1, v2, ...)
error('errmsg')
error(msgStruct)

Description error('msgID', 'errmsg', v1, v2 ...) displays a descriptive
message errmsg when the currently-running M-file program encounters
an error condition. Depending on how the program code responds to
the error, MATLAB either enters a catch block to handle the error
condition, or exits the program.

The msgID argument is a uniquemessage identifier string that MATLAB
attaches to the error message when it throws the error. A message
identifier has the format component:mnemonic. Its purpose is to better
identify the source of the error (see Message Identifiers in the MATLAB
Programming Fundamentals documentation for more information).

The errmsg argument is a character string that informs the user about
the cause of the error and can also suggest how to correct the faulty
condition. The errmsg string can include predefined escape sequences,
such as \n for newline, and conversion specifiers, such as %d for a
decimal number.

The v1, v2, ... arguments represent values or substrings that are
to replace conversion specifiers used in the errmsg string. The format
is the same as that used with the sprintf function. For example, if
errmsg is “Error on line %d, command %s”, then v1 is the line number at
which the error was detected, and v2 is the command that failed. The
vN arguments replace the conversion specifiers at the time of execution.

Valid escape sequences for the errmsg string are \b, \f, \n, \r, \t,
and \x or \ when followed by a valid hexadecimal or octal number,
respectively. Following a backslash in the errmsg with any other
character causes MATLAB to issue a warning. Conversion specifiers
are similar to those used in the C programming language and in the
sprintf function.

2-1036

error

All string input arguments must be enclosed in single quotation marks.
If errMsg is an empty string, the error command has no effect.

error('errmsg', v1, v2, ...)reports an error without including a
message identifier in the error report. Although including a message
identifier in an error report is recommended, it is not required.

error('errmsg') is the same as the above syntax, except that the
errmsg string contains no conversion specifiers, no escape sequences,
and no substitution value (v1, v2, ...) arguments. All characters in
errmsg are interpreted exactly as they appear in the errmsg argument.
MATLAB displays the \t in 'C:\testdir' for example, as a backslash
character followed by the letter t, and not as a horizontal tab.

error(msgStruct) accepts a scalar error structure input msgStruct
with at least one of the fields message, identifier, and stack. (See
the help for lasterror for more information on these fields.) When the
msgStruct input includes a stack field, the stack field of the error will
be set according to the contents of the stack input. When specifying
a stack input, use the absolute file name and the entire sequence of
functions that nests the function in the stack frame. (This is the same
as the string returned by dbstack('-completenames')). If msgStruct
is an empty structure, no action is taken and error returns without
exiting from the M-file.

Remarks The error function also determines where the error occurred and
provides this information in the stack field of the structure returned by
MException.last. This field contains a structure array that has the
same format as the output of the dbstack function. This stack points to
the line where the error function was called.

Examples Example 1 — Simple Error Message, lasterror

Write a short M-file errtest1 that throws an error when called with
an incorrect number of input arguments. Include a message identifier
'myApp:argChk' and error message:

function errtest1(x, y)
if nargin ~= 2

2-1037

error

error('myApp:argChk', Wrong number of input arguments')
end

Call the function with an incorrect number of inputs. The call to
nargin, a function that checks the number of inputs, fails and the
program calls error:

errtest1(pi)

??? Error using ==> errtest1 at 3
Wrong number of input arguments

You can use lasterror to get information on the last error thrown:

err = lasterror
err =

message: [1x120 char]
identifier: 'myApp:argChk'

stack: [1x1 struct]

err.stack
ans =

file: 'c:\work\errtest1.m'
name: 'errtest1'
line: 3

Example 2 — Formatted Message String, lasterror

Specify a message identifier and formatted error message string with
error:

function plotshape(newAngle)
maxAngle = 90;

check_angles(newAngle, maxAngle)

function check_angles(newAngle, maxAngle)
if newAngle > maxAngle

error('MyToolbox:angleTooLarge', ...
'Specified angle must be less than %d degrees.', ...

2-1038

error

maxAngle)
end

Run the function, which then displays the error message:

plotshape(100)
??? Error using ==> plotshape>check_angles at 14
The angle specified must be less than 90 degrees.

Error in ==> plotshape at 4
check_angles(newAngle, maxAngle)

Use the lasterror function to obtain more information about the error:

err = lasterror
err =

message: [1x157 char]
identifier: 'MyToolbox:angleTooLarge'

stack: [2x1 struct]

Show the message string and identifier:

err.message
ans =

Error using ==> plotshape>check_angles at 14
The angle specified must be less than 90 degrees.

err.identifier
ans =

MyToolbox:angleTooLarge

Show the most recent entry on the stack:

stk = err.stack(1)
stk =

file: 'd:\mytools\plotshape.m'
name: 'check_angles'
line: 14

2-1039

error

Example 3 — Special Characters

MATLAB converts special characters (like \n and %d) in the error
message string only when you specify more than one input argument
with error. In the single-argument case shown below, \n is taken to
mean backslash-n. It is not converted to a newline character:

error('In this case, the newline \n is not converted.')
??? In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert
special characters. This holds true regardless of whether the additional
argument supplies conversion values or is a message identifier:

error('ErrorTests:convertTest', ...
'In this case, the newline \n is converted.')

??? In this case, the newline
is converted.

See Also lasterror, rethrow, assert, errordlg, warning, lastwarn, warndlg,
dbstop, disp, sprintf

2-1040

errorbar

Purpose Plot error bars along curve

GUI
Alternatives

To graph selected variables, use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
“Plotting Tools — Interactive Plotting” in the MATLAB Graphics
documentation and “Creating Graphics from the Workspace Browser”
in the MATLAB Desktop Tools documentation.

Syntax errorbar(Y,E)
errorbar(X,Y,E)
errorbar(X,Y,L,U)
errorbar(...,LineSpec)
h = errorbar(...)
hlines = errorbar('v6',...)

Description Error bars show the confidence intervals of data or the deviation along
a curve.

errorbar(Y,E) plots Y and draws an error bar at each element of Y. The
error bar is a distance of E(i) above and below the curve so that each
bar is symmetric and 2*E(i) long.

errorbar(X,Y,E) plots Y versus X with symmetric error bars 2*E(i)
long. X, Y, E must be the same size. When they are vectors, each
error bar is a distance of E(i) above and below the point defined by
(X(i),Y(i)). When they are matrices, each error bar is a distance of
E(i,j) above and below the point defined by (X(i,j),Y(i,j)).

errorbar(X,Y,L,U) plots X versus Y with error bars L(i)+U(i) long
specifying the lower and upper error bars. X, Y, L, and U must be the
same size. When they are vectors, each error bar is a distance of L(i)
below and U(i) above the point defined by (X(i),Y(i)). When they
are matrices, each error bar is a distance of L(i,j) below and U(i,j)
above the point defined by (X(i,j),Y(i,j)).

2-1041

errorbar

errorbar(...,LineSpec) uses the color and line style specified by
the string 'LineSpec'. The color is applied to the data line and error
bars. The linestyle and marker are applied to the data line only. See
linespec for examples of styles.

h = errorbar(...) returns handles to the errorbarseries objects
created. errorbar creates one object for vector input arguments and
one object per column for matrix input arguments. See errorbarseries
properties for more information.

Backward-Compatible Version

hlines = errorbar('v6',...) returns the handles of line objects
instead of errorbarseries objects for compatibility with MATLAB 6.5
and earlier.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See “Plot Objects and Backward Compatibility” for more information.

Remarks When the arguments are all matrices, errorbar draws one line per
matrix column. If X and Y are vectors, they specify one curve.

Examples Draw symmetric error bars that are two standard deviation units in
length:

X = 0:pi/10:pi;
Y = sin(X);
E = std(Y)*ones(size(X));
errorbar(X,Y,E)

2-1042

errorbar

Plot the computed average traffic volume and computed standard
deviations for three street locations over the course of a day using red
’x’ markers:

load count.dat;
y = mean(count,2);
e = std(count,1,2);
figure
errorbar(y,e,'xr')

2-1043

errorbar

See Also corrcoef, linespec, plot, std

“Basic Plots and Graphs” on page 1-90 and ConfidenceBounds for
related functions

Errorbarseries Properties for property descriptions

2-1044

Errorbarseries Properties

Purpose Define errorbarseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property editor (propertyeditor).

Note that you cannot define default property values for errorbarseries
objects. See “Plot Objects” for more information on errorbarseries
objects.

Errorbarseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of errorbarseries objects in legends. The
Annotation property enables you to specify whether this
errorbarseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
errorbarseries object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the errorbarseries object in a legend
as one entry, but not its children objects

2-1045

Errorbarseries Properties

IconDisplayStyle
Value

Purpose

off Do not include the errorbarseries or its
children in a legend (default)

children Include only the children of the
errorbarseries as separate entries in
the legend

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation,'LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to

2-1046

Errorbarseries Properties

be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel— Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

2-1047

Errorbarseries Properties

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

2-1048

Errorbarseries Properties

See the ColorSpec reference page for more information on
specifying color.

CreateFcn
string or function handle

Not available on errorbarseries objects.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this errorbarseries object. The legend
function uses the string defined by the DisplayName property to
label this errorbarseries object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this errorbarseries object’s corresponding
string and that string is used for the legend.

2-1049

Errorbarseries Properties

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal— Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none— Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing

2-1050

Errorbarseries Properties

the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for

2-1051

Errorbarseries Properties

preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on—Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility

2-1052

Errorbarseries Properties

settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When

2-1053

Errorbarseries Properties

HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LData
array equal in size to XData and YData

Errorbar length below data point. The errorbar function uses
this data to determine the length of the errorbar below each data
point. Specify these values in data units. See also UData.

LDataSource
string (MATLAB variable)

Link LData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
LData.

2-1054

Errorbarseries Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change LData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

LineStyle
{-} | – | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line
none No line

You can use LineStyle none when you want to place a marker
at each point but do not want the points connected with a line
(see the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

2-1055

Errorbarseries Properties

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign
o Circle
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Five-pointed star (pentagram)
h Six-pointed star (hexagram)
none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none

2-1056

Errorbarseries Properties

specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this

2-1057

Errorbarseries Properties

property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing selection handles on the curve and error bars. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create an errorbarseries object and set
the Tag property:

t = errorbar(Y,E,'Tag','errorbar1')

When you want to access the errorbarseries object, you can use
findobj to find the errorbarseries object’s handle.

The following statement changes the MarkerFaceColor property
of the object whose Tag is errorbar1.

set(findobj('Tag','errorbar1'),'MarkerFaceColor','red')

Type
string (read only)

2-1058

Errorbarseries Properties

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For errorbarseries
objects, Type is ’hggroup’. The following statement finds all the
hggroup objects in the current axes.

t = findobj(gca,'Type','hggroup');

UData
array equal in size to XData and YData

Errorbar length above data point. The errorbar function uses
this data to determine the length of the errorbar above each data
point. Specify these values in data units.

UDataSource
string (MATLAB variable)

Link UData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
UData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change UData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the errorbarseries object. Assign
this property the handle of a uicontextmenu object created in the
errorbarseries object’s parent figure. Use the uicontextmenu

2-1059

Errorbarseries Properties

function to create the context menu. MATLAB displays the
context menu whenever you right-click over the errorbarseries
object.

UserData
array

User-specified data. This property can be any data you want to
associate with the errorbarseries object (including cell arrays and
structures). The errorbarseries object does not set values for this
property, but you can access it using the set and get functions.

Visible
{on} | off

Visibility of errorbarseries object and its children. By default,
errorbarseries object visibility is on. This means all children
of the errorbarseries object are visible unless the child object’s
Visible property is set to off. Setting an errorbarseries object’s
Visible property to off also makes its children invisible.

XData
array

X-coordinates of the curve. The errorbar function plots a curve
using the x-axis coordinates in the XData array. XData must be
the same size as YData.

If you do not specify XData (i.e., the input argument x), the
errorbar function uses the indices of YData to create the curve.
See the XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify XData
(by setting the XData property or specifying the input argument
x), the errorbar function sets this property to manual.

2-1060

Errorbarseries Properties

If you set XDataMode to auto after having specified XData, the
errorbar function resets the x tick-mark labels to the indices
of the YData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Data defining curve. YData contains the data defining the curve.
If YData is a matrix, the errorbar function displays a curve with
error bars for each column in the matrix.

2-1061

Errorbarseries Properties

The input argument Y in the errorbar function calling syntax
assigns values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-1062

errordlg

Purpose Create and open error dialog box

Syntax h = errordlg
h = errordlg(errorstring)
h = errordlg(errorstring,dlgname)
h = errordlg(errorstring,dlgname,createmode)

Description h = errordlg creates and displays a dialog box with title Error
Dialog that contains the string This is the default error string.
The errordlg function returns the handle of the dialog box in h.

h = errordlg(errorstring) displays a dialog box with title Error
Dialog that contains the string errorstring.

h = errordlg(errorstring,dlgname) displays a dialog box with
titledlgname that contains the string errorstring.

h = errordlg(errorstring,dlgname,createmode) specifies whether
the error dialog box is modal or nonmodal. Optionally, it can also
specify an interpreter for errorstring and dlgname. The createmode
argument can be a string or a structure.

If createmode is a string, it must be one of the values shown in the
following table.

createmode Value Description

modal Replaces the error dialog box having the
specified Title, that was last created or
clicked on, with a modal error dialog box as
specified. All other error dialog boxes with
the same title are deleted. The dialog box
which is replaced can be either modal or
nonmodal.

2-1063

errordlg

createmode Value Description

non-modal (default) Creates a new nonmodal error dialog box
with the specified parameters. Existing
error dialog boxes with the same title are
not deleted.

replace Replaces the error dialog box having the
specified Title, that was last created or
clicked on, with a nonmodal error dialog box
as specified. All other error dialog boxes
with the same title are deleted. The dialog
box which is replaced can be either modal
or nonmodal.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution as
well, use the uiwait function.

If you open a dialog with errordlg, msgbox, or warndlg using
'CreateMode','modal' and a non-modal dialog created with any of
these functions is already present and has the same name as the modal
dialog, the non-modal dialog closes when the modal one opens.

For more information about modal dialog boxes, see WindowStyle in
the Figure Properties.

If CreateMode is a structure, it can have fields WindowStyle and
Interpreter. WindowStyle must be one of the options shown in the
table above. Interpreter is one of the strings 'tex' or 'none'. The
default value for Interpreter is 'none'.

Remarks MATLAB sizes the dialog box to fit the string 'errorstring'. The
error dialog box has an OK push button and remains on the screen until

2-1064

errordlg

you press the OK button or the Return key. After pressing the button,
the error dialog box disappears.

The appearance of the dialog box depends on the platform you use.

Examples The function

errordlg('File not found','File Error');

displays this dialog box:

See Also dialog, helpdlg, inputdlg, listdlg, msgbox, questdlg, warndlg

figure, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-108 for related functions

2-1065

etime

Purpose Time elapsed between date vectors

Syntax e = etime(t2, t1)

Description e = etime(t2, t1) returns the time in seconds between vectors t1
and t2. The two vectors must be six elements long, in the format
returned by clock:

T = [Year Month Day Hour Minute Second]

Remarks The etime function measures time elapsed between two points in time,
and does not take into account differences in those points brought about
by daylight savings time or changes in time zone.

When timing the duration of an event, use the tic and toc functions
instead of clock or etime. These latter two functions are based on the
system time which can be adjusted periodically by the operating system
and thus might not be reliable in time comparison operations.

Examples This example shows two ways to calculate how long a particular FFT
operation takes. Using tic and toc is preferred, as it can be more
reliable for timing the duration of an event:

x = rand(800000, 1);

t1 = tic; fft(x); toc(t1) % Recommended
Elapsed time is 0.097665 seconds.

t = clock; fft(x); etime(clock, t)
ans =

0.1250

See Also tic, toc, cputime, clock, now

2-1066

etree

Purpose Elimination tree

Syntax p = etree(A)
p = etree(A,'col')
p = etree(A,'sym')
[p,q] = etree(...)

Description p = etree(A) returns an elimination tree for the square symmetric
matrix whose upper triangle is that of A. p(j) is the parent of column j
in the tree, or 0 if j is a root.

p = etree(A,'col') returns the elimination tree of A'*A.

p = etree(A,'sym') is the same as p = etree(A).

[p,q] = etree(...) also returns a postorder permutation q of the tree.

See Also treelayout, treeplot, etreeplot

2-1067

etreeplot

Purpose Plot elimination tree

Syntax etreeplot(A)
etreeplot(A,nodeSpec,edgeSpec)

Description etreeplot(A) plots the elimination tree of A (or A+A', if non-symmetric).

etreeplot(A,nodeSpec,edgeSpec) allows optional parameters
nodeSpec and edgeSpec to set the node or edge color, marker, and
linestyle. Use '' to omit one or both.

See Also etree, treeplot, treelayout

2-1068

eval

Purpose Execute string containing MATLAB expression

Syntax eval(expression)
[a1, a2, a3, ...] = eval('myfun(b1, b2, b3, ...)')

Description eval(expression) executes expression, a string containing any valid
MATLAB expression. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1, int2str(var), string2, ...]

[a1, a2, a3, ...] = eval('myfun(b1, b2, b3, ...)') executes
function smyfun with arguments b1, b2, b3, ..., and returns the
results in the specified output variables.

Remarks Using the eval output argument list is recommended over including
the output arguments in the expression string. The first syntax
below avoids strict checking by the MATLAB parser and can produce
untrapped errors and other unexpected behavior. Use the second
syntax instead:

% Not recommended
eval('[a1, a2, a3, ...] = function(var)')

% Recommended syntax
[a1, a2, a3, ...] = eval('function(var)')

Examples Example 1 – Working with a Series of Files

Load MAT-files August1.mat to August10.mat into the MATLAB
workspace:

for d=1:10
s = ['load August' int2str(d) '.mat']
eval(s)

end

These are the strings being evaluated:

2-1069

eval

s =
load August1.mat

s =
load August2.mat

s =
load August3.mat

- etc. -

Example 2 – Assigning to Variables with Generated Names

Generate variable names that are unique in the MATLAB workspace
and assign a value to each using eval:

for k = 1:5
t = clock;
pause(uint8(rand * 10));
v = genvarname('time_elapsed', who);
eval([v ' = etime(clock,t)'])
end

As this code runs, eval creates a unique statement for each assignment:

time_elapsed =
5.0070

time_elapsed1 =
2.0030

time_elapsed2 =
7.0010

time_elapsed3 =
8.0010

time_elapsed4 =
3.0040

Example 3 – Evaluating a Returned Function Name

The following command removes a figure by evaluating its
CloseRequestFcn property as returned by get.

eval(get(h,'CloseRequestFcn'))

2-1070

eval

See Also evalc, evalin, assignin, feval, catch, lasterror, try

2-1071

evalc

Purpose Evaluate MATLAB expression with capture

Syntax T = evalc(S)
[T, X, Y, Z, ...] = evalc(S)

Description T = evalc(S) is the same as eval(S) except that anything that
would normally be written to the command window, except for error
messages, is captured and returned in the character array T (lines in T
are separated by \n characters).

[T, X, Y, Z, ...] = evalc(S) is the same as [X, Y, Z, ...] =
eval(S) except that any output is captured into T.

Remark When you are using evalc, diary, more, and input are disabled.

See Also eval, evalin, assignin, feval, diary, input, more

2-1072

evalin

Purpose Execute MATLAB expression in specified workspace

Syntax evalin(ws, expression)
[a1, a2, a3, ...] = evalin(ws, expression)

Description evalin(ws, expression) executes expression, a string containing
any valid MATLAB expression, in the context of the workspace ws. ws
can have a value of 'base' or 'caller' to denote the MATLAB base
workspace or the workspace of the caller function. You can construct
expression by concatenating substrings and variables inside square
brackets:

expression = [string1, int2str(var), string2,...]

[a1, a2, a3, ...] = evalin(ws, expression) executes
expression and returns the results in the specified output variables.
Using the evalin output argument list is recommended over including
the output arguments in the expression string:

evalin(ws,'[a1, a2, a3, ...] = function(var)')

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

Remarks The MATLAB base workspace is the workspace that is seen from
the MATLAB command line (when not in the debugger). The caller
workspace is the workspace of the function that called the M-file. Note,
the base and caller workspaces are equivalent in the context of an M-file
that is invoked from the MATLAB command line.

evalin('caller', ...) finds only variables in the caller’s workspace;
it does not find functions in the caller. For this reason, you cannot use
evalin to construct a handle to a function that is defined in the caller.

If you use evalin('caller', ws) in the MATLAB debugger after
having changed your local workspace context with dbup or dbdown,
MATLAB evaluates the expression in the context of the function that is
one level up in the stack from your current workspace context.

2-1073

evalin

Examples This example extracts the value of the variable var in the MATLAB
base workspace and captures the value in the local variable v:

v = evalin('base', 'var');

Limitation evalin cannot be used recursively to evaluate an expression.
For example, a sequence of the form evalin('caller',
'evalin(''caller'', ''x'')') doesn’t work.

See Also assignin, eval, evalc, feval, catch, lasterror, try

2-1074

event.EventData

Purpose Base class for all data objects passed to event listeners

Description The event package contains the event.EventData class, which defines
the data objects passed to event listeners. If you want to provide
additional information to event listeners, you can do so by subclassing
event.EventData. See “Defining Event-Specific Data” for more
information.

Properties The event.EventData class defines two properties and no methods:

• EventName— The name of the event described by this data object.

• Source— The source object whose class defines the event described
by the data object.

See Also event.PropertyEvent

“Events — Sending and Responding to Messages”

2-1075

event.PropertyEvent

Purpose Listener for property events

Description The event.PropertyEvent class defines the data objects passed to
listeners of the meta.property events PreGet, PostGet, PreSet,
and PostSet. event.PropertyEvent is a sealed subclass of
event.EventData (i.e., you cannot subclass event.PropertyEvent).

Properties event.PropertyEvent inherits the EventName and Source properties
from event.EventData and defines one new property:

• AffectedObject — The instance of the class to which this event
refers.

See Also event.EventData, meta.property

“Listening for Changes to Property Values”

2-1076

event.listener

Purpose Class defining listener objects

Syntax lh = event.listener(Hobj,'EventName',@CallbackFunction)

Description lh = event.listener(Hobj,'EventName',@CallbackFunction)
creates a listener object for the named event on the specified object.

Listener objects respond to the specified event, which is broadcast
by the source object Hobj. When the listener object lh receives the
notification that the named event has occurred, the specified callback
function executes.

The event.listener class is a handle class.

Limiting Listener Lifecycle

Generally, you create a listener object using addlistener. However,
you can call the event.listener constructor directly to create a
listener. However, when you do not use addlistener, the listener’s
lifecycle is not tied to the object(s) being listened to—once the listener
object goes out of scope, the listener no longer exists. See “Ways to
Create Listeners” for more information on creating listener objects.

Removing a Listener

If you call delete(lh) on the listener object, the listener ceases to exist,
which means the event no longer causes the listener callback function
to execute.

Disabling a Listener

You can enable or disable a listener by setting the value of the listener’s
Enabled property (see Properties table below).

More Information on Events and Listeners

See “Events — Sending and Responding to Messages” for more
information and examples of how to use events and listeners.

2-1077

event.listener

Properties Property Purpose

Source Cell array of source objects
EventName Name of the event
Callback Function to execute when the event is triggered

and the Enabled property is set to true
Enabled callback executes when the event occurs if and

only if Enabled is set to true (the default).
Recursive When this property is set to true (the default), a

listener can cause the same event that triggered
the callback. This can lead to infinite recursion
and the MATLABrecursion limit eventually
triggers an error to end the recursion. When
set to false, this listener does not execute
recursively. Therefore, if the callback triggers its
own event, the listener does not execute again.

See Also addlistener, delete, event.proplistener

2-1078

event.proplistener

Purpose Define listener object for property events

Syntax lh = event.proplistener(Hobj,Properties,'PropEvent',
@CallbackFunction)

Description lh =
event.proplistener(Hobj,Properties,'PropEvent',@CallbackFunction)
creates a property listener object for one or more properties on
the specified object.

• Hobj — handle of object whose property or properties are to be
listened to. If Hobj is an array, the listener responds to the named
event on all objects in the array.

• Properties — a object array or cell array of meta.property object
handles representing the properties to be listened to.

• PropEvent— must be one of the strings: PresSet, PostSet, PreGet,
PostGet

• @CallbackFunction— function handle to the callback function that
executes when the event occurs.

The event.proplistener class defines property event listener objects.
It is a subclass of the event.listener class and adds one property to
those defined by event.listener:

• Object — Cell array of objects whose property events are being
listened to.

You can call the event.proplistener constructor instead of calling
addlistener to create a property listener. However, when you do not
use addlistener, the listener’s lifecycle is not tied to the object(s) being
listened to.

See “Listening for Changes to Property Values”.

See “Obtaining Information About Classes with Meta-Classes” for more
information on using meta.property objects.

2-1079

event.proplistener

See Also event.listener, addlistener

2-1080

eventlisteners

Purpose List all event handler functions registered for COM object

Syntax C = h.eventlisteners
C = eventlisteners(h)

Description C = h.eventlisteners lists any events, along with their event handler
routines, that have been registered with COM object, h. The function
returns a cell array of strings C, with each row containing the name of a
registered event and the handler routine for that event. If the object has
no registered events, then eventlisteners returns an empty cell array.

Events and their event handler routines must be registered in order for
the control to respond to them. You can register events either when
you create the control, using actxcontrol, or at any time afterwards,
using registerevent.

C = eventlisteners(h) is an alternate syntax for the same operation.

Remarks COM functions are available on Microsoft Windows systems only.

Examples Control Example

Create an mwsamp control, registering only the Click event.
eventlisteners returns the name of the event and its event handler
routine, myclick:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...

[0 0 200 200], f, ...
{'Click' 'myclick'});

h.eventlisteners

MATLAB software displays:

ans =
'Click' 'myclick'

2-1081

eventlisteners

Register two more events: DblClick and MouseDown. eventlisteners
returns the names of the three registered events along with their
respective handler routines:

h.registerevent({'DblClick', 'my2click'; 'MouseDown' 'mymoused'});
h.eventlisteners

MATLAB displays:

ans =
'Click' 'myclick'
'Dblclick' 'my2click'
'Mousedown' 'mymoused'

Now unregister all events for the control. eventlisteners returns
an empty cell array, indicating that no events have been registered
for the control:

h.unregisterallevents
h.eventlisteners

MATLAB displays:

ans =
{}

Microsoft Excel Workbook Example

myApp = actxserver('Excel.Application');
wbs = myApp.Workbooks;
wb = wbs.Add;
wb.registerevent({'Activate' 'EvtActivateHandler'})
wb.eventlisteners

MATLAB displays:

ans =
'Activate' 'EvtActivateHandler'

2-1082

eventlisteners

See Also events (COM), registerevent, unregisterevent,
unregisterallevents, isevent

2-1083

events

Purpose Display class event names

Syntax events('classname')
events(obj)
e = events(...)

Description events('classname') displays the names of the public events for
the MATLAB class classname, including events inherited from
superclasses.

events(obj) displays the names of the public events for the class of
the object obj, where obj is an instance of a MATLAB class. obj can
be either a scalar object or an array of objects.

e = events(...) returns the event names in a cell array of strings.

An event is public when its ListenAccess attribute is set to public and
its Hidden attribute is set to false (default values for both attributes).
See “Event Attributes” for a complete list of attributes.

Note events is also a keyword used in MATLAB class definition. See
classdef for more information on class definition keywords.

See “Events — Sending and Responding to Messages” for information
on using events and listeners.

Examples Get the names of the public events for the handle class:

events('handle')
Events for class handle:

ObjectBeingDestroyed

See Also properties, methods

2-1084

events (COM)

Purpose List of events COM object can trigger

Syntax S = h.events
S = events(h)

Description S = h.events returns structure array S containing all events, both
registered and unregistered, known to the COM object, and the function
prototype used when calling the event handler routine. For each array
element, the structure field is the event name and the contents of that
field is the function prototype for that event’s handler.

S = events(h) is an alternate syntax.

Remarks COM functions are available on Microsoft Windows systems only.

Examples List Control Events Example

Create an mwsamp control and list all events:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.events

MATLAB software displays information similar to:

Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,

Variant x, Variant y)
Event_Args = void Event_Args(int16 typeshort, int32 typelong,

double typedouble, string typestring, bool typebool)

Assign the output to a variable and get one field of the returned
structure:

ev = h.events;
ev.MouseDown

2-1085

events (COM)

MATLAB displays:

ans =
void MouseDown(int16 Button, int16 Shift, Variant x, Variant y)

List Workbook Events Example

Open a Microsoft Excel application and list all events for a Workbook
object:

myApp = actxserver('Excel.Application');
wbs = myApp.Workbooks;
wb = wbs.Add;
wb.events

The MATLAB software displays all events supported by the Workbook
object.

Open = void Open()
Activate = void Activate()
Deactivate = void Deactivate()
BeforeClose = void BeforeClose(bool Cancel)

.

.

See Also isevent, eventlisteners, registerevent, unregisterevent,
unregisterallevents

2-1086

Execute

Purpose Execute MATLAB command in Automation server

Syntax MATLAB Client

result = h.Execute('command')
result = Execute(h, 'command')
result = invoke(h, 'Execute', 'command')

Method Signature

BSTR Execute([in] BSTR command)

Microsoft® Visual Basic® Client

Execute(command As String) As String

Description The Execute function executes the MATLAB statement specified by the
string command in the MATLAB Automation server attached to handle h.

The server returns output from the command in the string, result. The
result string also contains any warning or error messages that might
have been issued by MATLAB software as a result of the command.

Note that if you terminate the MATLAB command string with a
semicolon and there are no warnings or error messages, result might
be returned empty.

Remarks If you want to be able to display output from Execute in the client
window, you must specify an output variable (i.e., result in the above
syntax statements).

Server function names, like Execute, are case sensitive when used with
dot notation (the first syntax shown).

All three versions of the MATLAB client syntax perform the same
operation.

COM functions are available on Microsoft Windows systems only.

Examples Execute the MATLAB version function in the server and return the
output to the MATLAB client.

2-1087

Execute

MATLAB Client

h = actxserver('matlab.application');
server_version = h.Execute('version')
server_version =
ans =

6.5.0.180913a (R13)

Visual Basic® .NET Client

Dim Matlab As Object
Dim server_version As String
Matlab = CreateObject("matlab.application")
server_version = Matlab.Execute("version")

See Also Feval, PutFullMatrix, GetFullMatrix, PutCharArray, GetCharArray

2-1088

exifread

Purpose Read EXIF information from JPEG and TIFF image files

Syntax output = exifread(filename)

Description output = exifread(filename) reads the Exchangeable Image File
Format (EXIF) data from the file specified by the string filename.
filenamemust specify a JPEG or TIFF image file. output is a structure
containing metadata values about the image or images in imagefile.

Note exifread returns all EXIF tags and does not process them in
any way.

EXIF is a standard used by digital camera manufacturers to store
information in the image file, such as, the make and model of a camera,
the time the picture was taken and digitized, the resolution of the image,
exposure time, and focal length. For more information about EXIF and
the meaning of metadata attributes, see http://www.exif.org/.

See Also imfinfo, imread

2-1089

http://www.exif.org/

exist

Purpose Check existence of variable, function, directory, or Java programming
language class

Graphical
Interface

As an alternative to the exist function, use the Workspace Browser or
the Current Directory Browser.

Syntax exist name
exist name kind
A = exist('name','kind')

Description exist name returns the status of name:

0 If name does not exist.
1 If name is a variable in the workspace.
2 If name is an M-file on your MATLAB search path. It also

returns 2 when name is the full pathname to a file or the name
of an ordinary file on your MATLAB search path.

3 If name is a MEX- or DLL-file on your MATLAB search path.
4 If name is an MDL-file on your MATLAB search path.
5 If name is a built-in MATLAB function.
6 If name is a P-file on your MATLAB search path.
7 If name is a directory.
8 If name is a Java class. (exist returns 0 if you start MATLAB

with the -nojvm option.)

exist name kind returns the status of name for the specified kind. If
name of type kind does not exist, it returns 0. The kind argument may
be one of the following:

builtin Checks only for built-in functions.
class Checks only for Java classes.

2-1090

exist

dir Checks only for directories.
file Checks only for files or directories.
var Checks only for variables.

If name belongs to more than one category (e.g., if there are both an
M-file and variable of the given name) and you do not specify a kind
argument, exist returns one value according to the order of evaluation
shown in the table below. For example, if name matches both a directory
and M-file name, exist returns 7, identifying it as a directory.

Order of
Evaluation Return Value Type of Entity

1 1 Variable
2 5 Built-in
3 7 Directory
4 3 MEX or DLL-file
5 4 MDL-file
6 6 P-file
7 2 M-file
8 8 Java class

A = exist('name','kind') is the function form of the syntax.

Remarks If name specifies a filename, that filename may include an extension
to preclude conflicting with other similar filenames. For example,
exist('file.ext').

If name specifies a filename, MATLAB attempts to locate the file,
examines the filename extension, and determines the value to return
based on the extension alone. MATLAB does not examine the contents
or internal structure of the file.

2-1091

exist

You can specify a partial path to a directory or file. A partial pathname
is a pathname relative to the MATLAB path that contains only the
trailing one or more components of the full pathname. For example,
both of the following commands return 2, identifying mkdir.m as an
M-file. The first uses a partial pathname:

exist('matlab/general/mkdir.m')
exist([matlabroot '/toolbox/matlab/general/mkdir.m'])

If a file or directory is not on the search path, then name must specify
either a full pathname, a partial pathname relative to MATLABPATH,
a partial pathname relative to your current directory, or the file or
directory must reside in your current working directory.

If name is a Java class, then exist('name') returns an 8. However, if
name is a Java class file, then exist('name') returns a 2.

Remarks To check for the existence of more than one variable, use the ismember
function. For example,

a = 5.83;
c = 'teststring';
ismember({'a','b','c'},who)

ans =

1 0 1

Examples This example uses exist to check whether a MATLAB function is a
built-in function or a file:

type = exist('plot')
type =
5

This indicates that plot is a built-in function.

In the next example, exist returns 8 on the Java class, Welcome, and
returns 2 on the Java class file, Welcome.class:

2-1092

exist

exist Welcome
ans =

8

exist javaclasses/Welcome.class
ans =

2

indicates there is a Java class Welcome and a Java class file
Welcome.class.

The following example indicates that testresults is both a variable in
the workspace and a directory on the search path:

exist('testresults','var')
ans =

1
exist('testresults','dir')
ans =

7

See Also assignin, computer, dir, evalin, help, inmem, isfield, isempty,
lookfor, mfilename, partialpath, what, which, who

2-1093

exit

Purpose Terminate MATLAB program (same as quit)

GUI
Alternatives

As an alternative to the exit function, select File > Exit MATLAB or
click the Close box in the MATLAB desktop.

Syntax exit

Description exit terminates the current session of MATLAB after running
finish.m, if the file finish.m exists. It performs the same as quit
and takes the same termination options, such as force. For more
information, see quit.

See Also quit, finish

2-1094

exp

Purpose Exponential

Syntax Y = exp(X)

Description The exp function is an elementary function that operates element-wise
on arrays. Its domain includes complex numbers.

Y = exp(X) returns the exponential for each element of X.
For complex , it returns the complex exponential

.

Remark Use expm for matrix exponentials.

See Also expm, log, log10, expint

2-1095

expint

Purpose Exponential integral

Syntax Y = expint(X)

Definitions The exponential integral computed by this function is defined as

Another common definition of the exponential integral function is the
Cauchy principal value integral

which, for real positive x, is related to expint as

Description Y = expint(X) evaluates the exponential integral for each element of X.

References [1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical
Functions. Chapter 5, New York: Dover Publications, 1965.

2-1096

expm

Purpose Matrix exponential

Syntax Y = expm(X)

Description Y = expm(X) raises the constant to the matrix power X.

Although it is not computed this way, if X has a full set of eigenvectors V
with corresponding eigenvalues D, then

[V,D] = EIG(X) and EXPM(X) = V*diag(exp(diag(D)))/V

Use exp for the element-by-element exponential.

Algorithm expm uses the Padé approximation with scaling and squaring. See
reference [3], below.

Note The expmdemo1, expmdemo2, and expmdemo3 demos illustrate
the use of Padé approximation, Taylor series approximation, and
eigenvalues and eigenvectors, respectively, to compute the matrix
exponential. References [1] and [2] describe and compare many
algorithms for computing a matrix exponential.

Examples This example computes and compares the matrix exponential of A and
the exponential of A.

A = [1 1 0
0 0 2
0 0 -1];

expm(A)
ans =

2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

2-1097

expm

exp(A)
ans =

2.7183 2.7183 1.0000
1.0000 1.0000 7.3891
1.0000 1.0000 0.3679

Notice that the diagonal elements of the two results are equal. This
would be true for any triangular matrix. But the off-diagonal elements,
including those below the diagonal, are different.

See Also exp, expm1, funm, logm, eig, sqrtm

References [1] Golub, G. H. and C. F. Van Loan,Matrix Computation, p. 384, Johns
Hopkins University Press, 1983.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to
Compute the Exponential of a Matrix,” SIAM Review 20, 1978, pp.
801-836.

[3] Higham, N. J., “The Scaling and Squaring Method for the Matrix
Exponential Revisited,” SIAM J. Matrix Anal. Appl., 26(4) (2005), pp.
1179-1193.

2-1098

expm1

Purpose Compute exp(x)-1 accurately for small values of x

Syntax y = expm1(x)

Description y = expm1(x) computes exp(x)-1, compensating for the roundoff in
exp(x).

For small x, expm1(x) is approximately x, whereas exp(x)-1 can be
zero.

See Also exp, expm, log1p

2-1099

export2wsdlg

Purpose Export variables to workspace

Syntax export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction,functionlist)
hdialog = export2wsdlg(...)
[hdialog,ok_pressed] = export2wsdlg(...)

Description export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport) creates a dialog with a series of check boxes and edit
fields. checkboxlabels is a cell array of labels for the check boxes.
defaultvariablenames is a cell array of strings that serve as a basis for
variable names that appear in the edit fields. itemstoexport is a cell
array of the values to be stored in the variables. If there is only one item
to export, export2wsdlg creates a text control instead of a check box.

Note By default, the dialog box is modal. A modal dialog box prevents
the user from interacting with other windows before responding.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title) creates the dialog with title as its title.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected) creates the dialog allowing the user
to control which check boxes are checked. selected is a logical array
whose length is the same as checkboxlabels. True indicates that the
check box should initially be checked, false unchecked.

2-1100

export2wsdlg

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction) creates the dialog
with a help button. helpfunction is a callback that displays help.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction,functionlist)
creates a dialog that enables the user to pass in functionlist, a
cell array of functions and optional arguments that calculate, then
return the value to export. functionlist should be the same length
as checkboxlabels.

hdialog = export2wsdlg(...) returns the handle of the dialog.

[hdialog,ok_pressed] = export2wsdlg(...) sets ok_pressed to
true if the OK button is pressed, or false otherwise. If two return
arguments are requested, hdialog is [] and the function does not
return until the dialog is closed.

The user can edit the text fields to modify the default variable names. If
the same name appears in multiple edit fields, export2wsdlg creates
a structure using that name. It then uses the defaultvariablenames
as fieldnames for that structure.

The lengths of checkboxlabels, defaultvariablenames,
itemstoexport and selected must all be equal.

The strings in defaultvariablenames must be unique.

Examples This example creates a dialog box that enables the user to save the
variables sumA and/or meanA to the workspace. The dialog box title is
Save Sums to Workspace.

A = randn(10,1);
checkLabels = {'Save sum of A to variable named:' ...

'Save mean of A to variable named:'};
varNames = {'sumA','meanA'};
items = {sum(A),mean(A)};
export2wsdlg(checkLabels,varNames,items,...

'Save Sums to Workspace');

2-1101

eye

Purpose Identity matrix

Syntax Y = eye(n)
Y = eye(m,n)
eye([m n])
Y = eye(size(A))
eye(m, n, classname)
eye([m,n],classname)

Description Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m,n) or eye([m n]) returns an m-by-n matrix with 1’s on the
diagonal and 0’s elsewhere.

Note The size inputs m and n should be nonnegative integers. Negative
integers are treated as 0.

Y = eye(size(A)) returns an identity matrix the same size as A.

eye(m, n, classname) or eye([m,n],classname) is an m-by-n
matrix with 1’s of class classname on the diagonal and zeros of class
classname elsewhere. classname is a string specifying the data type
of the output. classname can have the following values: 'double',
'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
'int64', or 'uint64'.

Example: x = eye(2,3,'int8');

Limitations The identity matrix is not defined for higher-dimensional arrays. The
assignment y = eye([2,3,4]) results in an error.

See Also ones, rand, randn, zeros

2-1102

ezcontour

Purpose Easy-to-use contour plotter

Syntax ezcontour(fun)
ezcontour(fun,domain)
ezcontour(...,n)
ezcontour(axes_handle,...)
h = ezcontour(...)

Description ezcontour(fun) plots the contour lines of fun(x,y) using the contour
function. fun is plotted over the default domain: -2π < x < 2π, -2π <
y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see Remarks).

ezcontour(fun,domain) plots fun(x,y) over the specified domain.
domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a
2-by-1 vector [min, max] (where min < x < max, min < y < max).

ezcontour(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontour(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezcontour(...) returns the handles to contour objects in h.

ezcontour automatically adds a title and axis labels.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezcontour. For example, the
MATLAB syntax for a contour plot of the expression

sqrt(x.^2 + y.^2)

2-1103

ezcontour

is written as

ezcontour('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontour.

If the function to be plotted is a function of the variables u and v (rather
than x and y), the domain endpoints umin, umax, vmin, and vmax are
sorted alphabetically. Thus, ezcontour('u^2 - v^3',[0,1],[3,6])
plots the contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezcontour.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontour(fh)

When using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since
ezcontour does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example, k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then use an anonymous function to specify that parameter:

ezcontour(@(x,y)myfun(x,y,2))

Examples The following mathematical expression defines a function of two
variables, x and y.

2-1104

ezcontour

ezcontour requires a function handle argument that expresses this
function using MATLAB syntax. This example uses an anonymous
function, which you can define in the command window without
creating an M-file.

f=@(x,y) 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
- 1/3*exp(-(x+1).^2 - y.^2);

For convenience, this function is written on three lines. The MATLAB
peaks function evaluates this expression for different sizes of grids.

Pass the function handle f to ezcontour along with a domain ranging
from -3 to 3 in both x and y and specify a computational grid of 49-by-49:

ezcontour(f,[-3,3],49)

2-1105

ezcontour

In this particular case, the title is too long to fit at the top of the graph,
so MATLAB abbreviates the string.

See Also contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar,
ezsurf, ezsurfc, function_handle

“Contour Plots” on page 1-93 for related functions

2-1106

ezcontourf

Purpose Easy-to-use filled contour plotter

Syntax ezcontourf(fun)
ezcontourf(fun,domain)
ezcontourf(...,n)
ezcontourf(axes_handle,...)
h = ezcontourf(...)

Description ezcontourf(fun) plots the contour lines of fun(x,y)using the
contourf function. fun is plotted over the default domain: -2π < x <
2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and Anonymous Functions) or a string
(see Remarks).

ezcontourf(fun,domain) plots fun(x,y) over the specified domain.
domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a
2-by-1 vector [min, max], where min < x < max, min < y < max).

ezcontourf(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontourf(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = ezcontourf(...) returns the handles to contour objects in h.

ezcontourf automatically adds a title and axis labels.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezcontourf. For example, the
MATLAB syntax for a filled contour plot of the expression

sqrt(x.^2 + y.^2);

2-1107

ezcontourf

is written as

ezcontourf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontourf.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax are
sorted alphabetically. Thus, ezcontourf('u^2 - v^3',[0,1],[3,6])
plots the contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezcontourf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontourf(fh)

When using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since
ezcontourf does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example, k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezcontourf(@(x,y)myfun(x,y,2))

Examples The following mathematical expression defines a function of two
variables, x and y.

2-1108

ezcontourf

ezcontourf requires a string argument that expresses this function
using MATLAB syntax to represent exponents, natural logs, etc. This
function is represented by the string

f = ['3*(1-x)^2*exp(-(x^2)-(y+1)^2)',...
'- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)',...
'- 1/3*exp(-(x+1)^2 - y^2)'];

For convenience, this string is written on three lines and concatenated
into one string using square brackets.

Pass the string variable f to ezcontourf along with a domain ranging
from -3 to 3 and specify a grid of 49-by-49:

ezcontourf(f,[-3,3],49)

2-1109

ezcontourf

In this particular case, the title is too long to fit at the top of the graph,
so MATLAB abbreviates the string.

See Also contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar,
ezsurf, ezsurfc, function_handle

“Contour Plots” on page 1-93 for related functions

2-1110

ezmesh

Purpose Easy-to-use 3-D mesh plotter

Syntax ezmesh(fun)
ezmesh(fun,domain)
ezmesh(funx,funy,funz)
ezmesh(funx,funy,funz,[smin,smax,tmin,tmax])
ezmesh(funx,funy,funz,[min,max]
ezmesh(...,n)
ezmesh(...,'circ')
ezmesh(axes_handle,...)
h = ezmesh(...)

Description ezmesh(fun) creates a graph of fun(x,y) using the mesh function. fun
is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and Anonymous Functions) or a string
(see the Remarks section).

ezmesh(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezmesh(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezmesh(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezmesh(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezmesh(...,n) plots fun over the default domain using an n-by-n grid.
The default value for n is 60.

ezmesh(...,'circ') plots fun over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

2-1111

ezmesh

h = ezmesh(...) returns the handle to a surface object in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezmesh. For example, the MATLAB
syntax for a mesh plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezmesh('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmesh.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezmesh('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezmesh.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmesh(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezmesh does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

2-1112

ezmesh

then you can use an anonymous function to specify that parameter:

ezmesh(@(x,y)myfun(x,y,2))

Examples This example visualizes the function

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a
uniform blue color by setting the colormap to a single color:

fh = @(x,y) x.*exp(-x.^2-y.^2);
ezmesh(fh,40)
colormap([0 0 1])

2-1113

ezmesh

See Also ezmeshc, function_handle, mesh

“Function Plots” on page 1-93 for related functions

2-1114

ezmeshc

Purpose Easy-to-use combination mesh/contour plotter

Syntax ezmeshc(fun)
ezmeshc(fun,domain)
ezmeshc(funx,funy,funz)
ezmeshc(funx,funy,funz,[smin,smax,tmin,tmax])
ezmeshc(funx,funy,funz,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')
ezmesh(axes_handle,...)
h = ezmeshc(...)

Description ezmeshc(fun) creates a graph of fun(x,y) using the meshc function.
fun is plotted over the default domain -2π < x < 2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see the Remarks section).

ezmeshc(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezmeshc(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezmeshc(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezmeshc(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezmeshc(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezmeshc(...,'circ') plots fun over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezmeshc(...) returns the handle to a surface object in h.

2-1115

ezmeshc

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the string expression you pass to ezmeshc. For example, the MATLAB
syntax for a mesh/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezmeshc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmeshc.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezmeshc('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezmeshc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmeshc(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezmeshc does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezmeshc(@(x,y)myfun(x,y,2))

2-1116

ezmeshc

Examples Create a mesh/contour graph of the expression

over the domain -5 < x < 5, -2*pi < y < 2*pi:

ezmeshc('y/(1 + x^2 + y^2)',[-5,5,-2*pi,2*pi])

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = -65.5 and elevation = 26)

See Also ezmesh, ezsurfc, function_handle, meshc

2-1117

ezmeshc

“Function Plots” on page 1-93 for related functions

2-1118

ezplot

Purpose Easy-to-use function plotter

Syntax ezplot(fun)
ezplot(fun,[min,max])
ezplot(fun2)
ezplot(fun2,[xmin,xmax,ymin,ymax])
ezplot(fun2,[min,max])
ezplot(funx,funy)
ezplot(funx,funy,[tmin,tmax])
ezplot(...,figure_handle)
ezplot(axes_handle,...)
h = ezplot(...)

Description ezplot(fun) plots the expression fun(x) over the default domain -2π <
x < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and Anonymous Functions) or a string
(see the Remarks section).

ezplot(fun,[min,max]) plots fun(x) over the domain: min < x < max.

For implicitly defined functions, fun2(x,y):

ezplot(fun2) plots fun2(x,y) = 0 over the default domain -2π < x
< 2π, -2π < y < 2π.

ezplot(fun2,[xmin,xmax,ymin,ymax]) plots fun2(x,y) = 0 over
xmin < x < xmax and ymin < y < ymax.

ezplot(fun2,[min,max]) plots fun2(x,y) = 0 over min < x < max
and min < y < max.

ezplot(funx,funy) plots the parametrically defined planar curve
funx(t) and funy(t) over the default domain 0 < t < 2π.

2-1119

ezplot

ezplot(funx,funy,[tmin,tmax]) plots funx(t) and funy(t) over
tmin < t < tmax.

ezplot(...,figure_handle) plots the given function over the specified
domain in the figure window identified by the handle figure.

ezplot(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezplot(...) returns the handle to a line objects in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the expression you pass to ezplot. For example, the MATLAB syntax
for a plot of the expression

x.^2 - y.^2

which represents an implicitly defined function, is written as

ezplot('x^2 - y^2')

That is, x^2 is interpreted as x.^2 in the string you pass to ezplot.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezplot,

fh = @(x,y) sqrt(x.^2 + y.^2 - 1);
ezplot(fh)
axis equal

which plots a circle. Note that when using function handles, you must
use the array power, array multiplication, and array division operators
(.^, .*, ./) since ezplot does not alter the syntax, as in the case
with string inputs.

2-1120

ezplot

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezplot(@(x,y)myfun(x,y,2))

Examples This example plots the implicitly defined function

x2 - y4 = 0

over the domain [-2π, 2π]:

ezplot('x^2-y^4')

2-1121

ezplot

See Also ezplot3, ezpolar, function_handle, plot

“Function Plots” on page 1-93 for related functions

2-1122

ezplot3

Purpose Easy-to-use 3-D parametric curve plotter

Syntax ezplot3(funx,funy,funz)
ezplot3(funx,funy,funz,[tmin,tmax])
ezplot3(...,'animate')
ezplot3(axes_handle,...)
h = ezplot3(...)

Description ezplot3(funx,funy,funz) plots the spatial curve funx(t), funy(t),
and funz(t) over the default domain 0 < t < 2π.

funx, funy, and funz can be function handles for M-file functions or
an anonymous functions (see “Function Handles” and “Anonymous
Functions”) or strings (see the Remarks section).

ezplot3(funx,funy,funz,[tmin,tmax]) plots the curve funx(t),
funy(t), and funz(t) over the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial
curve.

ezplot3(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezplot3(...) returns the handle to the plotted objects in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the expression you pass to ezplot3. For example, the MATLAB
syntax for a plot of the expression

x = s./2, y = 2.*s, z = s.^2;

which represents a parametric function, is written as

ezplot3('s/2','2*s','s^2')

2-1123

ezplot3

That is, s/2 is interpreted as s./2 in the string you pass to ezplot3.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezplot3.

fh1 = @(s) s./2; fh2 = @(s) 2.*s; fh3 = @(s) s.^2;
ezplot3(fh1,fh2,fh3)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezplot does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfuntk:

function s = myfuntk(t,k)
s = t.^k.*sin(t);

then you can use an anonymous function to specify that parameter:

ezplot3(@cos,@(t)myfuntk(t,1),@sqrt)

Examples This example plots the parametric curve

over the domain [0,6π]:

ezplot3('sin(t)','cos(t)','t',[0,6*pi])

2-1124

ezplot3

See Also ezplot, ezpolar, function_handle, plot3

“Function Plots” on page 1-93 for related functions

2-1125

ezpolar

Purpose Easy-to-use polar coordinate plotter

Syntax ezpolar(fun)
ezpolar(fun,[a,b])
ezpolar(axes_handle,...)
h = ezpolar(...)

Description ezpolar(fun) plots the polar curve rho = fun(theta) over the default
domain 0 < theta < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Function Handles”) or a string
(see the Remarks section).

ezpolar(fun,[a,b]) plots fun for a < theta < b.

ezpolar(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezpolar(...) returns the handle to a line object in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the expression you pass to ezpolar. For example, the MATLAB
syntax for a plot of the expression

t.^2.*cos(t)

which represents an implicitly defined function, is written as

ezpolar('t^2*cos(t)')

That is, t^2 is interpreted as t.^2 in the string you pass to ezpolar.

2-1126

ezpolar

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezpolar.

fh = @(t) t.^2.*cos(t);
ezpolar(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezpolar does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k1 and k2 in
myfun:

function s = myfun(t,k1,k2)
s = sin(k1*t).*cos(k2*t);

then you can use an anonymous function to specify the parameters:

ezpolar(@(t)myfun(t,2,3))

Examples This example creates a polar plot of the function

1 + cos(t)

over the domain [0, 2π]:

ezpolar('1+cos(t)')

2-1127

ezpolar

See Also ezplot, ezplot3, function_handle, plot, plot3, polar

“Function Plots” on page 1-93 for related functions

2-1128

ezsurf

Purpose Easy-to-use 3-D colored surface plotter

Syntax ezsurf(fun)
ezsurf(fun,domain)
ezsurf(funx,funy,funz)
ezsurf(funx,funy,funz,[smin,smax,tmin,tmax])
ezsurf(funx,funy,funz,[min,max]
ezsurf(...,n)
ezsurf(...,'circ')
ezsurf(axes_handle,...)
h = ezsurf(...)

Description ezsurf(fun) creates a graph of fun(x,y) using the surf function. fun
is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see the Remarks section).

ezsurf(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezsurf(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurf(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezsurf(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezsurf(...,n) plots fun over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurf(...,'circ') plots fun over a disk centered on the domain.

ezsurf(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

2-1129

ezsurf

h = ezsurf(...) returns the handle to a surface object in h.

Remarks ezsurf and ezsurfc do not accept complex inputs.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the expression you pass to ezmesh. For example, the MATLAB syntax
for a surface plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurf.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezsurf('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezsurf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezsurf does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k1,k2,k3)
z = x.*(y.^k1)./(x.^k2 + y.^k3);

2-1130

ezsurf

then you can use an anonymous function to specify that parameter:

ezsurf(@(x,y)myfun(x,y,2,2,4))

Examples ezsurf does not graph points where the mathematical function is not
defined (these data points are set to NaNs, which do not plot). This
example illustrates this filtering of singularities/discontinuous points
by graphing the function

over the default domain -2π < x < 2π, -2π < y < 2π:

ezsurf('real(atan(x+i*y))')

2-1131

ezsurf

Using surf to plot the same data produces a graph without filtering of
discontinuities (as well as requiring more steps):

[x,y] = meshgrid(linspace(-2*pi,2*pi,60));
z = real(atan(x+i.*y));
surf(x,y,z)

Note also that ezsurf creates graphs that have axis labels, a title, and
extend to the axis limits.

See Also ezmesh, ezsurfc, function_handle, surf

“Function Plots” on page 1-93 for related functions

2-1132

ezsurfc

Purpose Easy-to-use combination surface/contour plotter

Syntax ezsurfc(fun)
ezsurfc(fun,domain)
ezsurfc(funx,funy,funz)
ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax])
ezsurfc(funx,funy,funz,[min,max]
ezsurfc(...,n)
ezsurfc(...,'circ')
ezsurfc(axes_handle,...)
h = ezsurfc(...)

Description ezsurfc(fun) creates a graph of fun(x,y) using the surfc function.
The function fun is plotted over the default domain: -2π < x < 2π, -2π <
y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see the Remarks section).

ezsurfc(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezsurfc(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezsurfc(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

2-1133

ezsurfc

ezsurfc(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezsurfc(...) returns the handles to the graphics objects in h.

Remarks ezsurf and ezsurfc do not accept complex inputs.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the expression you pass to ezsurfc. For example, the MATLAB
syntax for a surface/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurfc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurfc.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezsurfc('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezsurfc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezsurfc does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

2-1134

ezsurfc

function z = myfun(x,y,k1,k2,k3)
z = x.*(y.^k1)./(x.^k2 + y.^k3);

then you can use an anonymous function to specify that parameter:

ezsurfc(@(x,y)myfun(x,y,2,2,4))

Examples Create a surface/contour plot of the expression

over the domain -5 < x < 5, -2*pi < y < 2*pi, with a computational grid
of size 35-by-35:

ezsurfc('y/(1 + x^2 + y^2)',[-5,5,-2*pi,2*pi],35)

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = -65.5 and elevation = 26).

2-1135

ezsurfc

See Also ezmesh, ezmeshc, ezsurf, function_handle, surfc

“Function Plots” on page 1-93 for related functions

2-1136

Index

IndexSymbols and Numerics
’ 2-39
& 2-51 2-58
* 2-39
+ 2-39
- 2-39
/ 2-39
: 2-65
< 2-49
> 2-49
@ 2-1389
\ 2-39
^ 2-39
| 2-51 2-58
~ 2-51 2-58
&& 2-58
== 2-49
]) 2-64
|| 2-58
~= 2-49
1-norm 2-2480 2-2918
2-norm (estimate of) 2-2482

A
abs 2-68
absolute accuracy

BVP 2-465
DDE 2-865
ODE 2-2529

absolute value 2-68
Accelerator

Uimenu property 2-3773
accumarray 2-69
accuracy

of linear equation solution 2-660
of matrix inversion 2-660

acos 2-76
acosd 2-78
acosh 2-79

acot 2-81
acotd 2-83
acoth 2-84
acsc 2-86
acscd 2-88
acsch 2-89
activelegend 1-91 2-2714
actxcontrol 2-91
actxcontrollist 2-99
actxcontrolselect 2-100
actxserver 2-105
Adams-Bashforth-Moulton ODE solver 2-2518
addCause, MException method 2-109
addevent 2-113
addframe

AVI files 2-115
addition (arithmetic operator) 2-39
addlistener 2-117
addOptional method

of inputParser object 2-119
addParamValue method

of inputParser object 2-122
addpath 2-125
addpref function 2-127
addprop dynamicprops method 2-128
addproperty 2-129
addRequired method

of inputParser object 2-131
addressing selected array elements 2-65
addsample 2-134
addsampletocollection 2-136
addtodate 2-138
addts 2-140
adjacency graph 2-973
airy 2-142
Airy functions

relationship to modified Bessel
functions 2-142

align function 2-144

Index-1

Index

aligning scattered data
multi-dimensional 2-2416
two-dimensional 2-1530

ALim, Axes property 2-291
all 2-152
allchild function 2-154
allocation of storage (automatic) 2-4098
AlphaData

image property 2-1712
surface property 2-3456
surfaceplot property 2-3479

AlphaDataMapping
image property 2-1713
patch property 2-2616
surface property 2-3457
surfaceplot property 2-3479

AmbientLightColor, Axes property 2-292
AmbientStrength

Patch property 2-2617
Surface property 2-3457
surfaceplot property 2-3480

amd 2-160 2-1985
analytical partial derivatives (BVP) 2-466
analyzer

code 2-2339
and 2-165
and (M-file function equivalent for &) 2-55
AND, logical

bit-wise 2-412
angle 2-167
annotating graphs

deleting annotations 2-170
in plot edit mode 2-2715

Annotation
areaseries property 2-221
contourgroup property 2-686
errorbarseries property 2-1045
hggroup property 2-1617 2-1646
image property 2-1713
line property 2-351 2-2045
lineseries property 2-2060
Patch property 2-2617
quivergroup property 2-2866
rectangle property 2-2937
scattergroup property 2-3093
stairseries property 2-3276
stemseries property 2-3310
Surface property 2-3458
surfaceplot property 2-3480
text property 2-3563

annotationfunction 2-168
ans 2-211
anti-diagonal 2-1562
any 2-212
arccosecant 2-86
arccosine 2-76
arccotangent 2-81
arcsecant 2-244
arcsine 2-249
arctangent 2-258

four-quadrant 2-260
arguments, M-file

checking number of inputs 2-2407
checking number of outputs 2-2411
number of input 2-2409
number of output 2-2409
passing variable numbers of 2-3961

arithmetic operations, matrix and array
distinguished 2-39

arithmetic operators
reference 2-39

Index-2

Index

array
addressing selected elements of 2-65
dimension

rearrange 2-1302
displaying 2-952
flip dimension of 2-1302
left division (arithmetic operator) 2-41
maximum elements of 2-2225
mean elements of 2-2231
median elements of 2-2234
minimum elements of 2-2311
multiplication (arithmetic operator) 2-40
of all ones 2-2550
of all zeros 2-4098
power (arithmetic operator) 2-41
product of elements 2-2787
rearrange

dimension 2-1302
removing first n singleton dimensions

of 2-3165
removing singleton dimensions of 2-3263
reshaping 2-3010
reverse dimension of 2-1302
right division (arithmetic operator) 2-40
shift circularly 2-577
shifting dimensions of 2-3165
size of 2-3179
sorting elements of 2-3200
structure 2-1480 2-3033 2-3151
sum of elements 2-3436
swapping dimensions of 2-1857 2-2689
transpose (arithmetic operator) 2-41

arrayfun 2-237
arrays

detecting empty 2-1871
maximum size of 2-658
opening 2-2551

arrays, structure
field names of 2-1178

arrowhead matrix 2-645

ASCII
delimited files

writing 2-968
ASCII data

converting sparse matrix after loading
from 2-3213

reading 2-964
reading from disk 2-2111
saving to disk 2-3069

ascii function 2-243
asec 2-244
asecd 2-246
asech 2-247
asin 2-249
asind 2-251
asinh 2-252
aspect ratio of axes 2-786 2-2651
assert 2-254
assignin 2-256
atan 2-258
atan2 2-260
atand 2-262
atanh 2-263
.au files

reading 2-276
writing 2-277

audio
saving in AVI format 2-278
signal conversion 2-2038 2-2390

audioplayer 1-86 2-265
audiorecorder 1-86 2-270
aufinfo 2-275
auread 2-276
AutoScale

quivergroup property 2-2867
AutoScaleFactor

quivergroup property 2-2867
autoselection of OpenGL 2-1216
auwrite 2-277
average of array elements 2-2231

Index-3

Index

average,running 2-1268
avi 2-278
avifile 2-278
aviinfo 2-282
aviread 2-284
axes 2-285

editing 2-2715
setting and querying data aspect ratio 2-786
setting and querying limits 2-4070
setting and querying plot box aspect

ratio 2-2651
Axes

creating 2-285
defining default properties 2-289
fixed-width font 2-308
property descriptions 2-291

axis 2-329
axis crossing. See zero of a function
azimuth (spherical coordinates) 2-3229
azimuth of viewpoint 2-3978

B
BackFaceLighting

Surface property 2-3459
surfaceplot property 2-3482

BackFaceLightingpatch property 2-2619
BackgroundColor

annotation textbox property 2-201
Text property 2-3564
Uitable property 2-3844

BackGroundColor
Uicontrol property 2-3726

badly conditioned 2-2918
balance 2-335
BarLayout

barseries property 2-352
BarWidth

barseries property 2-352
base to decimal conversion 2-368

base two operations
conversion from decimal to binary 2-881
logarithm 2-2131
next power of two 2-2476

base2dec 2-368
BaseLine

barseries property 2-352
stem property 2-3311

BaseValue
areaseries property 2-222
barseries property 2-353
stem property 2-3311

beep 2-369
BeingDeleted

areaseries property 2-222
barseries property 2-353
contour property 2-687
errorbar property 2-1046
group property 2-1183 2-1714 2-3565
hggroup property 2-1618
hgtransform property 2-1647
light property 2-2028
line property 2-2046
lineseries property 2-2061
quivergroup property 2-2867
rectangle property 2-2938
scatter property 2-3094
stairseries property 2-3277
stem property 2-3311
surface property 2-3459
surfaceplot property 2-3482
transform property 2-2619
Uipushtool property 2-3808
Uitable property 2-3845
Uitoggletool property 2-3874
Uitoolbar property 2-3887

bench 2-370
benchmark 2-370

Index-4

Index

Bessel functions
first kind 2-379
modified, first kind 2-376
modified, second kind 2-382
second kind 2-385

Bessel functions, modified
relationship to Airy functions 2-142

besseli 2-376
besselj 2-379
besselk 2-382
Bessel’s equation

(defined) 2-379
modified (defined) 2-376

bessely 2-385
beta 2-389
beta function

(defined) 2-389
incomplete (defined) 2-391
natural logarithm 2-393

betainc 2-391
betaln 2-393
bicg 2-394
bicgstab 2-403
BiConjugate Gradients method 2-394
BiConjugate Gradients Stabilized method 2-403
big endian formats 2-1320
bin2dec 2-409
binary

data
writing to file 2-1401

files
reading 2-1352

mode for opened files 2-1319
binary data

reading from disk 2-2111
saving to disk 2-3069

binary function 2-410
binary to decimal conversion 2-409
bisection search 2-1411

bit depth
querying 2-1732

bit-wise operations
AND 2-412
get 2-415
OR 2-418
set bit 2-419
shift 2-420
XOR 2-422

bitand 2-412
bitcmp 2-413
bitget 2-415
bitmaps

writing 2-1757
bitmax 2-416
bitor 2-418
bitset 2-419
bitshift 2-420
bitxor 2-422
blanks 2-423

removing trailing 2-877
blkdiag 2-424
BMP files

writing 2-1757
bold font

TeX characters 2-3587
boundary value problems 2-472
box 2-425
Box, Axes property 2-293
braces, curly (special characters) 2-61
brackets (special characters) 2-61
break 2-426
breakpoints

listing 2-835
removing 2-823
resuming execution from 2-826
setting in M-files 2-839

brighten 2-427
browser

for help 2-1601

Index-5

Index

brush 2-429
bsxfun 2-439
bubble plot (scatter function) 2-3088
Buckminster Fuller 2-3533
builtin 1-69 2-442
BusyAction

areaseries property 2-222
Axes property 2-293
barseries property 2-353
contour property 2-687
errorbar property 2-1047
Figure property 2-1184
hggroup property 2-1619
hgtransform property 2-1648
Image property 2-1715
Light property 2-2028
line property 2-2047
Line property 2-2061
patch property 2-2619
quivergroup property 2-2868
rectangle property 2-2939
Root property 2-3037
scatter property 2-3095
stairseries property 2-3278
stem property 2-3312
Surface property 2-3459
surfaceplot property 2-3482
Text property 2-3566
Uicontextmenu property 2-3711
Uicontrol property 2-3727
Uimenu property 2-3774
Uipushtool property 2-3809
Uitable property 2-3845
Uitoggletool property 2-3875
Uitoolbar property 2-3887

ButtonDownFcn
area series property 2-223
Axes property 2-294
barseries property 2-354
contour property 2-688
errorbar property 2-1047
Figure property 2-1184
hggroup property 2-1619
hgtransform property 2-1648
Image property 2-1715
Light property 2-2029
Line property 2-2047
lineseries property 2-2062
patch property 2-2620
quivergroup property 2-2868
rectangle property 2-2939
Root property 2-3037
scatter property 2-3095
stairseries property 2-3278
stem property 2-3312
Surface property 2-3460
surfaceplot property 2-3483
Text property 2-3566
Uicontrol property 2-3727
Uitable property 2-3846

BVP solver properties
analytical partial derivatives 2-466
error tolerance 2-464
Jacobian matrix 2-466
mesh 2-469
singular BVPs 2-469
solution statistics 2-470
vectorization 2-465

bvp4c 2-443
bvp5c 2-454
bvpget 2-459
bvpinit 2-460
bvpset 2-463
bvpxtend 2-472

Index-6

Index

C
calendar 2-473
call history 2-2794
CallBack

Uicontextmenu property 2-3712
Uicontrol property 2-3728
Uimenu property 2-3775

CallbackObject, Root property 2-3037
calllib 2-474
callSoapService 2-476
camdolly 2-477
camera

dollying position 2-477
moving camera and target postions 2-477
placing a light at 2-481
positioning to view objects 2-483
rotating around camera target 1-103 2-485

2-487
rotating around viewing axis 2-491
setting and querying position 2-488
setting and querying projection type 2-490
setting and querying target 2-492
setting and querying up vector 2-494
setting and querying view angle 2-496

CameraPosition, Axes property 2-295
CameraPositionMode, Axes property 2-295
CameraTarget, Axes property 2-296
CameraTargetMode, Axes property 2-296
CameraUpVector, Axes property 2-296
CameraUpVectorMode, Axes property 2-296
CameraViewAngle, Axes property 2-297
CameraViewAngleMode, Axes property 2-297
camlight 2-481
camlookat 2-483
camorbit 2-485
campan 2-487
campos 2-488
camproj 2-490
camroll 2-491
camtarget 2-492

camup 2-494
camva 2-496
camzoom 2-498
CaptureMatrix, Root property 2-3037
CaptureRect, Root property 2-3038
cart2pol 2-499
cart2sph 2-501
Cartesian coordinates 2-499 2-501 2-2725 2-3229
case 2-502

in switch statement (defined) 2-3520
lower to upper 2-3924
upper to lower 2-2143

cast 2-504
cat 2-505
catch 2-507
caxis 2-510
Cayley-Hamilton theorem 2-2745
cd 2-515
cd (ftp) function 2-518
CData

Image property 2-1716
scatter property 2-3096
Surface property 2-3461
surfaceplot property 2-3484
Uicontrol property 2-3729
Uipushtool property 2-3809
Uitoggletool property 2-3875

CDataMapping
Image property 2-1718
patch property 2-2622
Surface property 2-3462
surfaceplot property 2-3484

CDataMode
surfaceplot property 2-3485

CDatapatch property 2-2620
CDataSource

scatter property 2-3096
surfaceplot property 2-3485

cdf2rdf 2-519
cdfepoch 2-521

Index-7

Index

cdfinfo 2-522
cdfread 2-526
cdfwrite 2-530
ceil 2-533
cell 2-534
cell array

conversion to from numeric array 2-2490
creating 2-534
structure of, displaying 2-547

cell2mat 2-536
cell2struct 2-538
celldisp 2-540
CellEditCallback

Uitable property 2-3847
cellfun 2-541
cellplot 2-547
CellSelectionCallback

Uitable property 2-3849
cgs 2-550
char 1-51 1-58 1-62 2-555
characters

conversion, in format specification
string 2-1341 2-3252

escape, in format specification string 2-1342
2-3252

check boxes 2-3719
Checked, Uimenu property 2-3775
checkerboard pattern (example) 2-2999
checkin 2-556

examples 2-557
options 2-556

checkout 2-559
examples 2-560
options 2-559

child functions 2-2789

Children
areaseries property 2-224
Axes property 2-298
barseries property 2-355
contour property 2-688
errorbar property 2-1048
Figure property 2-1185
hggroup property 2-1620
hgtransform property 2-1649
Image property 2-1718
Light property 2-2029
Line property 2-2048
lineseries property 2-2062
patch property 2-2623
quivergroup property 2-2869
rectangle property 2-2940
Root property 2-3038
scatter property 2-3097
stairseries property 2-3279
stem property 2-3313
Surface property 2-3462
surfaceplot property 2-3486
Text property 2-3568
Uicontextmenu property 2-3712
Uicontrol property 2-3730
Uimenu property 2-3776
Uitable property 2-3849
Uitoolbar property 2-3888

chol 2-562
Cholesky factorization 2-562

(as algorithm for solving linear
equations) 2-2335

lower triangular factor 2-2607
preordering for 2-645

cholinc 2-566
cholupdate 2-574
circle

rectangle function 2-2932
circshift 2-577
cla 2-578

Index-8

Index

clabel 2-579
class 2-585
class, object. See object classes
classes

field names 2-1178
loaded 2-1783

clc 2-590 2-599 2-3164
clear 2-591

serial port I/O 2-598
clearing

Command Window 2-590
items from workspace 2-591
Java import list 2-593

clf 2-599
ClickedCallback

Uipushtool property 2-3810
Uitoggletool property 2-3876

CLim, Axes property 2-299
CLimMode, Axes property 2-299
clipboard 2-600

Clipping
areaseries property 2-224
Axes property 2-300
barseries property 2-355
contour property 2-689
errrobar property 2-1048
Figure property 2-1186
hggroup property 2-1620
hgtransform property 2-1649
Image property 2-1719
Light property 2-2029
Line property 2-2048
lineseries property 2-2063
quivergroup property 2-2869
rectangle property 2-2940
Root property 2-3038
scatter property 2-3097
stairseries property 2-3279
stem property 2-3313
Surface property 2-3463
surfaceplot property 2-3486
Text property 2-3568
Uicontrol property 2-3730
Uitable property 2-3849

Clippingpatch property 2-2623
clock 2-601
close 2-602

AVI files 2-604
close (ftp) function 2-605
CloseRequestFcn, Figure property 2-1186
closest point search 2-990
closest triangle search 2-3672
closing

files 2-1140
MATLAB 2-2856

cmapeditor 2-625
cmopts 2-607
code

analyzer 2-2339
colamd 2-609

Index-9

Index

colon operator 2-65
Color

annotation arrow property 2-172
annotation doublearrow property 2-176
annotation line property 2-184
annotation textbox property 2-201
Axes property 2-300
errorbar property 2-1048
Figure property 2-1188
Light property 2-2029
Line property 2-2049
lineseries property 2-2063
quivergroup property 2-2870
stairseries property 2-3279
stem property 2-3314
Text property 2-3568
textarrow property 2-190

color of fonts, see also FontColor property 2-3587
colorbar 2-613
colormap 2-620

editor 2-625
Colormap, Figure property 2-1189
colormaps

converting from RGB to HSV 1-102 2-3022
plotting RGB components 1-102 2-3023

ColorOrder, Axes property 2-300
ColorSpec 2-643
colperm 2-645
ColumnEditable

Uitable property 2-3849
ColumnFormat

Uitable property 2-3850
ColumnName

Uitable property 2-3856
ColumnWidth

Uitable property 2-3856
COM

object methods
actxcontrol 2-91
actxcontrollist 2-99

actxcontrolselect 2-100
actxserver 2-105
addproperty 2-129
delete 2-907
deleteproperty 2-914
eventlisteners 2-1081
events 2-1085
get 1-116 2-1456
inspect 2-1799
invoke 2-1854
iscom 2-1869
isevent 2-1880
isinterface 2-1892
ismethod 2-1903
load 2-2116
move 2-2368
propedit 2-2798
registerevent 2-2984
release 2-2989
save 2-3077
set 1-117 2-3133
unregisterallevents 2-3908
unregisterevent 2-3911

object properties
isprop 2-1926

server methods
Execute 2-1087
Feval 2-1149

combinations of n elements 2-2415
combs 2-2415
comet 2-647
comet3 2-649
comma (special characters) 2-63
command syntax 2-1598 2-3538
Command Window

clearing 2-590
cursor position 1-4 2-1669
get width 2-652

commandhistory 2-651

Index-10

Index

commands
help for 2-1597 2-1607
system 1-4 1-11 2-3541
UNIX 2-3903

commandwindow 2-652
comments

block of 2-63
common elements. See set operations,

intersection
compan 2-653
companion matrix 2-653
compass 2-654
CompilerConfiguration 2-2295
CompilerConfigurationDetails 2-2295
complementary error function

(defined) 2-1034
scaled (defined) 2-1034

complete elliptic integral
(defined) 2-1017
modulus of 2-1015 2-1017

complex 2-656 2-1703
exponential (defined) 2-1095
logarithm 2-2128 to 2-2129
numbers 2-1679
numbers, sorting 2-3200 2-3204
phase angle 2-167
sine 2-3173
unitary matrix 2-2827
See also imaginary

complex conjugate 2-670
sorting pairs of 2-747

complex data
creating 2-656

complex numbers, magnitude 2-68
complex Schur form 2-3111
compression

lossy 2-1761
computer 2-658

computer MATLAB is running on 2-658
concatenation

of arrays 2-505
cond 2-660
condeig 2-661
condest 2-662
condition number of matrix 2-660 2-2918

improving 2-335
coneplot 2-664
conj 2-670
conjugate, complex 2-670

sorting pairs of 2-747
connecting to FTP server 2-1381
containers

Map 2-1894 2-1969 2-2008 2-2180 2-2994
2-3182 2-3954

contents.m file 2-1598
context menu 2-3707
continuation (..., special characters) 2-63
continue 2-671
continued fraction expansion 2-2912
contour

and mesh plot 2-1115
filled plot 2-1107
functions 2-1103
of mathematical expression 2-1104
with surface plot 2-1133

contour3 2-677
contourc 2-680
contourf 2-682
ContourMatrix

contour property 2-689
contours

in slice planes 2-707
contourslice 2-707
contrast 2-711
conv 2-712
conv2 2-714

Index-11

Index

conversion
base to decimal 2-368
binary to decimal 2-409
Cartesian to cylindrical 2-499
Cartesian to polar 2-499
complex diagonal to real block diagonal 2-519
cylindrical to Cartesian 2-2725
decimal number to base 2-874 2-880
decimal to binary 2-881
decimal to hexadecimal 2-882
full to sparse 2-3210
hexadecimal to decimal 2-1611
integer to string 2-1813
lowercase to uppercase 2-3924
matrix to string 2-2190
numeric array to cell array 2-2490
numeric array to logical array 2-2132
numeric array to string 2-2493
partial fraction expansion to

pole-residue 2-3012
polar to Cartesian 2-2725
pole-residue to partial fraction

expansion 2-3012
real to complex Schur form 2-3066
spherical to Cartesian 2-3229
string matrix to cell array 2-549
string to numeric array 2-3335
uppercase to lowercase 2-2143
vector to character string 2-555

conversion characters in format specification
string 2-1341 2-3252

convex hulls
multidimensional vizualization 2-723
two-dimensional visualization 2-720

convhull 2-720
convhulln 2-723
convn 2-726
convolution 2-712

inverse. See deconvolution
two-dimensional 2-714

coordinate system and viewpoint 2-3978
coordinates

Cartesian 2-499 2-501 2-2725 2-3229
cylindrical 2-499 2-501 2-2725
polar 2-499 2-501 2-2725
spherical 2-3229

coordinates. 2-499
See also conversion

copyfile 2-727
copyobj 2-730
corrcoef 2-732
cos 2-735
cosd 2-737
cosecant

hyperbolic 2-759
inverse 2-86
inverse hyperbolic 2-89

cosh 2-738
cosine 2-735

hyperbolic 2-738
inverse 2-76
inverse hyperbolic 2-79

cot 2-740
cotangent 2-740

hyperbolic 2-743
inverse 2-81
inverse hyperbolic 2-84

cotd 2-742
coth 2-743
cov 2-745
cplxpair 2-747
cputime 2-748
create, RandStream method 2-749
createClassFromWsdl 2-751
createCopy method

of inputParser object 2-752

Index-12

Index

CreateFcn
areaseries property 2-224
Axes property 2-301
barseries property 2-355
contour property 2-690
errorbar property 2-1049
Figure property 2-1189
group property 2-1649
hggroup property 2-1620
Image property 2-1719
Light property 2-2030
Line property 2-2049
lineseries property 2-2063
patch property 2-2623
quivergroup property 2-2870
rectangle property 2-2941
Root property 2-3038
scatter property 2-3097
stairseries property 2-3280
stemseries property 2-3314
Surface property 2-3463
surfaceplot property 2-3486
Text property 2-3568
Uicontextmenu property 2-3712
Uicontrol property 2-3730
Uimenu property 2-3776
Uipushtool property 2-3810
Uitable property 2-3857
Uitoggletool property 2-3876
Uitoolbar property 2-3888

createSoapMessage 2-754
creating your own MATLAB functions 2-1387
cross 2-755
cross product 2-755
csc 2-756
cscd 2-758
csch 2-759
csvread 2-761
csvwrite 2-764

ctranspose (M-file function equivalent for
\q) 2-45

ctranspose (timeseries) 2-766
cubic interpolation 2-1830 2-1833 2-1836 2-2661

piecewise Hermite 2-1820
cubic spline interpolation

one-dimensional 2-1820 2-1830 2-1833
2-1836

cumprod 2-768
cumsum 2-770
cumtrapz 2-772
cumulative

product 2-768
sum 2-770

curl 2-774
curly braces (special characters) 2-61
current directory 2-2820

changing 2-515
CurrentAxes 2-1190
CurrentAxes, Figure property 2-1190
CurrentCharacter, Figure property 2-1191
CurrentFigure, Root property 2-3038
CurrentObject, Figure property 2-1191
CurrentPoint

Axes property 2-301
Figure property 2-1191

cursor images
reading 2-1745

cursor position 1-4 2-1669
Curvature, rectangle property 2-2942
curve fitting (polynomial) 2-2737
customverctrl 2-777
Cuthill-McKee ordering, reverse 2-3523 2-3533
cylinder 2-778
cylindrical coordinates 2-499 2-501 2-2725

D
daqread 2-781
daspect 2-786

Index-13

Index

data
ASCII

reading from disk 2-2111
ASCII, saving to disk 2-3069
binary

writing to file 2-1401
binary, saving to disk 2-3069
computing 2-D stream lines 1-106 2-3345
computing 3-D stream lines 1-106 2-3347
formatted

reading from files 2-1367
writing to file 2-1340

formatting 2-1340 2-3250
isosurface from volume data 2-1918
reading binary from disk 2-2111
reading from files 2-3593
reducing number of elements in 1-106 2-2958
smoothing 3-D 1-106 2-3193
writing to strings 2-3250

Data
Uitable property 2-3858

data aspect ratio of axes 2-786
data brushing

different plot types 2-430
gestures for 2-435
restrictions on 2-432

data types
complex 2-656

data, aligning scattered
multi-dimensional 2-2416
two-dimensional 2-1530

data, ASCII
converting sparse matrix after loading

from 2-3213
DataAspectRatio, Axes property 2-303
DataAspectRatioMode, Axes property 2-306

datatipinfo 2-797
date 2-798
date and time functions 2-1028
date string

format of 2-803
date vector 2-820
datenum 2-799
datestr 2-803
datevec 2-819
dbclear 2-823
dbcont 2-826
dbdown 2-827
dblquad 2-828
dbmex 2-830
dbquit 2-831
dbstack 2-833
dbstatus 2-835
dbstep 2-837
dbstop 2-839
dbtype 2-850
dbup 2-851
DDE solver properties

error tolerance 2-864
event location 2-870
solver output 2-866
step size 2-868

dde23 2-852
ddeget 2-857
ddephas2 output function 2-867
ddephas3 output function 2-867
ddeplot output function 2-867
ddeprint output function 2-867
ddesd 2-858
ddeset 2-863
deal 2-874
deblank 2-877

Index-14

Index

debugging
changing workspace context 2-827
changing workspace to calling M-file 2-851
displaying function call stack 2-833
M-files 2-1968 2-2789
MEX-files on UNIX 2-830
removing breakpoints 2-823
resuming execution from breakpoint 2-837
setting breakpoints in 2-839
stepping through lines 2-837

dec2base 2-874 2-880
dec2bin 2-881
dec2hex 2-882
decic function 2-883
decimal number to base conversion 2-874 2-880
decimal point (.)

(special characters) 2-62
to distinguish matrix and array

operations 2-39
decomposition

Dulmage-Mendelsohn 2-972
"economy-size" 2-2827 2-3512
orthogonal-triangular (QR) 2-2827
Schur 2-3111
singular value 2-2911 2-3512

deconv 2-885
deconvolution 2-885
definite integral 2-2839
del operator 2-886
del2 2-886
delaunay 2-889
Delaunay tessellation

3-dimensional vizualization 2-896
multidimensional vizualization 2-900

Delaunay triangulation
vizualization 2-889

delaunay3 2-896
delaunayn 2-900

delete 2-905 2-907
serial port I/O 2-911
timer object 2-913

delete (ftp) function 2-909
delete handle method 2-910
DeleteFcn

areaseries property 2-225
Axes property 2-307
barseries property 2-356
contour property 2-690
errorbar property 2-1049
Figure property 2-1193
hggroup property 2-1621
hgtransform property 2-1650
Image property 2-1719
Light property 2-2031
lineseries property 2-2064
quivergroup property 2-2870
Root property 2-3039
scatter property 2-3098
stairseries property 2-3280
stem property 2-3315
Surface property 2-3463
surfaceplot property 2-3487
Text property 2-3569 2-3572
Uicontextmenu property 2-3713 2-3731
Uimenu property 2-3777
Uipushtool property 2-3811
Uitable property 2-3859
Uitoggletool property 2-3877
Uitoolbar property 2-3890

DeleteFcn, line property 2-2050
DeleteFcn, rectangle property 2-2942
DeleteFcnpatch property 2-2624
deleteproperty 2-914
deleting

files 2-905
items from workspace 2-591

delevent 2-916
delimiters in ASCII files 2-964 2-968

Index-15

Index

delsample 2-917
delsamplefromcollection 2-918
demo 2-919
demos

in Command Window 2-994
density

of sparse matrix 2-2477
depdir 2-925
dependence, linear 2-3428
dependent functions 2-2789
depfun 2-926
derivative

approximate 2-941
polynomial 2-2734

desktop
starting without 2-2207

det 2-930
detecting

alphabetic characters 2-1898
empty arrays 2-1871
global variables 2-1886
logical arrays 2-1899
members of a set 2-1901
objects of a given class 2-1863
positive, negative, and zero array

elements 2-3172
sparse matrix 2-1935

determinant of a matrix 2-930
detrend 2-931
detrend (timeseries) 2-933
deval 2-934
diag 2-936
diagonal 2-936

anti- 2-1562
k-th (illustration) 2-3655
main 2-936
sparse 2-3215

dialog 2-938

dialog box
error 2-1063
help 2-1605
input 2-1788
list 2-2106
message 2-2383
print 1-96 1-108 2-2777
question 1-108 2-2854
warning 2-4007

diary 2-939
Diary, Root property 2-3039
DiaryFile, Root property 2-3039
diff 2-941
differences

between adjacent array elements 2-941
between sets 2-3147

differential equation solvers
defining an ODE problem 2-2520
ODE boundary value problems 2-443 2-454

adjusting parameters 2-463
extracting properties 2-459
extracting properties of 2-1067 to 2-1068

2-3652 to 2-3653
forming initial guess 2-460

ODE initial value problems 2-2507
adjusting parameters of 2-2527
extracting properties of 2-2526

parabolic-elliptic PDE problems 2-2670
diffuse 2-943
DiffuseStrength

Surface property 2-3464
surfaceplot property 2-3487

DiffuseStrengthpatch property 2-2624
digamma function 2-2802
dimension statement (lack of in

MATLAB) 2-4098
dimensions

size of 2-3179
Diophantine equations 2-1441
dir 2-944

Index-16

Index

dir (ftp) function 2-949
direct term of a partial fraction expansion 2-3012
directive

%#eml 2-2342
%#ok 2-2342

directories 2-515
adding to search path 2-125
checking existence of 2-1090
copying 2-727
creating 2-2322
listing 2-2144
listing contents of 2-944
listing MATLAB files in 2-4035
removing 2-3029
removing from search path 2-3034
See also directory, search path

directory 2-944
changing on FTP server 2-518
listing for FTP server 2-949
making on FTP server 2-2325
MATLAB location 2-2200
root 2-2200
temporary system 2-3551
See also directories

directory, changing 2-515
directory, current 2-2820
disconnect 2-605
discontinuities, eliminating (in arrays of phase

angles) 2-3920
discontinuities, plotting functions with 2-1131
discontinuous problems 2-1317
disp 2-952

memmapfile object 2-954
serial port I/O 2-957
timer object 2-958

disp, MException method 2-955
display 2-960
display format 2-1328
displaying output in Command Window 2-2366

DisplayName
areaseries property 2-225
barseries property 2-356
contourgroup property 2-691
errorbarseries property 2-1049
hggroup property 2-1621
hgtransform property 2-1651
image property 2-1720
Line property 2-2051
lineseries property 2-2064
Patch property 2-2624
quivergroup property 2-2871
rectangle property 2-2943
scattergroup property 2-3098
stairseries property 2-3281
stemseries property 2-3315
surface property 2-3465
surfaceplot property 2-3488
text property 2-3570

distribution
Gaussian 2-1034

division
array, left (arithmetic operator) 2-41
array, right (arithmetic operator) 2-40
by zero 2-1775
matrix, left (arithmetic operator) 2-40
matrix, right (arithmetic operator) 2-40
of polynomials 2-885

divisor
greatest common 2-1441

dll libraries
MATLAB functions

calllib 2-474
libfunctions 2-2013
libfunctionsview 2-2014
libisloaded 2-2015
libpointer 2-2017
libstruct 2-2019
loadlibrary 2-2120
unloadlibrary 2-3906

Index-17

Index

dlmread 2-964
dlmwrite 2-968
dmperm 2-972
Dockable, Figure property 2-1194
docsearch 2-979
documentation

displaying online 2-1601
dolly camera 2-477
dos 2-981

UNC pathname error 2-982
dot 2-983
dot product 2-755 2-983
dot-parentheses (special characters 2-63
double 1-57 2-984
double click, detecting 2-1218
double integral

numerical evaluation 2-828
DoubleBuffer, Figure property 2-1194
downloading files from FTP server 2-2310
dragrect 2-985
drawing shapes

circles and rectangles 2-2932
DrawMode, Axes property 2-307
drawnow 2-987
dsearch 2-989
dsearchn 2-990
Dulmage-Mendelsohn decomposition 2-972
dynamic fields 2-63
dynamicprops class 2-991
dynamicprops.addprop 2-128

E
echo 2-992
Echo, Root property 2-3039
echodemo 2-994
edge finding, Sobel technique 2-716

EdgeAlpha
patch property 2-2625
surface property 2-3465
surfaceplot property 2-3488

EdgeColor
annotation ellipse property 2-181
annotation rectangle property 2-187
annotation textbox property 2-201
areaseries property 2-226
barseries property 2-357
patch property 2-2626
Surface property 2-3466
surfaceplot property 2-3489
Text property 2-3571

EdgeColor, rectangle property 2-2944
EdgeLighting

patch property 2-2626
Surface property 2-3467
surfaceplot property 2-3490

editable text 2-3719
editing

M-files 2-996
eig 2-999
eigensystem

transforming 2-519
eigenvalue

accuracy of 2-999
complex 2-519
matrix logarithm and 2-2137
modern approach to computation of 2-2730
of companion matrix 2-653
problem 2-1000 2-2735
problem, generalized 2-1000 2-2735
problem, polynomial 2-2735
repeated 2-1001
Wilkinson test matrix and 2-4056

eigenvalues
effect of roundoff error 2-335
improving accuracy 2-335

Index-18

Index

eigenvector
left 2-1000
matrix, generalized 2-2887
right 2-1000

eigs 2-1005
elevation (spherical coordinates) 2-3229
elevation of viewpoint 2-3978
ellipj 2-1015
ellipke 2-1017
ellipsoid 1-94 2-1019
elliptic functions, Jacobian

(defined) 2-1015
elliptic integral

complete (defined) 2-1017
modulus of 2-1015 2-1017

else 2-1021
elseif 2-1022
%#eml 2-2342
Enable

Uicontrol property 2-3732
Uimenu property 2-3778
Uipushtool property 2-3812
Uitable property 2-3859
Uitogglehtool property 2-3878

end 2-1026
end caps for isosurfaces 2-1908
end of line, indicating 2-63
end-of-file indicator 2-1145
eomday 2-1028
eps 2-1029
eq 2-1031
eq, MException method 2-1033
equal arrays

detecting 2-1874 2-1878
equal sign (special characters) 2-62
equations, linear

accuracy of solution 2-660

EraseMode
areaseries property 2-226
barseries property 2-357
contour property 2-691
errorbar property 2-1050
hggroup property 2-1622
hgtransform property 2-1651
Image property 2-1721
Line property 2-2052
lineseries property 2-2065
quivergroup property 2-2872
rectangle property 2-2944
scatter property 2-3099
stairseries property 2-3282
stem property 2-3316
Surface property 2-3467
surfaceplot property 2-3490
Text property 2-3572

EraseModepatch property 2-2627
error 2-1036

roundoff. See roundoff error
error function

complementary 2-1034
(defined) 2-1034
scaled complementary 2-1034

error message
displaying 2-1036
Index into matrix is negative or zero 2-2133
retrieving last generated 2-1974 2-1982

error messages
Out of memory 2-2585

error tolerance
BVP problems 2-464
DDE problems 2-864
ODE problems 2-2528

errorbars, confidence interval 2-1041
errordlg 2-1063
ErrorMessage, Root property 2-3039

Index-19

Index

errors
in file input/output 2-1146
MException class 2-1033

addCause 2-109
constructor 2-2301
disp 2-955
eq 2-1033
getReport 2-1494
isequal 2-1877
last 2-1972
ne 2-2421
rethrow 2-3019
throw 2-3620
throwAsCaller 2-3623

ErrorType, Root property 2-3040
escape characters in format specification

string 2-1342 2-3252
etime 2-1066
etree 2-1067
etreeplot 2-1068
eval 2-1069
evalc 2-1072
evalin 2-1073
event location (DDE) 2-870
event location (ODE) 2-2535
event.EventData 2-1075
event.listener 2-1077
event.PropertyEvent 2-1076
event.proplistener 2-1079
eventlisteners 2-1081
events 2-1084 to 2-1085

examples
calculating isosurface normals 2-1915
contouring mathematical expressions 2-1104
isosurface end caps 2-1908
isosurfaces 2-1919
mesh plot of mathematical function 2-1113
mesh/contour plot 2-1117
plotting filled contours 2-1108
plotting function of two variables 2-1121
plotting parametric curves 2-1124
polar plot of function 2-1127
reducing number of patch faces 2-2955
reducing volume data 2-2958
subsampling volume data 2-3433
surface plot of mathematical function 2-1131
surface/contour plot 2-1135

Excel spreadsheets
loading 2-4075

exclamation point (special characters) 2-64
Execute 2-1087
executing statements repeatedly 2-1325 2-4043
executing statements repeatedly in

parallel 2-2601
execution

improving speed of by setting aside
storage 2-4098

pausing M-file 2-2649
resuming from breakpoint 2-826
time for M-files 2-2789

exifread 2-1089
exist 2-1090
exit 2-1094
exp 2-1095
expint 2-1096
expm 2-1097
expm1 2-1099
exponential 2-1095

complex (defined) 2-1095
integral 2-1096
matrix 2-1097

Index-20

Index

exponentiation
array (arithmetic operator) 2-41
matrix (arithmetic operator) 2-41

export2wsdlg 2-1100
extension, filename

.m 2-1387

.mat 2-3069
Extent

Text property 2-3573
Uicontrol property 2-3732
Uitable property 2-3860

eye 2-1102
ezcontour 2-1103
ezcontourf 2-1107
ezmesh 2-1111
ezmeshc 2-1115
ezplot 2-1119
ezplot3 2-1123
ezpolar 2-1126
ezsurf 2-1129
ezsurfc 2-1133

F
F-norm 2-2480
FaceAlpha

annotation textbox property 2-202
FaceAlphapatch property 2-2628
FaceAlphasurface property 2-3468
FaceAlphasurfaceplot property 2-3491
FaceColor

annotation ellipse property 2-181
annotation rectangle property 2-187
areaseries property 2-228
barseries property 2-359
Surface property 2-3469
surfaceplot property 2-3492

FaceColor, rectangle property 2-2945
FaceColorpatch property 2-2629

FaceLighting
Surface property 2-3469
surfaceplot property 2-3493

FaceLightingpatch property 2-2629
faces, reducing number in patches 1-106 2-2954
Faces,patch property 2-2630
FaceVertexAlphaData, patch property 2-2631
FaceVertexCData,patch property 2-2631
factor 2-1137
factorial 2-1138
factorization 2-2827

LU 2-2160
QZ 2-2736 2-2887
See also decomposition

factorization, Cholesky 2-562
(as algorithm for solving linear

equations) 2-2335
preordering for 2-645

factors, prime 2-1137
false 2-1139
fclose 2-1140

serial port I/O 2-1141
feather 2-1143
feof 2-1145
ferror 2-1146
feval 2-1147
Feval 2-1149
fft 2-1154
FFT. See Fourier transform
fft2 2-1159
fftn 2-1160
fftshift 2-1162
fftw 2-1165
FFTW 2-1157
fgetl 2-1170

serial port I/O 2-1171
fgets 2-1174

serial port I/O 2-1175
field names of a structure, obtaining 2-1178
fieldnames 2-1178

Index-21

Index

fields, noncontiguous, inserting data into 2-1401
fields, of structures

dynamic 2-63
figure 2-1180
Figure

creating 2-1180
defining default properties 2-1182
properties 2-1183
redrawing 1-100 2-2961

figure windows
moving in front of MATLAB® desktop 2-3164

figure windows, displaying 2-1281
figurepalette 1-91 2-1237
figures

annotating 2-2715
opening 2-2551
saving 2-3081

Figures
updating from M-file 2-987

file
extension, getting 2-1256
modification date 2-944
position indicator

finding 2-1258 2-1380
setting 2-1378
setting to start of file 2-1366

file formats
getting list of supported formats 2-1735
reading 2-781 2-1743
writing 2-1755

file size
querying 2-1732

fileattrib 2-1239
filebrowser 2-1246
filehandle 2-1253
filemarker 2-1254
filename

building from parts 2-1384
parts 2-1256
temporary 2-3552

filename extension
.m 2-1387
.mat 2-3069

fileparts 2-1256
fileread 2-1258
files 2-1140

ASCII delimited
reading 2-964
writing 2-968

beginning of, rewinding to 2-1366 2-1740
checking existence of 2-1090
closing 2-1140
contents, listing 2-3680
copying 2-727
deleting 2-905
deleting on FTP server 2-909
end of, testing for 2-1145
errors in input or output 2-1146
Excel spreadsheets

loading 2-4075
fig 2-3081
figure, saving 2-3081
finding position within 2-1258 2-1380
getting next line 2-1170
getting next line (with line

terminator) 2-1174
listing

in directory 2-4035
names in a directory 2-944

listing contents of 2-3680
locating 2-4040
mdl 2-3081
mode when opened 2-1319
model, saving 2-3081
opening 2-1320 2-2551

in Web browser 1-5 2-4028
opening in Windows applications 2-4057
path, getting 2-1256
pathname for 2-4040
reading

Index-22

Index

binary 2-1352
data from 2-3593
formatted 2-1367

reading data from 2-781
reading image data from 2-1743
rewinding to beginning of 2-1366 2-1740
setting position within 2-1378
size, determining 2-947
sound

reading 2-276 2-4021
writing 2-277 to 2-278 2-4026

startup 2-2199
version, getting 2-1256
.wav

reading 2-4021
writing 2-4026

WK1
loading 2-4061
writing to 2-4063

writing binary data to 2-1401
writing formatted data to 2-1340
writing image data to 2-1755
See also file

filesep 2-1259
fill 2-1261
Fill

contour property 2-693
fill3 2-1264
filter 2-1267

digital 2-1267
finite impulse response (FIR) 2-1267
infinite impulse response (IIR) 2-1267
two-dimensional 2-714

filter (timeseries) 2-1270
filter2 2-1273
find 2-1275
findall function 2-1280
findfigs 2-1281

finding 2-1275
sign of array elements 2-3172
zero of a function 2-1407
See also detecting

findobj 2-1282
findobj handle method 2-1285
findprop handle method 2-1286
findstr 2-1287
finish 2-1288
finish.m 2-2856
FIR filter 2-1267
FitBoxToText, annotation textbox

property 2-202
FitHeightToText

annotation textbox property 2-202
fitsinfo 2-1290
fitsread 2-1299
fix 2-1301
fixed-width font

axes 2-308
text 2-3574
uicontrols 2-3734
uitables 2-3861

FixedColors, Figure property 2-1195
FixedWidthFontName, Root property 2-3040
flints 2-2390
flip

array dimension 2-1302
flip array

along dimension 2-1302
flip matrix

on horizontal axis 2-1304
on vertical axis 2-1303

flipdim 2-1302
fliplr 2-1303
flipud 2-1304
floating-point

integer, maximum 2-416
floating-point arithmetic, IEEE

smallest postive number 2-2927

Index-23

Index

floor 2-1306
flow control

break 2-426
case 2-502
end 2-1026
error 2-1037
for 2-1325
keyboard 2-1968
otherwise 2-2584
parfor 2-2601
return 2-3021
switch 2-3520
while 2-4043

fminbnd 2-1308
fminsearch 2-1313
font

fixed-width, axes 2-308
fixed-width, text 2-3574
fixed-width, uicontrols 2-3734
fixed-width, uitables 2-3861

FontAngle
annotation textbox property 2-204
Axes property 2-308
Text property 2-191 2-3574
Uicontrol property 2-3733
Uitable property 2-3861

FontName
annotation textbox property 2-204
Axes property 2-308
Text property 2-3574
textarrow property 2-191
Uicontrol property 2-3733
Uitable property 2-3861

fonts
bold 2-191 2-205 2-3575
italic 2-191 2-204 2-3574
specifying size 2-3575
TeX characters

bold 2-3587
italics 2-3587

specifying family 2-3587
specifying size 2-3587

units 2-191 2-205 2-3575
FontSize

annotation textbox property 2-205
Axes property 2-309
Text property 2-3575
textarrow property 2-191
Uicontrol property 2-3734
Uitable property 2-3862

FontUnits
Axes property 2-309
Text property 2-3575
Uicontrol property 2-3735
Uitable property 2-3862

FontWeight
annotation textbox property 2-205
Axes property 2-309
Text property 2-3575
textarrow property 2-191
Uicontrol property 2-3735
Uitable property 2-3862

fopen 2-1318
serial port I/O 2-1323

for 2-1325
ForegroundColor

Uicontrol property 2-3735
Uimenu property 2-3778
Uitable property 2-3862

format 2-1328
precision when writing 2-1352
reading files 2-1368
specification string, matching file data

to 2-3267
Format 2-3040
formats

big endian 2-1320
little endian 2-1320

FormatSpacing, Root property 2-3041

Index-24

Index

formatted data
reading from file 2-1367
writing to file 2-1340

formatting data 2-3250
Fourier transform

algorithm, optimal performance of 2-1157
2-1689 2-1691 2-2476

as method of interpolation 2-1835
convolution theorem and 2-712
discrete, n-dimensional 2-1160
discrete, one-dimensional 2-1154
discrete, two-dimensional 2-1159
fast 2-1154
inverse, n-dimensional 2-1693
inverse, one-dimensional 2-1689
inverse, two-dimensional 2-1691
shifting the zero-frequency component

of 2-1163
fplot 2-1335 2-1351
fprintf 2-1340

displaying hyperlinks with 2-1345
serial port I/O 2-1347

fraction, continued 2-2912
fragmented memory 2-2585
frame2im 2-1351
frames 2-3719
fread 2-1352

serial port I/O 2-1362
freqspace 2-1365
frequency response

desired response matrix
frequency spacing 2-1365

frequency vector 2-2140
frewind 2-1366
fromName meta.class method 2-2265
fromName meta.package method 2-2276
fscanf 2-1367

serial port I/O 2-1374
fseek 2-1378

ftell 2-1380
FTP

connecting to server 2-1381
ftp function 2-1381
full 2-1383
fullfile 2-1384
func2str 2-1385
function 2-1387
function handle 2-1389
function handles

overview of 2-1389
function syntax 2-1598 2-3538
functions 2-1392

call history 2-2794
call stack for 2-833
checking existence of 2-1090
clearing from workspace 2-591
finding using keywords 2-2141
help for 2-1597 2-1607
in memory 2-1783
locating 2-4040
pathname for 2-4040
that work down the first non-singleton

dimension 2-3165
funm 2-1396
fwrite 2-1401

serial port I/O 2-1403
fzero 2-1407

G
gallery 2-1413
gamma function

(defined) 2-1436
incomplete 2-1436
logarithm of 2-1436
logarithmic derivative 2-2802

Gauss-Kronrod quadrature 2-2847
Gaussian distribution function 2-1034

Index-25

Index

Gaussian elimination
(as algorithm for solving linear

equations) 2-1850 2-2336
Gauss Jordan elimination with partial

pivoting 2-3064
LU factorization 2-2160

gca 2-1438
gcbf function 2-1439
gcbo function 2-1440
gcd 2-1441
gcf 2-1443
gco 2-1444
ge 2-1445
generalized eigenvalue problem 2-1000 2-2735
generating a sequence of matrix names (M1

through M12) 2-1070
genpath 2-1447
genvarname 2-1449
geodesic dome 2-3533
get 1-116 2-1453 2-1456

memmapfile object 2-1459
serial port I/O 2-1463
timer object 2-1465

get (timeseries) 2-1467
get (tscollection) 2-1468
get hgsetget class method 2-1458
get, RandStream method 2-1462
getabstime (timeseries) 2-1469
getabstime (tscollection) 2-1471
getAllPackages meta.package method 2-2277
getappdata function 2-1473
getCompilerConfigurations 2-2295
getdatasamplesize 2-1476
getDefaultStream, RandStream method 2-1477
getdisp hgsetget class method 2-1478

getenv 2-1479
getfield 2-1480
getframe 2-1482

image resolution and 2-1483
getinterpmethod 2-1488
getpixelposition 2-1489
getpref function 2-1491
getqualitydesc 2-1493
getReport, MException method 2-1494
getsampleusingtime (timeseries) 2-1497
getsampleusingtime (tscollection) 2-1498
gettimeseriesnames 2-1499
gettsafteratevent 2-1500
gettsafterevent 2-1501
gettsatevent 2-1502
gettsbeforeatevent 2-1503
gettsbeforeevent 2-1504
gettsbetweenevents 2-1505
GIF files

writing 2-1757
ginput function 2-1510
global 2-1512
global variable

defining 2-1512
global variables, clearing from workspace 2-591
gmres 2-1514
golden section search 2-1311
Goup

defining default properties 2-1645
gplot 2-1520
grabcode function 2-1522
gradient 2-1524
gradient, numerical 2-1524
graph

adjacency 2-973

Index-26

Index

graphics objects
Axes 2-285
Figure 2-1180
getting properties 1-97 1-100 2-1453
Image 2-1704
Light 2-2026
Line 2-2039
Patch 2-2608
resetting properties 1-104 2-3007
Root 1-98 2-3036
setting properties 1-98 1-100 2-3129
Surface 1-98 1-101 2-3451
Text 1-98 2-3558
uicontextmenu 2-3707
Uicontrol 2-3718
Uimenu 1-111 2-3770

graphics objects, deleting 2-905
graphs

editing 2-2715
graymon 2-1527
greatest common divisor 2-1441
Greek letters and mathematical symbols 2-195

2-207 2-3585
grid 2-1528

aligning data to a 2-1530
grid arrays

for volumetric plots 2-2259
multi-dimensional 2-2416

griddata 2-1530
griddata3 2-1534
griddatan 2-1537
GridLineStyle, Axes property 2-310

group
hggroup function 2-1614

gsvd 2-1540
gt 2-1546
gtext 2-1548
guidata function 2-1549
GUIDE

object methods
inspect 2-1799

guihandles function 2-1552
GUIs, printing 2-2771
gunzip 2-1553
gzip 2-1555

H
H1 line 2-1599
hadamard 2-1557
Hadamard matrix 2-1557

subspaces of 2-3428
handle class 2-1558
handle graphics

hgtransform 2-1634
handle graphicshggroup 2-1614
handle relational operators 2-2991
handle.addlistener 2-117
handle.delete 2-910
handle.findobj 2-1285
handle.findprop 2-1286
handle.isvalid 2-1943
handle.notify 2-2485

Index-27

Index

HandleVisibility
areaseries property 2-228
Axes property 2-310
barseries property 2-359
contour property 2-693
errorbar property 2-1051
Figure property 2-1195
hggroup property 2-1624
hgtransform property 2-1653
Image property 2-1722
Light property 2-2031
Line property 2-2053
lineseries property 2-2066
patch property 2-2633
quivergroup property 2-2873
rectangle property 2-2945
Root property 2-3041
stairseries property 2-3283
stem property 2-3317
Surface property 2-3470
surfaceplot property 2-3493
Text property 2-3576
Uicontextmenu property 2-3714
Uicontrol property 2-3735
Uimenu property 2-3778
Uipushtool property 2-3812
Uitable property 2-3863
Uitoggletool property 2-3879
Uitoolbar property 2-3890

hankel 2-1562
Hankel matrix 2-1562
HDF

appending to when saving
(WriteMode) 2-1760

compression 2-1760
setting JPEG quality when writing 2-1760

HDF files
writing images 2-1757

HDF4
summary of capabilities 2-1563

HDF5
high-level access 2-1565
summary of capabilities 2-1565

HDF5 class
low-level access 2-1565

hdf5info 2-1568
hdf5read 2-1570
hdf5write 2-1572
hdfinfo 2-1576
hdfread 2-1584
hdftool 2-1596
Head1Length

annotation doublearrow property 2-176
Head1Style

annotation doublearrow property 2-177
Head1Width

annotation doublearrow property 2-178
Head2Length

annotation doublearrow property 2-176
Head2Style

annotation doublearrow property 2-177
Head2Width

annotation doublearrow property 2-178
HeadLength

annotation arrow property 2-172
textarrow property 2-192

HeadStyle
annotation arrow property 2-172
textarrow property 2-192

HeadWidth
annotation arrow property 2-173
textarrow property 2-193

Height
annotation ellipse property 2-182

help 2-1597
contents file 2-1598
keyword search in functions 2-2141
online 2-1597

Help browser 2-1601
accessing from doc 2-975

Index-28

Index

Help Window 2-1607
helpbrowser 2-1601
helpdesk 2-1604
helpdlg 2-1605
helpwin 2-1607
Hermite transformations, elementary 2-1441
hess 2-1608
Hessenberg form of a matrix 2-1608
hex2dec 2-1611
hex2num 2-1612
hgsetget class 2-1633
hgsetget.get 2-1458
hgsetget.getdisp 2-1478
hgsetget.set 2-3134
hidden 2-1658
Hierarchical Data Format (HDF) files

writing images 2-1757
hilb 2-1659
Hilbert matrix 2-1659

inverse 2-1853
hist 2-1660
histc 2-1664

HitTest
areaseries property 2-230
Axes property 2-311
barseries property 2-361
contour property 2-695
errorbar property 2-1053
Figure property 2-1197
hggroup property 2-1625
hgtransform property 2-1654
Image property 2-1724
Light property 2-2033
Line property 2-2053
lineseries property 2-2068
Patch property 2-2634
quivergroup property 2-2875
rectangle property 2-2946
Root property 2-3041
scatter property 2-3102
stairseries property 2-3285
stem property 2-3319
Surface property 2-3471
surfaceplot property 2-3495
Text property 2-3577
Uicontrol property 2-3736
Uipushtool property 2-3813
Uitable property 2-3864
Uitoggletool property 2-3879
Uitoolbarl property 2-3891

HitTestArea
areaseries property 2-230
barseries property 2-361
contour property 2-695
errorbar property 2-1053
quivergroup property 2-2875
scatter property 2-3102
stairseries property 2-3285
stem property 2-3319

hold 2-1667
home 2-1669

Index-29

Index

HorizontalAlignment
Text property 2-3578
textarrow property 2-193
textbox property 2-205
Uicontrol property 2-3737

horzcat 2-1670
horzcat (M-file function equivalent for [,]) 2-64
horzcat (tscollection) 2-1672
hostid 2-1673
Householder reflections (as algorithm for solving

linear equations) 2-2337
hsv2rgb 2-1675
HTML

in Command Window 2-2194
save M-file as 2-2805

HTML browser
in MATLAB 2-1601

HTML files
opening 1-5 2-4028

hyperbolic
cosecant 2-759
cosecant, inverse 2-89
cosine 2-738
cosine, inverse 2-79
cotangent 2-743
cotangent, inverse 2-84
secant 2-3118
secant, inverse 2-247
sine 2-3177
sine, inverse 2-252
tangent 2-3547
tangent, inverse 2-263

hyperlink
displaying in Command Window 2-952

hyperlinks
in Command Window 2-2194

hyperplanes, angle between 2-3428
hypot 2-1676

I
i 2-1679
icon images

reading 2-1745
idealfilter (timeseries) 2-1680
identity matrix 2-1102

sparse 2-3226
idivide 2-1683
IEEE floating-point arithmetic

smallest positive number 2-2927
if 2-1685
ifft 2-1689
ifft2 2-1691
ifftn 2-1693
ifftshift 2-1695
IIR filter 2-1267
ilu 2-1696
im2java 2-1701
imag 2-1703
image 2-1704
Image

creating 2-1704
properties 2-1712

image types
querying 2-1732

images
file formats 2-1743 2-1755
reading data from files 2-1743
returning information about 2-1731
writing to files 2-1755

Images
converting MATLAB image to Java

Image 2-1701
imagesc 2-1728
imaginary 2-1703

part of complex number 2-1703
unit (sqrt(\xd0 1)) 2-1679 2-1948
See also complex

imfinfo
returning file information 2-1731

Index-30

Index

imformats 2-1735
import 2-1738
importdata 2-1740
importing

Java class and package names 2-1738
imread 2-1743
imwrite 2-1755
incomplete beta function

(defined) 2-391
incomplete gamma function

(defined) 2-1436
ind2sub 2-1771
Index into matrix is negative or zero (error

message) 2-2133
indexing

logical 2-2132
indicator of file position 2-1366
indices, array

of sorted elements 2-3201
Inf 2-1775
inferiorto 2-1777
infinity 2-1775

norm 2-2480
info 2-1779
information

returning file information 2-1731
inheritance, of objects 2-586
inline 2-1780
inmem 2-1783
inpolygon 2-1785
input 2-1787

checking number of M-file arguments 2-2407
name of array passed as 2-1792
number of M-file arguments 2-2409
prompting users for 2-1787 2-2252

inputdlg 2-1788
inputname 2-1792
inputParser 2-1793
inspect 2-1799
installation, root directory of 2-2200

instance properties 2-128
instrcallback 2-1807
instrfind 2-1808
instrfindall 2-1810

example of 2-1811
int2str 2-1813
integer

floating-point, maximum 2-416
IntegerHandle

Figure property 2-1197
integration

polynomial 2-2741
quadrature 2-2839 2-2842

interfaces 2-1817
interp1 2-1819
interp1q 2-1827
interp2 2-1829
interp3 2-1833
interpft 2-1835
interpn 2-1836
interpolated shading and printing 2-2772
interpolation

cubic method 2-1530 2-1819 2-1829 2-1833
2-1836

cubic spline method 2-1819 2-1829 2-1833
2-1836

FFT method 2-1835
linear method 2-1819 2-1829 2-1833 2-1836
multidimensional 2-1836
nearest neighbor method 2-1530 2-1819

2-1829 2-1833 2-1836
one-dimensional 2-1819
three-dimensional 2-1833
trilinear method 2-1530
two-dimensional 2-1829

Interpreter
Text property 2-3578
textarrow property 2-193
textbox property 2-206

interpstreamspeed 2-1839

Index-31

Index

Interruptible
areaseries property 2-230
Axes property 2-311
barseries property 2-361
contour property 2-695
errorbar property 2-1054
Figure property 2-1197
hggroup property 2-1625
hgtransform property 2-1654
Image property 2-1724
Light property 2-2033
Line property 2-2054
lineseries property 2-2068
patch property 2-2634
quivergroup property 2-2875
rectangle property 2-2947
Root property 2-3041
scatter property 2-3103
stairseries property 2-3285
stem property 2-3320
Surface property 2-3471 2-3495
Text property 2-3580
Uicontextmenu property 2-3715
Uicontrol property 2-3737
Uimenu property 2-3779
Uipushtool property 2-3813
Uitable property 2-3864
Uitoggletool property 2-3880
Uitoolbar property 2-3891

intersect 2-1843
intmax 2-1844
intmin 2-1845
intwarning 2-1846
inv 2-1850

inverse
cosecant 2-86
cosine 2-76
cotangent 2-81
Fourier transform 2-1689 2-1691 2-1693
Hilbert matrix 2-1853
hyperbolic cosecant 2-89
hyperbolic cosine 2-79
hyperbolic cotangent 2-84
hyperbolic secant 2-247
hyperbolic sine 2-252
hyperbolic tangent 2-263
of a matrix 2-1850
secant 2-244
sine 2-249
tangent 2-258
tangent, four-quadrant 2-260

inversion, matrix
accuracy of 2-660

InvertHardCopy, Figure property 2-1198
invhilb 2-1853
invoke 2-1854
involutary matrix 2-2607
ipermute 2-1857
iqr (timeseries) 2-1858
is* 2-1860
isa 2-1863
isappdata function 2-1865
iscell 2-1866
iscellstr 2-1867
ischar 2-1868
iscom 2-1869
isdir 2-1870
isempty 2-1871
isempty (timeseries) 2-1872
isempty (tscollection) 2-1873
isequal 2-1874
isequal, MException method 2-1877
isequalwithequalnans 2-1878
isevent 2-1880

Index-32

Index

isfield 2-1882
isfinite 2-1884
isfloat 2-1885
isglobal 2-1886
ishandle 2-1888
isinf 2-1890
isinteger 2-1891
isinterface 2-1892
isjava 2-1893
iskeyword 2-1896
isletter 2-1898
islogical 2-1899
ismac 2-1900
ismember 2-1901
ismethod 2-1903
isnan 2-1904
isnumeric 2-1905
isobject 2-1906
isocap 2-1908
isonormals 2-1915
isosurface 2-1918

calculate data from volume 2-1918
end caps 2-1908
vertex normals 2-1915

ispc 2-1923
ispref function 2-1924
isprime 2-1925
isprop 2-1926
isreal 2-1927
isscalar 2-1930
issorted 2-1931
isspace 2-1934 2-1937
issparse 2-1935
isstr 2-1936
isstruct 2-1940
isstudent 2-1941
isunix 2-1942
isvalid 2-1944

timer object 2-1945
isvalid handle method 2-1943

isvarname 2-1946
isvector 2-1947
italics font

TeX characters 2-3587

J
j 2-1948
Jacobi rotations 2-3248
Jacobian elliptic functions

(defined) 2-1015
Jacobian matrix (BVP) 2-466
Jacobian matrix (ODE) 2-2537

generating sparse numerically 2-2538
2-2540

specifying 2-2537 2-2540
vectorizing ODE function 2-2538 to 2-2540

Java
class names 2-593 2-1738
object methods

inspect 2-1799
objects 2-1893

Java Image class
creating instance of 2-1701

Java import list
adding to 2-1738
clearing 2-593

Java version used by MATLAB 2-3971
java_method 2-1953 2-1960
java_object 2-1962
javaaddath 2-1949
javachk 2-1954
javaclasspath 2-1956
javaMethod 2-1960
javaObject 2-1962
javarmpath 2-1964
joining arrays. See concatenation
Joint Photographic Experts Group (JPEG)

writing 2-1757

Index-33

Index

JPEG
setting Bitdepth 2-1761
specifying mode 2-1761

JPEG comment
setting when writing a JPEG image 2-1761

JPEG files
parameters that can be set when

writing 2-1761
writing 2-1757

JPEG quality
setting when writing a JPEG image 2-1761

2-1765
setting when writing an HDF image 2-1760

jvm
version used by MATLAB 2-3971

K
K>> prompt

keyboard function 2-1968
keep

some variables when clearing 2-596
keyboard 2-1968
keyboard mode 2-1968

terminating 2-3021
KeyPressFcn

Uicontrol property 2-3738
Uitable property 2-3865

KeyPressFcn, Figure property 2-1198
KeyReleaseFcn, Figure property 2-1200
keyword search in functions 2-2141
keywords

iskeyword function 2-1896
kron 2-1970
Kronecker tensor product 2-1970

L
Label, Uimenu property 2-3780

labeling
axes 2-4068
matrix columns 2-952
plots (with numeric values) 2-2493

LabelSpacing
contour property 2-696

Laplacian 2-886
largest array elements 2-2225
last, MException method 2-1972
lasterr 2-1974
lasterror 2-1977
lastwarn 2-1982
LaTeX, see TeX 2-195 2-207 2-3585
Layer, Axes property 2-312
Layout Editor

starting 2-1551
lcm 2-1984
LData

errorbar property 2-1054
LDataSource

errorbar property 2-1054
ldivide (M-file function equivalent for .\) 2-44
le 2-1992
least common multiple 2-1984
least squares

polynomial curve fitting 2-2737
problem, overdetermined 2-2698

legend 2-1994
properties 2-1999
setting text properties 2-1999

legendre 2-2003
Legendre functions

(defined) 2-2003
Schmidt semi-normalized 2-2003

length 2-2007
serial port I/O 2-2010

length (timeseries) 2-2011
length (tscollection) 2-2012
LevelList

contour property 2-696

Index-34

Index

LevelListMode
contour property 2-696

LevelStep
contour property 2-697

LevelStepMode
contour property 2-697

libfunctions 2-2013
libfunctionsview 2-2014
libisloaded 2-2015
libpointer 2-2017
libstruct 2-2019
license 2-2022
light 2-2026
Light

creating 2-2026
defining default properties 2-1710 2-2027
positioning in camera coordinates 2-481
properties 2-2028

Light object
positioning in spherical coordinates 2-2036

lightangle 2-2036
lighting 2-2037
limits of axes, setting and querying 2-4070
line 2-2039

editing 2-2715
Line

creating 2-2039
defining default properties 2-2044
properties 2-2045 2-2060

line numbers in M-files 2-850
linear audio signal 2-2038 2-2390
linear dependence (of data) 2-3428
linear equation systems

accuracy of solution 2-660
solving overdetermined 2-2829 to 2-2830

linear equation systems, methods for solving
Cholesky factorization 2-2335
Gaussian elimination 2-2336
Householder reflections 2-2337
matrix inversion (inaccuracy of) 2-1850

linear interpolation 2-1819 2-1829 2-1833 2-1836
linear regression 2-2737
linearly spaced vectors, creating 2-2102
LineColor

contour property 2-697
lines

computing 2-D stream 1-106 2-3345
computing 3-D stream 1-106 2-3347
drawing stream lines 1-106 2-3349

LineSpec 1-90 2-2077
LineStyle

annotation arrow property 2-173
annotation doublearrow property 2-178
annotation ellipse property 2-182
annotation line property 2-184
annotation rectangle property 2-188
annotation textbox property 2-206
areaseries property 2-231
barseries property 2-362
contour property 2-698
errorbar property 2-1055
Line property 2-2055
lineseries property 2-2069
patch property 2-2635
quivergroup property 2-2876
rectangle property 2-2947
stairseries property 2-3286
stem property 2-3320
surface object 2-3472
surfaceplot object 2-3495
text object 2-3580
textarrow property 2-194

LineStyleOrder
Axes property 2-312

Index-35

Index

LineWidth
annotation arrow property 2-174
annotation doublearrow property 2-179
annotation ellipse property 2-182
annotation line property 2-185
annotation rectangle property 2-188
annotation textbox property 2-206
areaseries property 2-231
Axes property 2-313
barseries property 2-362
contour property 2-698
errorbar property 2-1055
Line property 2-2055
lineseries property 2-2069
Patch property 2-2635
quivergroup property 2-2876
rectangle property 2-2947
scatter property 2-3103
stairseries property 2-3286
stem property 2-3321
Surface property 2-3472
surfaceplot property 2-3496
text object 2-3581
textarrow property 2-194

linkaxes 2-2083
linkdata 2-2087
linkprop 2-2095
links

in Command Window 2-2194
linsolve 2-2099
linspace 2-2102
lint tool for checking problems 2-2339
list boxes 2-3720

defining items 2-3744
list, RandStream method 2-2103
ListboxTop, Uicontrol property 2-3739
listdlg 2-2106
listfonts 2-2109
little endian formats 2-1320

load 2-2111 2-2116
serial port I/O 2-2118

loadlibrary 2-2120
loadobj 2-2127
Lobatto IIIa ODE solver 2-452 2-458
local variables 2-1387 2-1512
locking M-files 2-2353
log 2-2128

saving session to file 2-939
log10 [log010] 2-2129
log1p 2-2130
log2 2-2131
logarithm

base ten 2-2129
base two 2-2131
complex 2-2128 to 2-2129
natural 2-2128
of beta function (natural) 2-393
of gamma function (natural) 2-1437
of real numbers 2-2925
plotting 2-2134

logarithmic derivative
gamma function 2-2802

logarithmically spaced vectors, creating 2-2140
logical 2-2132
logical array

converting numeric array to 2-2132
detecting 2-1899

logical indexing 2-2132
logical operations

AND, bit-wise 2-412
OR, bit-wise 2-418
XOR 2-4095
XOR, bit-wise 2-422

logical operators 2-51 2-58
logical OR

bit-wise 2-418
logical tests 2-1863

all 2-152
any 2-212

Index-36

Index

See also detecting
logical XOR 2-4095

bit-wise 2-422
loglog 2-2134
logm 2-2137
logspace 2-2140
lookfor 2-2141
lossy compression

writing JPEG files with 2-1761
Lotus WK1 files

loading 2-4061
writing 2-4063

lower 2-2143
lower triangular matrix 2-3655
lowercase to uppercase 2-3924
ls 2-2144
lscov 2-2145
lsqnonneg 2-2150
lsqr 2-2153
lt 2-2158
lu 2-2160
LU factorization 2-2160

storage requirements of (sparse) 2-2497
luinc 2-2168

M
M-file

debugging 2-1968
displaying during execution 2-992
function 2-1387
function file, echoing 2-992
naming conventions 2-1387
pausing execution of 2-2649
programming 2-1387
script 2-1387
script file, echoing 2-992

M-file execution
resuming after suspending 2-3826
suspending from GUI 2-3894

M-files
checking existence of 2-1090
checking for problems 2-2339
clearing from workspace 2-591
cyclomatic complexity of 2-2339
debugging with profile 2-2789
deleting 2-905
editing 2-996
line numbers, listing 2-850
lint tool 2-2339
listing names of in a directory 2-4035
locking (preventing clearing) 2-2353
McCabe complexity of 2-2339
opening 2-2551
optimizing 2-2789
problems, checking for 2-2339
save to HTML 2-2805
setting breakpoints 2-839
unlocking (allowing clearing) 2-2402

M-Lint
function 2-2339
function for entire directory 2-2349
HTML report 2-2349

machine epsilon 2-4045
magic 2-2175
magic squares 2-2175
Map containers

constructor 2-2180 2-3182
methods 2-2008 2-2994 2-3954

Map methods
constructor 2-1894 2-1969

Margin
annotation textbox property 2-207
text object 2-3583

Index-37

Index

Marker
Line property 2-2055
lineseries property 2-2069
marker property 2-1056
Patch property 2-2635
quivergroup property 2-2876
scatter property 2-3104
stairseries property 2-3286
stem property 2-3321
Surface property 2-3472
surfaceplot property 2-3496

MarkerEdgeColor
errorbar property 2-1056
Line property 2-2056
lineseries property 2-2070
Patch property 2-2636
quivergroup property 2-2877
scatter property 2-3104
stairseries property 2-3287
stem property 2-3322
Surface property 2-3473
surfaceplot property 2-3497

MarkerFaceColor
errorbar property 2-1057
Line property 2-2056
lineseries property 2-2070
Patch property 2-2637
quivergroup property 2-2877
scatter property 2-3105
stairseries property 2-3287
stem property 2-3322
Surface property 2-3474
surfaceplot property 2-3497

MarkerSize
errorbar property 2-1057
Line property 2-2057
lineseries property 2-2071
Patch property 2-2637
quivergroup property 2-2878
stairseries property 2-3288
stem property 2-3322
Surface property 2-3474
surfaceplot property 2-3498

mass matrix (ODE) 2-2541
initial slope 2-2542 to 2-2543
singular 2-2542
sparsity pattern 2-2542
specifying 2-2542
state dependence 2-2542

MAT-file 2-3069
converting sparse matrix after loading

from 2-3213
MAT-files 2-2111

listing for directory 2-4035
mat2cell 2-2187
mat2str 2-2190
material 2-2192
MATLAB

directory location 2-2200
installation directory 2-2200
quitting 2-2856
startup 2-2199
version number, comparing 2-3969
version number, displaying 2-3963

matlab : function 2-2194
matlab (UNIX command) 2-2203
matlab (Windows command) 2-2218
matlab function for UNIX 2-2203
matlab function for Windows 2-2218
MATLAB startup file 2-3296
MATLAB® desktop

moving figure windows in front of 2-3164
matlab.mat 2-2111 2-3069

Index-38

Index

matlabcolon function 2-2194
matlabrc 2-2199
matlabroot 2-2200
$matlabroot 2-2200
matrices

preallocation 2-4098
matrix 2-39

addressing selected rows and columns
of 2-65

arrowhead 2-645
columns

rearrange 2-1303
companion 2-653
complex unitary 2-2827
condition number of 2-660 2-2918
condition number, improving 2-335
converting to formatted data file 2-1340
converting to from string 2-3266
converting to vector 2-65
decomposition 2-2827
defective (defined) 2-1001
detecting sparse 2-1935
determinant of 2-930
diagonal of 2-936
Dulmage-Mendelsohn decomposition 2-972
evaluating functions of 2-1396
exponential 2-1097
Hadamard 2-1557 2-3428
Hankel 2-1562
Hermitian Toeplitz 2-3645
Hessenberg form of 2-1608
Hilbert 2-1659
identity 2-1102
inverse 2-1850
inverse Hilbert 2-1853
inversion, accuracy of 2-660
involutary 2-2607
left division (arithmetic operator) 2-40
lower triangular 2-3655
magic squares 2-2175 2-3436
maximum size of 2-658
modal 2-999
multiplication (defined) 2-40
orthonormal 2-2827
Pascal 2-2607 2-2744
permutation 2-2160 2-2827
poorly conditioned 2-1659
power (arithmetic operator) 2-41
pseudoinverse 2-2698
reading files into 2-964
rearrange

Index-39

Index

columns 2-1303
rows 2-1304

reduced row echelon form of 2-3064
replicating 2-2999
right division (arithmetic operator) 2-40
rotating 90\xfb 2-3053
rows

rearrange 2-1304
Schur form of 2-3066 2-3111
singularity, test for 2-930
sorting rows of 2-3204
sparse. See sparse matrix
specialized 2-1413
square root of 2-3260
subspaces of 2-3428
test 2-1413
Toeplitz 2-3645
trace of 2-936 2-3647
transpose (arithmetic operator) 2-41
transposing 2-62
unimodular 2-1441
unitary 2-3512
upper triangular 2-3662
Vandermonde 2-2739
Wilkinson 2-3219 2-4056
writing as binary data 2-1401
writing formatted data to 2-1367
writing to ASCII delimited file 2-968
writing to spreadsheet 2-4063
See also array

Matrix
hgtransform property 2-1655

matrix functions
evaluating 2-1396

matrix names, (M1 through M12) generating a
sequence of 2-1070

matrix power. See matrix, exponential
max 2-2225
max (timeseries) 2-2226
Max, Uicontrol property 2-3739

MaxHeadSize
quivergroup property 2-2878

maximum matching 2-972
MDL-files

checking existence of 2-1090
mean 2-2231
mean (timeseries) 2-2232
median 2-2234
median (timeseries) 2-2235
median value of array elements 2-2234
memmapfile 2-2237
memory 2-2243

clearing 2-591
minimizing use of 2-2585
variables in 2-4049

menu (of user input choices) 2-2252
menu function 2-2252
MenuBar, Figure property 2-1203
Mersenne twister 2-2905 2-2909
mesh plot

tetrahedron 2-3553
mesh size (BVP) 2-469
meshc 1-101 2-2254
meshgrid 2-2259
MeshStyle, Surface property 2-3474
MeshStyle, surfaceplot property 2-3498
meshz 1-101 2-2254
message

error See error message 2-4010
warning See warning message 2-4010

meta.class 2-2261
meta.DynamicProperty 2-2266
meta.event 2-2270
meta.method 2-2272
meta.package class 2-2275
meta.property 2-2278
methods 2-2283

inheritance of 2-586
locating 2-4040

methodsview 2-2285

Index-40

Index

mex 2-2287
mex build script

switches 2-2288
-ada sfcn.ads 2-2289
-arch 2-2289
-argcheck 2-2289
-c 2-2289
-compatibleArrayDims 2-2289
-cxx 2-2290
-Dname 2-2290
-Dname=value 2-2290
-f optionsfile 2-2290
-fortran 2-2290
-g 2-2290
-h[elp] 2-2290
-inline 2-2291
-Ipathname 2-2290
-largeArrayDims 2-2291
-Ldirectory 2-2291
-lname 2-2291
-n 2-2291
name=value 2-2292
-O 2-2291
-outdir dirname 2-2291
-output resultname 2-2291
@rsp_file 2-2288
-setup 2-2292
-Uname 2-2292
-v 2-2292

mex.CompilerConfiguration 2-2295
mex.CompilerConfigurationDetails 2-2295
MEX-files

clearing from workspace 2-591
debugging on UNIX 2-830
listing for directory 2-4035

mex.getCompilerConfigurations 2-2295
MException

constructor 2-1033 2-2301
methods

addCause 2-109

disp 2-955
eq 2-1033
getReport 2-1494
isequal 2-1877
last 2-1972
ne 2-2421
rethrow 2-3019
throw 2-3620
throwAsCaller 2-3623

mexext 2-2308
mfilename 2-2309
mget function 2-2310
Microsoft Excel files

loading 2-4075
min 2-2311
min (timeseries) 2-2312
Min, Uicontrol property 2-3740
MinColormap, Figure property 2-1203
MinorGridLineStyle, Axes property 2-314
minres 2-2316
minus (M-file function equivalent for -) 2-44
mislocked 2-2321
mkdir 2-2322
mkdir (ftp) 2-2325
mkpp 2-2326
mldivide (M-file function equivalent for \) 2-44
mlint 2-2339
mlintrpt 2-2349

suppressing messages 2-2352
mlock 2-2353
mmfileinfo 2-2354
mmreader 2-2357
mod 2-2361
modal matrix 2-999
mode 2-2363
mode objects

pan, using 2-2590
rotate3d, using 2-3057
zoom, using 2-4103

Index-41

Index

models
opening 2-2551
saving 2-3081

modification date
of a file 2-944

modified Bessel functions
relationship to Airy functions 2-142

modulo arithmetic 2-2361
MonitorPosition

Root property 2-3041
Moore-Penrose pseudoinverse 2-2698
more 2-2366 2-2390
move 2-2368
movefile 2-2370
movegui function 2-2373
movie 2-2375
movie2avi 2-2379
movies

exporting in AVI format 2-278
mpower (M-file function equivalent for ^) 2-45
mput function 2-2382
mrdivide (M-file function equivalent for /) 2-44
msgbox 2-2383
mtimes 2-2386
mtimes (M-file function equivalent for *) 2-44
mu-law encoded audio signals 2-2038 2-2390
multibandread 2-2391
multibandwrite 2-2396
multidimensional arrays 2-2007

concatenating 2-505
interpolation of 2-1836
longest dimension of 2-2007
number of dimensions of 2-2418
rearranging dimensions of 2-1857 2-2689
removing singleton dimensions of 2-3263
reshaping 2-3010
size of 2-3179
sorting elements of 2-3200
See also array

multiple
least common 2-1984

multiplication
array (arithmetic operator) 2-40
matrix (defined) 2-40
of polynomials 2-712

multistep ODE solver 2-2518
munlock 2-2402

N
Name, Figure property 2-1204
namelengthmax 2-2404
naming conventions

M-file 2-1387
NaN 2-2405
NaN (Not-a-Number) 2-2405

returned by rem 2-2993
nargchk 2-2407
nargoutchk 2-2411
native2unicode 2-2413
ndgrid 2-2416
ndims 2-2418
ne 2-2419
ne, MException method 2-2421
nearest neighbor interpolation 2-1530 2-1819

2-1829 2-1833 2-1836
netcdf

summary of capabilities 2-2422 2-2455
netcdf.abort

revert recent netCDF file definitions 2-2425
netcdf.close

close netCDF file 2-2427
netcdf.copyAtt

copy attribute to new location 2-2428
netcdf.create

create netCDF file 2-2430
netcdf.defDim

create dimension in netCDF file 2-2432

Index-42

Index

netcdf.defVar
define variable in netCDF dataset 2-2433

netcdf.delAtt
delete netCDF attribute 2-2435

netcdf.endDef
takes a netCDF file out of definemode 2-2437

netcdf.getAtt
return data from netCDF attribute 2-2439

netcdf.getConstant
get numeric value of netCDF constant 2-2441

netcdf.getConstantNames
get list of netCDF constants 2-2442

netcdf.getVar
return data from netCDF variable 2-2443

netcdf.inq
return information about netCDF file 2-2445

netcdf.inqAtt
return information about a netCDF

attribute 2-2447
netcdf.inqAttID

return identifier of netCDF attribute 2-2449
netcdf.inqAttName

return name of netCDF attribute 2-2450
netcdf.inqDim

return information about netCDF
dimension 2-2452

netcdf.inqDimID
return dimension ID for netCDF file 2-2453

netcdf.inqLibVers
return version of netCDF library 2-2454

netcdf.inqVarID
return netCDF variable identifier 2-2457

netcdf.open
open an existing netCDF file 2-2458

netcdf.putAtt
write a netCDF attribute 2-2459

netcdf.putVar
write data to netCDF variable 2-2461

netcdf.reDef
put netCDF file into define mode 2-2463

netcdf.renameAtt
netCDF function to change the name of an

attribute 2-2464
netcdf.renameDim

netCDF function to change the name of a
dimension 2-2466

netcdf.renameVar
change the name of a netCDF

variable 2-2468
netcdf.setDefaultFormat

change the default netCDF file format 2-2470
netcdf.setFill

set netCDF fill behavior 2-2471
netcdf.sync

synchronize netCDF dataset to disk 2-2472
newplot 2-2473
NextPlot

Axes property 2-314
Figure property 2-1204

nextpow2 2-2476
nnz 2-2477
no derivative method 2-1317
nodesktop startup option 2-2207
noncontiguous fields, inserting data into 2-1401
nonzero entries

specifying maximum number of in sparse
matrix 2-3210

nonzero entries (in sparse matrix)
allocated storage for 2-2497
number of 2-2477
replacing with ones 2-3240
vector of 2-2479

nonzeros 2-2479

Index-43

Index

norm 2-2480
1-norm 2-2480 2-2918
2-norm (estimate of) 2-2482
F-norm 2-2480
infinity 2-2480
matrix 2-2480
pseudoinverse and 2-2698 2-2700
vector 2-2480

normal vectors, computing for volumes 2-1915
NormalMode

Patch property 2-2637
Surface property 2-3475
surfaceplot property 2-3498

normest 2-2482
not 2-2483
not (M-file function equivalent for ~) 2-55
notebook 2-2484
notify 2-2485
now 2-2486
nthroot 2-2487
null 2-2488
null space 2-2488
num2cell 2-2490
num2hex 2-2492
num2str 2-2493
number

of array dimensions 2-2418
numbers

imaginary 2-1703
NaN 2-2405
plus infinity 2-1775
prime 2-2755
real 2-2924
smallest positive 2-2927

NumberTitle, Figure property 2-1205
numel 2-2495
numeric format 2-1328
numeric precision

format reading binary data 2-1352

numerical differentiation formula ODE
solvers 2-2518

numerical evaluation
double integral 2-828
triple integral 2-3657

nzmax 2-2497

O
object

determining class of 2-1863
inheritance 2-586

object classes, list of predefined 2-585 2-1863
objects

Java 2-1893
ODE file template 2-2521
ODE solver properties

error tolerance 2-2528
event location 2-2535
Jacobian matrix 2-2537
mass matrix 2-2541
ode15s 2-2543
solver output 2-2530
step size 2-2534

ODE solvers
backward differentiation formulas 2-2543
numerical differentiation formulas 2-2543
obtaining solutions at specific times 2-2505
variable order solver 2-2543

ode15i function 2-2498
odefile 2-2520
odeget 2-2526
odephas2 output function 2-2532
odephas3 output function 2-2532
odeplot output function 2-2532
odeprint output function 2-2532
odeset 2-2527
odextend 2-2545
off-screen figures, displaying 2-1281

Index-44

Index

OffCallback
Uitoggletool property 2-3881

%#ok 2-2342
OnCallback

Uitoggletool property 2-3881
one-step ODE solver 2-2517
ones 2-2550
online documentation, displaying 2-1601
online help 2-1597
open 2-2551
openfig 2-2555
OpenGL 2-1212

autoselection criteria 2-1216
opening

files in Windows applications 2-4057
opening files 2-1320
openvar 2-2562
operating system

MATLAB is running on 2-658
operating system command 1-4 1-11 2-3541
operating system command, issuing 2-64
operators

arithmetic 2-39
logical 2-51 2-58
overloading arithmetic 2-45
overloading relational 2-49
relational 2-49 2-2132
symbols 2-1597

optimget 2-2564
optimization parameters structure 2-2564 to

2-2565
optimizing M-file execution 2-2789
optimset 2-2565
or 2-2569
or (M-file function equivalent for |) 2-55
ordeig 2-2571
orderfields 2-2574
ordering

reverse Cuthill-McKee 2-3523 2-3533
ordqz 2-2577

ordschur 2-2579
orient 2-2581
orth 2-2583
orthogonal-triangular decomposition 2-2827
orthographic projection, setting and

querying 2-490
orthonormal matrix 2-2827
otherwise 2-2584
Out of memory (error message) 2-2585
OuterPosition

Axes property 2-314
Figure property 2-1205

output
checking number of M-file arguments 2-2411
controlling display format 2-1328
in Command Window 2-2366
number of M-file arguments 2-2409

output points (ODE)
increasing number of 2-2530

output properties (DDE) 2-866
output properties (ODE) 2-2530

increasing number of output points 2-2530
overdetermined equation systems,

solving 2-2829 to 2-2830
overflow 2-1775
overloading

arithmetic operators 2-45
relational operators 2-49
special characters 2-64

P
P-files

checking existence of 2-1090
pack 2-2585
padecoef 2-2587
pagesetupdlg 2-2588
paging

of screen 2-1599
paging in the Command Window 2-2366

Index-45

Index

pan mode objects 2-2590
PaperOrientation, Figure property 2-1206
PaperPosition, Figure property 2-1206
PaperPositionMode, Figure property 2-1207
PaperSize, Figure property 2-1207
PaperType, Figure property 2-1207
PaperUnits, Figure property 2-1208
parametric curve, plotting 2-1123
Parent

areaseries property 2-232
Axes property 2-316
barseries property 2-363
contour property 2-698
errorbar property 2-1057
Figure property 2-1209
hggroup property 2-1626
hgtransform property 2-1655
Image property 2-1724
Light property 2-2033
Line property 2-2057
lineseries property 2-2071
Patch property 2-2637
quivergroup property 2-2878
rectangle property 2-2947
Root property 2-3042
scatter property 2-3105
stairseries property 2-3288
stem property 2-3322
Surface property 2-3475
surfaceplot property 2-3499
Text property 2-3584
Uicontextmenu property 2-3716
Uicontrol property 2-3741
Uimenu property 2-3781
Uipushtool property 2-3815
Uitable property 2-3866
Uitoggletool property 2-3882
Uitoolbar property 2-3892

parentheses (special characters) 2-62
parfor 2-2600

parse method
of inputParser object 2-2602

parseSoapResponse 2-2604
partial fraction expansion 2-3012
partialpath 2-2605
pascal 2-2607
Pascal matrix 2-2607 2-2744
patch 2-2608
Patch

converting a surface to 1-107 2-3449
creating 2-2608
defining default properties 2-2614
properties 2-2616
reducing number of faces 1-106 2-2954
reducing size of face 1-106 2-3168

path 2-2642
adding directories to 2-125
building from parts 2-1384
current 2-2642
removing directories from 2-3034
toolbox directory 1-8 2-3646
viewing 2-2647

path2rc 2-2645
pathname

partial 2-2605
pathnames

of functions or files 2-4040
relative 2-2605

pathsep 2-2646
pathtool 2-2647
pause 2-2649
pauses, removing 2-823
pausing M-file execution 2-2649
pbaspect 2-2651
PBM

parameters that can be set when
writing 2-1761

PBM files
writing 2-1757

pcg 2-2657

Index-46

Index

pchip 2-2661
pcode 2-2664
pcolor 2-2666
PCX files

writing 2-1757
PDE. See Partial Differential Equations
pdepe 2-2670
pdeval 2-2682
percent sign (special characters) 2-63
percent-brace (special characters) 2-63
perfect matching 2-972
performance 2-370
period (.), to distinguish matrix and array

operations 2-39
period (special characters) 2-62
perl 2-2685
perl function 2-2685
Perl scripts in MATLAB 1-4 1-11 2-2685
perms 2-2688
permutation

matrix 2-2160 2-2827
of array dimensions 2-2689
random 2-2903

permutations of n elements 2-2688
permute 2-2689
persistent 2-2690
persistent variable 2-2690
perspective projection, setting and

querying 2-490

PGM
parameters that can be set when

writing 2-1761
PGM files

writing 2-1758
phase angle, complex 2-167
phase, complex

correcting angles 2-3917
pi 2-2693
pie 2-2694
pie3 2-2696
pinv 2-2698
planerot 2-2701
platform MATLAB is running on 2-658
playshow function 2-2702
plot 2-2703

editing 2-2715
plot (timeseries) 2-2710
plot box aspect ratio of axes 2-2651
plot editing mode

overview 2-2716
Plot Editor

interface 2-2716 2-2797
plot, volumetric

generating grid arrays for 2-2259
slice plot 1-95 1-106 2-3187

PlotBoxAspectRatio, Axes property 2-316
PlotBoxAspectRatioMode, Axes property 2-316
plotedit 2-2715

Index-47

Index

plotting
2-D plot 2-2703
3-D plot 1-90 2-2711
contours (a 2-1103
contours (ez function) 2-1103
ez-function mesh plot 2-1111
feather plots 2-1143
filled contours 2-1107
function plots 2-1335
functions with discontinuities 2-1131
histogram plots 2-1660
in polar coordinates 2-1126
isosurfaces 2-1918
loglog plot 2-2134
mathematical function 2-1119
mesh contour plot 2-1115
mesh plot 1-101 2-2254
parametric curve 2-1123
plot with two y-axes 2-2722
ribbon plot 1-95 2-3025
rose plot 1-94 2-3049
scatter plot 2-2718
scatter plot, 3-D 1-95 2-3090
semilogarithmic plot 1-90 2-3121
stem plot, 3-D 1-93 2-3307
surface plot 1-101 2-3443
surfaces 1-94 2-1129
velocity vectors 2-664
volumetric slice plot 1-95 1-106 2-3187
. See visualizing

plus (M-file function equivalent for +) 2-44
PNG

writing options for 2-1762
alpha 2-1762
background color 2-1762

chromaticities 2-1763
gamma 2-1763
interlace type 2-1763
resolution 2-1764
significant bits 2-1763
transparency 2-1764

PNG files
writing 2-1758

PNM files
writing 2-1758

Pointer, Figure property 2-1209
PointerLocation, Root property 2-3042
PointerShapeCData, Figure property 2-1209
PointerShapeHotSpot, Figure property 2-1210
PointerWindow, Root property 2-3043
pol2cart 2-2725
polar 2-2727
polar coordinates 2-2725

computing the angle 2-167
converting from Cartesian 2-499
converting to cylindrical or Cartesian 2-2725
plotting in 2-1126

poles of transfer function 2-3012
poly 2-2729
polyarea 2-2732
polyder 2-2734
polyeig 2-2735
polyfit 2-2737
polygamma function 2-2802
polygon

area of 2-2732
creating with patch 2-2608
detecting points inside 2-1785

polyint 2-2741

Index-48

Index

polynomial
analytic integration 2-2741
characteristic 2-2729 to 2-2730 2-3047
coefficients (transfer function) 2-3012
curve fitting with 2-2737
derivative of 2-2734
division 2-885
eigenvalue problem 2-2735
evaluation 2-2742
evaluation (matrix sense) 2-2744
make piecewise 2-2326
multiplication 2-712

polyval 2-2742
polyvalm 2-2744
poorly conditioned

matrix 2-1659
poorly conditioned eigenvalues 2-335
pop-up menus 2-3720

defining choices 2-3744
Portable Anymap files

writing 2-1758
Portable Bitmap (PBM) files

writing 2-1757
Portable Graymap files

writing 2-1758
Portable Network Graphics files

writing 2-1758
Portable pixmap format

writing 2-1758

Position
annotation ellipse property 2-182
annotation line property 2-185
annotation rectangle property 2-189
arrow property 2-174
Axes property 2-317
doubletarrow property 2-179
Figure property 2-1210
Light property 2-2033
Text property 2-3584
textarrow property 2-194
textbox property 2-207
Uicontextmenu property 2-3716
Uicontrol property 2-3741
Uimenu property 2-3781
Uitable property 2-3866

position indicator in file 2-1258 2-1380
position of camera

dollying 2-477
position of camera, setting and querying 2-488
Position, rectangle property 2-2948
PostScript

default printer 2-2762
levels 1 and 2 2-2762
printing interpolated shading 2-2772

pow2 2-2746
power 2-2747

matrix. See matrix exponential
of real numbers 2-2928
of two, next 2-2476

power (M-file function equivalent for .^) 2-45
PPM

parameters that can be set when
writing 2-1761

PPM files
writing 2-1758

ppval 2-2748
preallocation

matrix 2-4098

Index-49

Index

precision 2-1328
reading binary data writing 2-1352

prefdir 2-2750
preferences 2-2754

opening the dialog box 2-2754
prime factors 2-1137

dependence of Fourier transform on 2-1157
2-1159 to 2-1160

prime numbers 2-2755
primes 2-2755
printdlg 1-96 1-108 2-2777
printdlg function 2-2777
printer

default for linux and unix 2-2762
printer drivers

GhostScript drivers 2-2758
interploated shading 2-2772
MATLAB printer drivers 2-2758

printing
GUIs 2-2771
interpolated shading 2-2772
on MS-Windows 2-2770
with a variable file name 2-2774
with nodisplay 2-2765
with noFigureWindows 2-2765
with non-normal EraseMode 2-2053 2-2628

2-2945 2-3468 2-3573
printing figures

preview 1-96 1-108 2-2778
printing tips 2-2770
printing, suppressing 2-63
printpreview 1-96 1-108 2-2778
prod 2-2787
product

cumulative 2-768
Kronecker tensor 2-1970
of array elements 2-2787
of vectors (cross) 2-755
scalar (dot) 2-755

profile 2-2789
profsave 2-2796
projection type, setting and querying 2-490
ProjectionType, Axes property 2-317
prompting users for input 2-1787 2-2252
propedit 2-2797 to 2-2798
properties 2-2799
proppanel 1-91 2-2801
pseudoinverse 2-2698
psi 2-2802
publish function 2-2804
push buttons 2-3721
PutFullMatrix 2-2813
pwd 2-2820

Q
qmr 2-2821
qr 2-2827
QR decomposition 2-2827

deleting column from 2-2832
qrdelete 2-2832
qrinsert 2-2834
qrupdate 2-2836
quad 2-2839
quadgk 2-2842
quadl 2-2848
quadrature 2-2839 2-2842
quadv 2-2851
questdlg 1-108 2-2854
questdlg function 2-2854
quit 2-2856
quitting MATLAB 2-2856
quiver 2-2859
quiver3 2-2863
quotation mark

inserting in a string 2-1345
qz 2-2887
QZ factorization 2-2736 2-2887

Index-50

Index

R
radio buttons 2-3721
rand, RandStream method 2-2892
randi, RandStream method 2-2897
randn, RandStream method 2-2902
random

permutation 2-2903
sparse matrix 2-3246 to 2-3247
symmetric sparse matrix 2-3248

random number generators 2-2103 2-2892
2-2897 2-2902 2-2905 2-2909

randperm 2-2903
randStream

constructor 2-2909
RandStream 2-2905 2-2909

constructor 2-2905
methods

create 2-749
get 2-1462
getDefaultStream 2-1477
list 2-2103
rand 2-2892
randi 2-2897
randn 2-2902
setDefaultStream 2-3146

range space 2-2583
rank 2-2911
rank of a matrix 2-2911
RAS files

parameters that can be set when
writing 2-1765

writing 2-1758
RAS image format

specifying color order 2-1765
writing alpha data 2-1765

Raster image files
writing 2-1758

rational fraction approximation 2-2912
rbbox 1-105 2-2916 2-2961

rcond 2-2918
rdivide (M-file function equivalent for ./) 2-44
read 2-2919
readasync 2-2921
reading

binary files 2-1352
data from files 2-3593
formatted data from file 2-1367
formatted data from strings 2-3266

readme files, displaying 1-5 2-1870 2-4039
real 2-2924
real numbers 2-2924
reallog 2-2925
realmax 2-2926
realmin 2-2927
realpow 2-2928
realsqrt 2-2929
rearrange array

flip along dimension 2-1302
reverse along dimension 2-1302

rearrange matrix
flip left-right 2-1303
flip up-down 2-1304
reverse column order 2-1303
reverse row order 2-1304

RearrangeableColumn
Uitable property 2-3867

rearranging arrays
converting to vector 2-65
removing first n singleton dimensions 2-3165
removing singleton dimensions 2-3263
reshaping 2-3010
shifting dimensions 2-3165
swapping dimensions 2-1857 2-2689

rearranging matrices
converting to vector 2-65
rotating 90\xfb 2-3053
transposing 2-62

record 2-2930

Index-51

Index

rectangle
properties 2-2937
rectangle function 2-2932

rectint 2-2950
RecursionLimit

Root property 2-3043
recycle 2-2951
reduced row echelon form 2-3064
reducepatch 2-2954
reducevolume 2-2958
reference page

accessing from doc 2-975
refresh 2-2961
regexprep 2-2977
regexptranslate 2-2981
registerevent 2-2984
regression

linear 2-2737
regularly spaced vectors, creating 2-65 2-2102
rehash 2-2987
relational operators 2-49 2-2132
relational operators for handle objects 2-2991
relative accuracy

BVP 2-465
DDE 2-865
norm of DDE solution 2-865
norm of ODE solution 2-2529
ODE 2-2529

release 2-2989
rem 2-2993
removets 2-2996
rename function 2-2998
renderer

OpenGL 2-1212
painters 2-1211
zbuffer 2-1212

Renderer, Figure property 2-1211
RendererMode, Figure property 2-1215
repeatedly executing statements 2-1325 2-4043

repeatedly executing statements in
parallel 2-2601

replicating a matrix 2-2999
repmat 2-2999
resample (timeseries) 2-3001
resample (tscollection) 2-3004
reset 2-3007
reshape 2-3010
residue 2-3012
residues of transfer function 2-3012
Resize, Figure property 2-1217
ResizeFcn, Figure property 2-1217
restoredefaultpath 2-3016
rethrow 2-3017
rethrow, MException method 2-3019
return 2-3021
reverse

array along dimension 2-1302
array dimension 2-1302
matrix column order 2-1303
matrix row order 2-1304

reverse Cuthill-McKee ordering 2-3523 2-3533
rewinding files to beginning of 2-1366 2-1740
RGB, converting to HSV 1-102 2-3022
rgb2hsv 2-3022
rgbplot 2-3023
ribbon 2-3025
right-click and context menus 2-3707
rmappdata function 2-3028
rmdir 2-3029
rmdir (ftp) function 2-3032
rmfield 2-3033
rmpath 2-3034
rmpref function 2-3035
RMS. See root-mean-square
rolling camera 2-491
root 1-98 2-3036
root directory 2-2200
root directory for MATLAB 2-2200
Root graphics object 1-98 2-3036

Index-52

Index

root object 2-3036
root, see rootobject 1-98 2-3036
root-mean-square

of vector 2-2480
roots 2-3047
roots of a polynomial 2-2729 to 2-2730 2-3047
rose 2-3049
Rosenbrock

banana function 2-1315
ODE solver 2-2518

rosser 2-3052
rot90 2-3053
rotate 2-3054
rotate3d 2-3057
rotate3d mode objects 2-3057
rotating camera 2-485
rotating camera target 1-103 2-487
Rotation, Text property 2-3584
rotations

Jacobi 2-3248
round 2-3063

to nearest integer 2-3063
towards infinity 2-533
towards minus infinity 2-1306
towards zero 2-1301

roundoff error
characteristic polynomial and 2-2730
convolution theorem and 2-712
effect on eigenvalues 2-335
evaluating matrix functions 2-1399
in inverse Hilbert matrix 2-1853
partial fraction expansion and 2-3013
polynomial roots and 2-3047
sparse matrix conversion and 2-3214

RowName
Uitable property 2-3867

RowStriping
Uitable property 2-3868

rref 2-3064

rrefmovie 2-3064
rsf2csf 2-3066
rubberband box 1-105 2-2916
run 2-3068
Runge-Kutta ODE solvers 2-2517
running average 2-1268

S
save 2-3069 2-3077

serial port I/O 2-3079
saveas 2-3081
saveobj 2-3085
savepath 2-3086
saving

ASCII data 2-3069
session to a file 2-939
workspace variables 2-3069

scalar product (of vectors) 2-755
scaled complementary error function

(defined) 2-1034
scatter 2-3087
scatter3 2-3090
scattered data, aligning

multi-dimensional 2-2416
two-dimensional 2-1530

scattergroup
properties 2-3093

Schmidt semi-normalized Legendre
functions 2-2003

schur 2-3111
Schur decomposition 2-3111
Schur form of matrix 2-3066 2-3111
screen, paging 2-1599
ScreenDepth, Root property 2-3043
ScreenPixelsPerInch, Root property 2-3044
ScreenSize, Root property 2-3044
script 2-3114
scrolling screen 2-1599

Index-53

Index

search path 2-3034
adding directories to 2-125
MATLAB 2-2642
modifying 2-2647
user directory 1-4 1-7 2-3931
viewing 2-2647

search, string 2-1287
sec 2-3115
secant 2-3115

hyperbolic 2-3118
inverse 2-244
inverse hyperbolic 2-247

secd 2-3117
sech 2-3118
Selected

areaseries property 2-232
Axes property 2-318
barseries property 2-363
contour property 2-698
errorbar property 2-1057
Figure property 2-1218
hggroup property 2-1626
hgtransform property 2-1655
Image property 2-1725
Light property 2-2034
Line property 2-2057
lineseries property 2-2071
Patch property 2-2638
quivergroup property 2-2878
rectangle property 2-2948
Root property 2-3045
scatter property 2-3105
stairseries property 2-3288
stem property 2-3323
Surface property 2-3475
surfaceplot property 2-3499
Text property 2-3585
Uicontrol property 2-3742
Uitable property 2-3868

selecting areas 1-105 2-2916

SelectionHighlight
areaseries property 2-232
Axes property 2-318
barseries property 2-363
contour property 2-699
errorbar property 2-1058
Figure property 2-1218
hggroup property 2-1626
hgtransform property 2-1655
Image property 2-1725
Light property 2-2034
Line property 2-2057
lineseries property 2-2071
Patch property 2-2638
quivergroup property 2-2879
rectangle property 2-2948
scatter property 2-3105
stairseries property 2-3288
stem property 2-3323
Surface property 2-3475
surfaceplot property 2-3499
Text property 2-3585
Uicontrol property 2-3742
Uitable property 2-3868

SelectionType, Figure property 2-1218
selectmoveresize 2-3120
semicolon (special characters) 2-63
sendmail 2-3124
Separator

Uipushtool property 2-3815
Uitoggletool property 2-3882

Separator, Uimenu property 2-3782
sequence of matrix names (M1 through M12)

generating 2-1070
serial 2-3126
serialbreak 2-3128
server (FTP)

connecting to 2-1381
server variable 2-1149

Index-54

Index

session
saving 2-939

set 1-117 2-3129 2-3133
serial port I/O 2-3136
timer object 2-3138

set (timeseries) 2-3141
set (tscollection) 2-3142
set hgsetget class method 2-3134
set operations

difference 2-3147
exclusive or 2-3161
intersection 2-1843
membership 2-1901
union 2-3898
unique 2-3900

setabstime (timeseries) 2-3143
setabstime (tscollection) 2-3144
setappdata 2-3145
setDefaultStream, RandStream method 2-3146
setdiff 2-3147
setdisp hgsetget class method 2-3148
setenv 2-3149
setfield 2-3151
setinterpmethod 2-3153
setpixelposition 2-3155
setpref function 2-3158
setstr 2-3159
settimeseriesnames 2-3160
setxor 2-3161
shading 2-3162
shading colors in surface plots 1-102 2-3162
shared libraries

MATLAB functions
calllib 2-474
libfunctions 2-2013
libfunctionsview 2-2014
libisloaded 2-2015
libpointer 2-2017
libstruct 2-2019
loadlibrary 2-2120

unloadlibrary 2-3906
shell script 1-4 1-11 2-3541 2-3903
shiftdim 2-3165
shifting array

circular 2-577
ShowArrowHead

quivergroup property 2-2879
ShowBaseLine

barseries property 2-363
ShowHiddenHandles, Root property 2-3045
showplottool 2-3166
ShowText

contour property 2-699
shrinkfaces 2-3168
shutdown 2-2856
sign 2-3172
signum function 2-3172
simplex search 2-1317
Simpson’s rule, adaptive recursive 2-2841
Simulink

version number, comparing 2-3969
version number, displaying 2-3963

sin 2-3173
sind 2-3175
sine 2-3173

hyperbolic 2-3177
inverse 2-249
inverse hyperbolic 2-252

single 2-3176
single quote (special characters) 2-62
singular value

decomposition 2-2911 2-3512
largest 2-2480
rank and 2-2911

sinh 2-3177
size

array dimesions 2-3179
serial port I/O 2-3184

size (timeseries) 2-3185
size (tscollection) 2-3186

Index-55

Index

size of array dimensions 2-3179
size of fonts, see also FontSize property 2-3587
size vector 2-3010
SizeData

scatter property 2-3106
skipping bytes (during file I/O) 2-1401
slice 2-3187
slice planes, contouring 2-707
sliders 2-3721
SliderStep, Uicontrol property 2-3742
smallest array elements 2-2311
smooth3 2-3193
smoothing 3-D data 1-106 2-3193
soccer ball (example) 2-3533
solution statistics (BVP) 2-470
sort 2-3200
sorting

array elements 2-3200
complex conjugate pairs 2-747
matrix rows 2-3204

sortrows 2-3204
sound 2-3207 to 2-3208

converting vector into 2-3207 to 2-3208
files

reading 2-276 2-4021
writing 2-277 2-4026

playing 1-87 2-4019
recording 1-87 2-4024
resampling 1-87 2-4019
sampling 1-87 2-4024

source control on UNIX platforms
checking out files

function 2-559
source control system

viewing current system 2-607
source control systems

checking in files 2-556
undo checkout 1-10 2-3896

spalloc 2-3209

sparse 2-3210
sparse matrix

allocating space for 2-3209
applying function only to nonzero elements

of 2-3227
density of 2-2477
detecting 2-1935
diagonal 2-3215
finding indices of nonzero elements of 2-1275
identity 2-3226
number of nonzero elements in 2-2477
permuting columns of 2-645
random 2-3246 to 2-3247
random symmetric 2-3248
replacing nonzero elements of with

ones 2-3240
results of mixed operations on 2-3211
solving least squares linear system 2-2828
specifying maximum number of nonzero

elements 2-3210
vector of nonzero elements 2-2479
visualizing sparsity pattern of 2-3257

sparse storage
criterion for using 2-1383

spaugment 2-3212
spconvert 2-3213
spdiags 2-3215
special characters

descriptions 2-1597
overloading 2-64

specular 2-3225
SpecularColorReflectance

Patch property 2-2638
Surface property 2-3475
surfaceplot property 2-3499

SpecularExponent
Patch property 2-2639
Surface property 2-3476
surfaceplot property 2-3500

Index-56

Index

SpecularStrength
Patch property 2-2639
Surface property 2-3476
surfaceplot property 2-3500

speye 2-3226
spfun 2-3227
sph2cart 2-3229
sphere 2-3230
sphereical coordinates

defining a Light position in 2-2036
spherical coordinates 2-3229
spinmap 2-3232
spline 2-3233
spline interpolation (cubic)

one-dimensional 2-1820 2-1830 2-1833
2-1836

Spline Toolbox 2-1825
spones 2-3240
spparms 2-3241
sprand 2-3246
sprandn 2-3247
sprandsym 2-3248
sprank 2-3249
spreadsheets

loading WK1 files 2-4061
loading XLS files 2-4075
reading into a matrix 2-964
writing from matrix 2-4063
writing matrices into 2-968

sprintf 2-3250
sqrt 2-3259
sqrtm 2-3260
square root

of a matrix 2-3260
of array elements 2-3259
of real numbers 2-2929

squeeze 2-3263
sscanf 2-3266
stack, displaying 2-833
standard deviation 2-3297

start
timer object 2-3293

startat
timer object 2-3294

startup 2-3296
directory and path 1-4 1-7 2-3931

startup file 2-3296
startup files 2-2199
State

Uitoggletool property 2-3882
static text 2-3721
std 2-3297
std (timeseries) 2-3299
stem 2-3301
stem3 2-3307
step size (DDE)

initial step size 2-869
upper bound 2-870

step size (ODE) 2-868 2-2534
initial step size 2-2534
upper bound 2-2534

stop
timer object 2-3329

stopasync 2-3330
stopwatch timer 2-3625
storage

allocated for nonzero entries (sparse) 2-2497
sparse 2-3210

storage allocation 2-4098
str2cell 2-549
str2double 2-3331
str2func 2-3332
str2mat 2-3334
str2num 2-3335
strcat 2-3339
stream lines

computing 2-D 1-106 2-3345
computing 3-D 1-106 2-3347
drawing 1-106 2-3349

stream2 2-3345

Index-57

Index

stream3 2-3347
stretch-to-fill 2-286
strfind 2-3377
string

comparing one to another 2-3341 2-3383
converting from vector to 2-555
converting matrix into 2-2190 2-2493
converting to lowercase 2-2143
converting to numeric array 2-3335
converting to uppercase 2-3924
dictionary sort of 2-3204
finding first token in 2-3395
searching and replacing 2-3394
searching for 2-1287

String
Text property 2-3585
textarrow property 2-195
textbox property 2-207
Uicontrol property 2-3743

string matrix to cell array conversion 2-549
strings 2-3379

converting to matrix (formatted) 2-3266
inserting a quotation mark in 2-1345
writing data to 2-3250

strjust 1-52 1-63 2-3381
strmatch 2-3382
strread 2-3386
strrep 1-52 1-63 2-3394
strtok 2-3395
strtrim 2-3398
struct 2-3399
struct2cell 2-3404
structfun 2-3405
structure array

getting contents of field of 2-1480
remove field from 2-3033
setting contents of a field of 2-3151

structure arrays
field names of 2-1178

structures
dynamic fields 2-63

strvcat 2-3408
Style

Light property 2-2034
Uicontrol property 2-3746

sub2ind 2-3410
subfunction 2-1387
subplot 2-3412
subplots

assymetrical 2-3417
suppressing ticks in 2-3420

subsasgn 1-75 2-3425
subscripts

in axis title 2-3643
in text strings 2-3589

subsindex 2-3427
subspace 1-21 2-3428
subsref 1-75 2-3429
subsref (M-file function equivalent for

A(i,j,k...)) 2-64
substruct 2-3431
subtraction (arithmetic operator) 2-39
subvolume 2-3433
sum 2-3436

cumulative 2-770
of array elements 2-3436

sum (timeseries) 2-3439
superiorto 2-3441
superscripts

in axis title 2-3643
in text strings 2-3589

support 2-3442
surf2patch 2-3449
surface 2-3451

Index-58

Index

Surface
and contour plotter 2-1133
converting to a patch 1-107 2-3449
creating 1-98 1-101 2-3451
defining default properties 2-2935 2-3455
plotting mathematical functions 2-1129
properties 2-3456 2-3479

surface normals, computing for volumes 2-1915
surfl 2-3506
surfnorm 2-3510
svd 2-3512
svds 2-3515
swapbytes 2-3518
switch 2-3520
symamd 2-3522
symbfact 2-3526
symbols

operators 2-1597
symbols in text 2-195 2-207 2-3585
symmlq 2-3528
symrcm 2-3533
synchronize 2-3536
syntax 2-1598
syntax, command 2-3538
syntax, function 2-3538
syntaxes

of M-file functions, defining 2-1387
system 2-3541

UNC pathname error 2-3542
system directory, temporary 2-3551

T
table lookup. See interpolation

Tag
areaseries property 2-232
Axes property 2-318
barseries property 2-364
contour property 2-699
errorbar property 2-1058
Figure property 2-1220
hggroup property 2-1626
hgtransform property 2-1656
Image property 2-1725
Light property 2-2034
Line property 2-2058
lineseries property 2-2072
Patch property 2-2639
quivergroup property 2-2879
rectangle property 2-2948
Root property 2-3045
scatter property 2-3106
stairseries property 2-3289
stem property 2-3323
Surface property 2-3476
surfaceplot property 2-3500
Text property 2-3590
Uicontextmenu property 2-3716
Uicontrol property 2-3746
Uimenu property 2-3782
Uipushtool property 2-3815
Uitable property 2-3868
Uitoggletool property 2-3882
Uitoolbar property 2-3892

Tagged Image File Format (TIFF)
writing 2-1758

tan 2-3544
tand 2-3546
tangent 2-3544

four-quadrant, inverse 2-260
hyperbolic 2-3547
inverse 2-258
inverse hyperbolic 2-263

tanh 2-3547

Index-59

Index

tar 2-3549
target, of camera 2-492
tcpip 2-3926
tempdir 2-3551
tempname 2-3552
temporary

files 2-3552
system directory 2-3551

tensor, Kronecker product 2-1970
terminating MATLAB 2-2856
test matrices 2-1413
test, logical. See logical tests and detecting
tetrahedron

mesh plot 2-3553
tetramesh 2-3553
TeX commands in text 2-195 2-207 2-3585
text 2-3558

editing 2-2715
subscripts 2-3589
superscripts 2-3589

Text
creating 1-98 2-3558
defining default properties 2-3561
fixed-width font 2-3574
properties 2-3563

text mode for opened files 2-1319
TextBackgroundColor

textarrow property 2-197
TextColor

textarrow property 2-197
TextEdgeColor

textarrow property 2-197
TextLineWidth

textarrow property 2-198
TextList

contour property 2-700
TextListMode

contour property 2-700
TextMargin

textarrow property 2-198

textread 1-81 2-3593
TextRotation, textarrow property 2-198
textscan 1-81 2-3599
TextStep

contour property 2-701
TextStepMode

contour property 2-701
textwrap 2-3619
throw, MException method 2-3620
throwAsCaller, MException method 2-3623
TickDir, Axes property 2-319
TickDirMode, Axes property 2-319
TickLength, Axes property 2-319
TIFF

compression 2-1766
encoding 2-1761
ImageDescription field 2-1766
maxvalue 2-1761
parameters that can be set when

writing 2-1765
resolution 2-1766
writemode 2-1766
writing 2-1758

TIFF image format
specifying color space 2-1765

tiling (copies of a matrix) 2-2999
time

CPU 2-748
elapsed (stopwatch timer) 2-3625
required to execute commands 2-1066

time and date functions 2-1028
timer

properties 2-3628
timer object 2-3628

timerfind
timer object 2-3635

timerfindall
timer object 2-3637

times (M-file function equivalent for .*) 2-44
timeseries 2-3639

Index-60

Index

timestamp 2-944
title 2-3642

with superscript 2-3643
Title, Axes property 2-320
todatenum 2-3644
toeplitz 2-3645
Toeplitz matrix 2-3645
toggle buttons 2-3721
token 2-3395

See also string
Toolbar

Figure property 2-1220
Toolbox

Spline 2-1825
toolbox directory, path 1-8 2-3646
toolboxdir 2-3646
TooltipString

Uicontrol property 2-3746
Uipushtool property 2-3815
Uitable property 2-3869
Uitoggletool property 2-3882

trace 2-3647
trace of a matrix 2-936 2-3647
trailing blanks

removing 2-877
transform

hgtransform function 2-1634
transform, Fourier

discrete, n-dimensional 2-1160
discrete, one-dimensional 2-1154
discrete, two-dimensional 2-1159
inverse, n-dimensional 2-1693
inverse, one-dimensional 2-1689
inverse, two-dimensional 2-1691
shifting the zero-frequency component

of 2-1163

transformation
See also conversion 2-519

transformations
elementary Hermite 2-1441

transmitting file to FTP server 1-89 2-2382
transpose

array (arithmetic operator) 2-41
matrix (arithmetic operator) 2-41

transpose (M-file function equivalent for
.\q) 2-45

transpose (timeseries) 2-3648
trapz 2-3650
treelayout 2-3652
treeplot 2-3653
triangulation

2-D plot 2-3659
tricubic interpolation 2-1530
tril 2-3655
trilinear interpolation 2-1530
trimesh 2-3656
triple integral

numerical evaluation 2-3657
triplequad 2-3657
triplot 2-3659
trisurf 2-3661
triu 2-3662
true 2-3663
truth tables (for logical operations) 2-51
try 2-3664
tscollection 2-3667
tsdata.event 2-3670
tsearch 2-3671
tsearchn 2-3672
tsprops 2-3673
tstool 2-3679
type 2-3680

Index-61

Index

Type
areaseries property 2-233
Axes property 2-320
barseries property 2-364
contour property 2-701
errorbar property 2-1058
Figure property 2-1221
hggroup property 2-1627
hgtransform property 2-1656
Image property 2-1726
Light property 2-2034
Line property 2-2058
lineseries property 2-2072
Patch property 2-2640
quivergroup property 2-2880
rectangle property 2-2949
Root property 2-3045
scatter property 2-3106
stairseries property 2-3289
stem property 2-3324
Surface property 2-3476
surfaceplot property 2-3501
Text property 2-3590
Uicontextmenu property 2-3717
Uicontrol property 2-3746
Uimenu property 2-3782
Uipushtool property 2-3815
Uitable property 2-3869
Uitoggletool property 2-3883
Uitoolbar property 2-3893

typecast 2-3681

U
UData

errorbar property 2-1059
quivergroup property 2-2881

UDataSource
errorbar property 2-1059
quivergroup property 2-2881

Uibuttongroup
defining default properties 2-3689

uibuttongroup function 2-3685
Uibuttongroup Properties 2-3689
uicontextmenu 2-3707
UiContextMenu

Uicontrol property 2-3747
Uipushtool property 2-3816
Uitoggletool property 2-3883
Uitoolbar property 2-3893

UIContextMenu
areaseries property 2-233
Axes property 2-321
barseries property 2-364
contour property 2-702
errorbar property 2-1059
Figure property 2-1221
hggroup property 2-1627
hgtransform property 2-1656
Image property 2-1726
Light property 2-2035
Line property 2-2058
lineseries property 2-2072
Patch property 2-2640
quivergroup property 2-2880
rectangle property 2-2949
scatter property 2-3107
stairseries property 2-3290
stem property 2-3324
Surface property 2-3477
surfaceplot property 2-3501
Text property 2-3591
Uitable property 2-3869

Uicontextmenu Properties 2-3710
uicontrol 2-3718
Uicontrol

defining default properties 2-3724
fixed-width font 2-3734
types of 2-3718

Uicontrol Properties 2-3724

Index-62

Index

uicontrols
printing 2-2771

uigetdir 2-3750
uigetfile 2-3755
uigetpref function 2-3765
uiimport 2-3769
uimenu 2-3770
Uimenu

creating 1-111 2-3770
defining default properties 2-3772
Properties 2-3772

Uimenu Properties 2-3772
uint16 2-3783
uint32 2-3783
uint64 2-3783
uint8 2-1814 2-3783
uiopen 2-3785
Uipanel

defining default properties 2-3789
uipanel function 2-3787
Uipanel Properties 2-3789
uipushtool 2-3805
Uipushtool

defining default properties 2-3807
Uipushtool Properties 2-3807
uiputfile 2-3817
uiresume 2-3826
uisave 2-3828
uisetcolor function 2-3831
uisetfont 2-3832
uisetpref function 2-3834
uistack 2-3835
Uitable

defining default properties 2-3842
fixed-width font 2-3861

uitable function 2-3836
Uitable Properties 2-3842
uitoggletool 2-3871
Uitoggletool

defining default properties 2-3873

Uitoggletool Properties 2-3873
uitoolbar 2-3884
Uitoolbar

defining default properties 2-3886
Uitoolbar Properties 2-3886
uiwait 2-3894
uminus (M-file function equivalent for unary

\xd0) 2-44
UNC pathname error and dos 2-982
UNC pathname error and system 2-3542
unconstrained minimization 2-1313
undefined numerical results 2-2405
undocheckout 2-3896
unicode2native 2-3897
unimodular matrix 2-1441
union 2-3898
unique 2-3900
unitary matrix (complex) 2-2827
Units

annotation ellipse property 2-182
annotation rectangle property 2-189
arrow property 2-174
Axes property 2-321
doublearrow property 2-179
Figure property 2-1221
line property 2-185
Root property 2-3046
Text property 2-3590
textarrow property 2-198
textbox property 2-209
Uicontrol property 2-3747
Uitable property 2-3869

unix 2-3903
UNIX

Web browser 2-978
unloadlibrary 2-3906
unlocking M-files 2-2402
unmkpp 2-3907
unregisterallevents 2-3908
unregisterevent 2-3911

Index-63

Index

untar 2-3915
unwrap 2-3917
unzip 2-3922
up vector, of camera 2-494
updating figure during M-file execution 2-987
uplus (M-file function equivalent for unary

+) 2-44
upper 2-3924
upper triangular matrix 2-3662
uppercase to lowercase 2-2143
url

opening in Web browser 1-5 2-4028
urlread 2-3925
urlwrite 2-3927
usejava 2-3929

UserData
areaseries property 2-233
Axes property 2-322
barseries property 2-365
contour property 2-702
errorbar property 2-1060
Figure property 2-1222
hggroup property 2-1627
hgtransform property 2-1657
Image property 2-1726
Light property 2-2035
Line property 2-2058
lineseries property 2-2073
Patch property 2-2640
quivergroup property 2-2880
rectangle property 2-2949
Root property 2-3046
scatter property 2-3107
stairseries property 2-3290
stem property 2-3324
Surface property 2-3477
surfaceplot property 2-3501
Text property 2-3591
Uicontextmenu property 2-3717
Uicontrol property 2-3747
Uimenu property 2-3782
Uipushtool property 2-3816
Uitable property 2-3870
Uitoggletool property 2-3883
Uitoolbar property 2-3893

userpath 2-3931

V
validateattributes 2-3941
validatestring 2-3948
Value, Uicontrol property 2-3748
vander 2-3955
Vandermonde matrix 2-2739
var 2-3956

Index-64

Index

var (timeseries) 2-3957
varargin 2-3959
varargout 2-3961
variable numbers of M-file arguments 2-3961
variable-order solver (ODE) 2-2543
variables

checking existence of 2-1090
clearing from workspace 2-591
global 2-1512
in workspace 2-4065
keeping some when clearing 2-596
linking to graphs with linkdata 2-2087
listing 2-4049
local 2-1387 2-1512
name of passed 2-1792
opening 2-2551 2-2562
persistent 2-2690
saving 2-3069
sizes of 2-4049

VData
quivergroup property 2-2881

VDataSource
quivergroup property 2-2882

vector
dot product 2-983
frequency 2-2140
length of 2-2007
product (cross) 2-755

vector field, plotting 2-664
vectorize 2-3962
vectorizing ODE function (BVP) 2-466
vectors, creating

logarithmically spaced 2-2140
regularly spaced 2-65 2-2102

velocity vectors, plotting 2-664
ver 2-3963
verctrl function (Windows) 2-3965
verLessThan 2-3969
version 2-3971
version numbers

comparing 2-3969
displaying 2-3963

vertcat 2-3973
vertcat (M-file function equivalent for [2-64
vertcat (timeseries) 2-3975
vertcat (tscollection) 2-3976
VertexNormals

Patch property 2-2640
Surface property 2-3477
surfaceplot property 2-3501

VerticalAlignment, Text property 2-3591
VerticalAlignment, textarrow property 2-199
VerticalAlignment, textbox property 2-209
Vertices, Patch property 2-2640
video

saving in AVI format 2-278
view 2-3977

azimuth of viewpoint 2-3978
coordinate system defining 2-3978
elevation of viewpoint 2-3978

view angle, of camera 2-496
View, Axes property (obsolete) 2-322
viewing

a group of object 2-483
a specific object in a scene 2-483

viewmtx 2-3980

Index-65

Index

Visible
areaseries property 2-234
Axes property 2-322
barseries property 2-365
contour property 2-702
errorbar property 2-1060
Figure property 2-1222
hggroup property 2-1628
hgtransform property 2-1657
Image property 2-1726
Light property 2-2035
Line property 2-2058
lineseries property 2-2073
Patch property 2-2640
quivergroup property 2-2880
rectangle property 2-2949
Root property 2-3046
scatter property 2-3107
stairseries property 2-3290
stem property 2-3324
Surface property 2-3477
surfaceplot property 2-3502
Text property 2-3592
Uicontextmenu property 2-3717
Uicontrol property 2-3748
Uimenu property 2-3782
Uipushtool property 2-3816
Uitable property 2-3870
Uitoggletool property 2-3883
Uitoolbar property 2-3893

visualizing
cell array structure 2-547
sparse matrices 2-3257

volumes
calculating isosurface data 2-1918
computing 2-D stream lines 1-106 2-3345
computing 3-D stream lines 1-106 2-3347
computing isosurface normals 2-1915
contouring slice planes 2-707
drawing stream lines 1-106 2-3349
end caps 2-1908
reducing face size in isosurfaces 1-106

2-3168
reducing number of elements in 1-106 2-2958

voronoi 2-3992
Voronoi diagrams

multidimensional vizualization 2-3998
two-dimensional vizualization 2-3992

voronoin 2-3998

W
wait

timer object 2-4002
waitbar 2-4003
waitfor 2-4005
waitforbuttonpress 2-4006
warndlg 2-4007
warning 2-4010
warning message (enabling, suppressing, and

displaying) 2-4010
waterfall 2-4014
.wav files

reading 2-4021
writing 2-4026

waverecord 2-4024
wavfinfo 2-4018
wavplay 1-87 2-4019
wavread 2-4018 2-4021
wavrecord 1-87 2-4024
wavwrite 2-4026
WData

quivergroup property 2-2882

Index-66

Index

WDataSource
quivergroup property 2-2883

web 2-4028
Web browser

displaying help in 2-1601
pointing to file or url 1-5 2-4028
specifying for UNIX 2-978

weekday 2-4033
well conditioned 2-2918
what 2-4035
whatsnew 2-4039
which 2-4040
while 2-4043
white space characters, ASCII 2-1934 2-3395
whitebg 2-4047
who, whos

who 2-4049
wilkinson 2-4056
Wilkinson matrix 2-3219 2-4056
WindowButtonDownFcn, Figure property 2-1223
WindowButtonMotionFcn, Figure

property 2-1223
WindowButtonUpFcn, Figure property 2-1224
WindowKeyPressFcn , Figure property 2-1224
WindowKeyReleaseFcn , Figure property 2-1225
Windows Paintbrush files

writing 2-1757
WindowScrollWheelFcn, Figure property 2-1226
WindowStyle, Figure property 2-1229
winopen 2-4057
winqueryreg 2-4058
WK1 files

loading 2-4061
writing from matrix 2-4063

wk1finfo 2-4060
wk1read 2-4061
wk1write 2-4063
workspace 2-4065

changing context while debugging 2-827
2-851

clearing items from 2-591
consolidating memory 2-2585
predefining variables 2-3296
saving 2-3069
variables in 2-4049
viewing contents of 2-4065

workspace variables
reading from disk 2-2111

writing
binary data to file 2-1401
formatted data to file 2-1340

WVisual, Figure property 2-1231
WVisualMode, Figure property 2-1233

X
X

annotation arrow property 2-175 2-179
annotation line property 2-185
textarrow property 2-200

X Windows Dump files
writing 2-1758

x-axis limits, setting and querying 2-4070
XAxisLocation, Axes property 2-322
XColor, Axes property 2-323

Index-67

Index

XData
areaseries property 2-234
barseries property 2-365
contour property 2-702
errorbar property 2-1060
Image property 2-1726
Line property 2-2059
lineseries property 2-2073
Patch property 2-2641
quivergroup property 2-2883
scatter property 2-3107
stairseries property 2-3290
stem property 2-3325
Surface property 2-3477
surfaceplot property 2-3502

XDataMode
areaseries property 2-234
barseries property 2-365
contour property 2-703
errorbar property 2-1060
lineseries property 2-2073
quivergroup property 2-2884
stairseries property 2-3291
stem property 2-3325
surfaceplot property 2-3502

XDataSource
areaseries property 2-235
barseries property 2-366
contour property 2-703
errorbar property 2-1061
lineseries property 2-2074
quivergroup property 2-2884
scatter property 2-3108
stairseries property 2-3291
stem property 2-3325
surfaceplot property 2-3502

XDir, Axes property 2-323
XDisplay, Figure property 2-1233

XGrid, Axes property 2-324
xlabel 1-91 2-4068
XLabel, Axes property 2-324
xlim 2-4070
XLim, Axes property 2-325
XLimMode, Axes property 2-325
XLS files

loading 2-4075
xlsfinfo 2-4073
xlsread 2-4075
xlswrite 2-4085
XMinorGrid, Axes property 2-326
xmlread 2-4089
xmlwrite 2-4094
xor 2-4095
XOR, printing 2-227 2-358 2-692 2-1051 2-1652

2-1722 2-2053 2-2066 2-2628 2-2873 2-2945
2-3100 2-3283 2-3317 2-3468 2-3491 2-3573

XScale, Axes property 2-326
xslt 2-4096
XTick, Axes property 2-326
XTickLabel, Axes property 2-327
XTickLabelMode, Axes property 2-328
XTickMode, Axes property 2-327
XVisual, Figure property 2-1234
XVisualMode, Figure property 2-1236
XWD files

writing 2-1758
xyz coordinates . See Cartesian coordinates

Y
Y

annotation arrow property 2-175 2-179 2-186
textarrow property 2-200

y-axis limits, setting and querying 2-4070
YAxisLocation, Axes property 2-322
YColor, Axes property 2-323

Index-68

Index

YData
areaseries property 2-235
barseries property 2-366
contour property 2-704
errorbar property 2-1061
Image property 2-1727
Line property 2-2059
lineseries property 2-2074
Patch property 2-2641
quivergroup property 2-2885
scatter property 2-3108
stairseries property 2-3292
stem property 2-3326
Surface property 2-3478
surfaceplot property 2-3503

YDataMode
contour property 2-704
quivergroup property 2-2885
surfaceplot property 2-3503

YDataSource
areaseries property 2-236
barseries property 2-367
contour property 2-704
errorbar property 2-1062
lineseries property 2-2075
quivergroup property 2-2885
scatter property 2-3109
stairseries property 2-3292
stem property 2-3326
surfaceplot property 2-3503

YDir, Axes property 2-323
YGrid, Axes property 2-324
ylabel 1-91 2-4068
YLabel, Axes property 2-324
ylim 2-4070
YLim, Axes property 2-325
YLimMode, Axes property 2-325
YMinorGrid, Axes property 2-326
YScale, Axes property 2-326
YTick, Axes property 2-326

YTickLabel, Axes property 2-327
YTickLabelMode, Axes property 2-328
YTickMode, Axes property 2-327

Z
z-axis limits, setting and querying 2-4070
ZColor, Axes property 2-323
ZData

contour property 2-705
Line property 2-2059
lineseries property 2-2075
Patch property 2-2641
quivergroup property 2-2886
scatter property 2-3109
stemseries property 2-3327
Surface property 2-3478
surfaceplot property 2-3504

ZDataSource
contour property 2-705
lineseries property 2-2075 2-3327
scatter property 2-3109
surfaceplot property 2-3504

ZDir, Axes property 2-323
zero of a function, finding 2-1407
zeros 2-4098
ZGrid, Axes property 2-324
Ziggurat 2-2905 2-2909
zip 2-4100
zlabel 1-91 2-4068
zlim 2-4070
ZLim, Axes property 2-325
ZLimMode, Axes property 2-325
ZMinorGrid, Axes property 2-326
zoom 2-4102
zoom mode objects 2-4103
ZScale, Axes property 2-326
ZTick, Axes property 2-326
ZTickLabel, Axes property 2-327
ZTickLabelMode, Axes property 2-328

Index-69

Index

ZTickMode, Axes property 2-327

Index-70

	toc
	Function Reference
	Desktop Tools and Development Environment
	Startup and Shutdown
	Command Window and History
	Help for Using MATLAB
	Workspace, Search Path, and File Operations
	Workspace
	Search Path
	File Operations

	Programming Tools
	M-File Editing and Debugging
	M-File Performance
	Source Control
	Publishing

	System
	Operating System Interface
	MATLAB Version and License

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Elementary Matrices and Arrays
	Array Operations
	Array Manipulation
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Cartesian Coordinate System Conversion
	Nonlinear Numerical Methods
	Ordinary Differential Equations
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Sparse Matrix Manipulation
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Data Analysis
	Basic Operations
	Descriptive Statistics
	Filtering and Convolution
	Interpolation and Regression
	Fourier Transforms
	Derivatives and Integrals
	Time Series Objects
	Utilities
	Data Manipulation
	Event Data
	Descriptive Statistics

	Time Series Collections
	Utilities
	Data Manipulation

	Programming and Data Types
	Data Types
	Numeric Types
	Characters and Strings
	Structures
	Cell Arrays
	Function Handles
	Java Classes and Objects
	Data Type Identification

	Data Type Conversion
	Numeric
	String to Numeric
	Numeric to String
	Other Conversions

	Operators and Special Characters
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Special Characters

	Strings
	Description of Strings in MATLAB
	String Creation
	String Identification
	String Manipulation
	String Parsing
	String Evaluation
	String Comparison

	Bit-Wise Operations
	Logical Operations
	Relational Operations
	Set Operations
	Date and Time Operations
	Programming in MATLAB
	M-Files and Scripts
	Evaluation
	Timer
	Variables and Functions in Memory
	Control Flow
	Error Handling
	MEX Programming

	Object-Oriented Programming
	Classes and Objects
	Handle Classes
	Events and Listeners
	Meta-Classes

	File I/O
	File Name Construction
	File Opening, Loading, and Saving
	Memory Mapping
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel
	Lotus 1-2-3

	Scientific Data
	Common Data Format
	Network Common Data Form
	Flexible Image Transport System
	Hierarchical Data Format
	Band-Interleaved Data

	Audio and Audio/Video
	Utilities
	SPARCstation-Specific Sound
	Microsoft WAVE Sound
	Audio/Video Interleaved

	Images
	Internet Exchange
	URL, Zip, Tar, E-Mail
	FTP

	Graphics
	Basic Plots and Graphs
	Plotting Tools
	Annotating Plots
	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter/Bubble Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Graphics Object Identification
	Object Creation
	Plot Objects
	Figure Windows
	Axes Operations
	Object Property Operations

	3-D Visualization
	Surface and Mesh Plots
	Surface and Mesh Creation
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Camera Viewpoint
	Aspect Ratio and Axis Limits
	Object Manipulation
	Region of Interest

	Lighting
	Transparency
	Volume Visualization

	GUI Development
	Predefined Dialog Boxes
	User Interface Deployment
	User Interface Development
	User Interface Objects
	Objects from Callbacks
	GUI Utilities
	Program Execution

	External Interfaces
	Dynamic Link Libraries
	Java
	Component Object Model and ActiveX
	Web Services
	Serial Port Devices

	Functions — Alphabetical List
	Contents
	Contents
	Contents
	Integrand with a singularity at an integration end point
	Oscillatory integrand on a semi-infinite interval
	Contour integration around a pole
	Consider the 2-by-1-by-3 array Y = rand(2,1,3) . This array has
	Consider the 1-by-1-by-5 array mat=repmat(1,[1,1,5]) . This arra

	Index

	tables
	BVP Error Tolerance Properties
	Vectorization Properties
	BVP Analytical Partial Derivative Properties
	Singular BVP Property
	BVP Mesh Size Property
	BVP Solution Statistic Property
	32–bit Platforms
	64–bit Platforms
	Data Size Before and After Transposing
	Standard MATLAB Date Format Definitions
	Free-Form Date Format Specifiers
	DDE Error Control Properties
	DDE Solver Output Properties
	DDE Step Size Properties
	DDE Events Property
	DDE Discontinuity Properties
	Data Arrays or Extensions
	Permission Specifiers
	Binary and Text Modes
	Precision Support
	Fields of the Attribute Structure
	Fields of the Raster8 and Raster24 Structures
	Fields of the SDS Structure
	Fields of the Vdata Structure
	Fields of the Vgroup Structure
	Fields of the Grid Structure
	Fields of the Point Structure
	Fields of the Swath Structure
	Values for helpOption
	Values for archOption
	Values for dispOption
	Values for modeOption
	Values for mgrOption
	Values for helpOption
	Values for mgrOption
	MEX Script Switches
	ODE Events Property
	Jacobian Properties for All Implicit Solvers Except ode15i
	Jacobian Properties for ode15i
	Mass Matrix and DAE Properties (Solvers Other Than ode15i)
	ode15s and ode15i-Specific Properties
	Interpretation of the CData Property
	Interpretation of the FaceVertexCData Property
	Options for publish
	Return Values for Regular Expressions
	Exponents Printed with %e, %E, %g, or %G
	Formats for strread
	Parameters and Values for strread
	Option Structure Fields and Descriptions
	Data Size Before and After Transposing
	Time Series Object Properties
	Class Values
	Attribute Values
	Data Types for wavplay
	Native Formats
	Double Formats

