MATLAB® 7

Function Reference: A - E

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science

X L9

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
MATLAB Function Reference
© COPYRIGHT 1984-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

December 1996
June 1997
October 1997
January 1999
June 1999
June 2001

July 2002

June 2004
September 2006
March 2007
September 2007
March 2008
October 2008

First printing
Online only
Online only
Online only
Second printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

For MATLAB 5.0 (Release 8)

Revised for MATLAB 5.1 (Release 9)
Revised for MATLAB 5.2 (Release 10)
Revised for MATLAB 5.3 (Release 11)
For MATLAB 5.3 (Release 11)

Revised for MATLAB 6.1 (Release 12.1)
Revised for 6.5 (Release 13)

Revised for 7.0 (Release 14)

Revised for 7.3 (Release 2006b)
Revised for 7.4 (Release 2007a)
Revised for Version 7.5 (Release 2007b)
Revised for Version 7.6 (Release 2008a)
Revised for Version 7.7 (Release 2008b)

Function Reference

Desktop Tools and Development Environment
Startup and Shutdown
Command Window and History
Help for Using MATLAB
Workspace, Search Path, and File Operations
Programming Tools
Sy Stem .t

Mathematicsttt
Arrays and Matricesiiiiiinnnn.n
Linear Algebra i,
Elementary Math
Polynomials
Interpolation and Computational Geometry
Cartesian Coordinate System Conversion
Nonlinear Numerical Methods
Specialized Math
Sparse Matricesitiiiiiiiiin
Math Constantsciiiiiiiiiiiiiennnnn.

Data Analysisc i
Basic Operationsuiiiiiinnnnnnnennnn.
Descriptive Statisticsoiiiiiiiiiiii,
Filtering and Convolution
Interpolation and Regression
Fourier Transformsccciiiiiiinnnnnn...
Derivatives and Integrals
Time Series Objectso iiii it i i i
Time Series Collectionscciiiiiinnnnna..

Programming and Data Types
DataTypes ... e e e
Data Type Conversionouueieeeeennnnnnnn.
Operators and Special Characters
7 0 Y=

vi

Contents

Bit-Wise Operationsciiiiiinnnneeennnn. 1-64

Logical Operationscouuiiiieieennnnnnnnn. 1-65
Relational Operationsc.cviiiiennnn. 1-66
Set Operationsttiiiiiinieneeeeennn 1-66
Date and Time Operationscccvvuuuuun.. 1-66
Programming in MATLAB 1-67
Object-Oriented Programming 1-75
Classesand Objectsciiiiiiiinnnnennnnn. 1-75
Handle Classesiiiiiiiinennnnn, 1-76
Events and Listeners, 1-77
Meta-Classes ...ttt 1-77
File /O ... 1-79
File Name Constructioncciiuiieeeo.... 1-79
File Opening, Loading, and Saving 1-80
Memory Mappingouiiiii i 1-80
Low-Level File I/O i i, 1-80
Text Files i e e 1-81
XML Documentsttt 1-82
Spreadsheets i, 1-82
Scientific Data i 1-83
Audio and Audio/Video 1-86
Images 1-88
Internet Exchange 1-88
Graphics 1-90
Basic Plotsand Graphs 1-90
Plotting Toolso i i 1-91
Annotating Plots i 1-91
Specialized Plotting 0., 1-92
Bit-Mapped Images, 1-96
Printing 1-96
Handle Graphics i, 1-97
3-D Visualization 1-101
Surface and Mesh Plots c ... 1-101
View Controlc.oiiiiiiiiii i 1-103
Lighting 1-105
TransSpParenCyvuutitteeee e 1-105
Volume Visualizationccciiiiininn... 1-106

GUI Developmentc0iiiiiiiiinnnn. 1-108

Predefined Dialog Boxes 1-108
User Interface Deployment 1-109
User Interface Development 1-109
User Interface Objects coviiiinn.. 1-110
Objects from Callbacks, 1-111
GUIUtItIes .. .vii ittt e et e e e 1-111
Program Execution 1-112
External Interfaces 1-113
Dynamic Link Librariescciiiiii.. 1-113
JaAVA L e e e 1-114
Component Object Model and ActiveX 1-115
Web Servicesoiiiiiiiiiii i 1-117
Serial Port Devicesciiiiiiinnnnnn.. 1-118

Functions — Alphabetical List

Index

vii

Contents

o
ol

Function Reference

Desktop Tools and Development
Environment (p. 1-3)

Mathematics (p. 1-13)

Data Analysis (p. 1-41)

Programming and Data Types
(p. 1-49)

Object-Oriented Programming
(p. 1-75)

File 1/O (p. 1-79)

Graphics (p. 1-90)

3-D Visualization (p. 1-101)

Startup, Command Window, help,
editing and debugging, tuning, other
general functions

Arrays and matrices, linear algebra,
other areas of mathematics

Basic data operations, descriptive
statistics, covariance and correlation,
filtering and convolution, numerical
derivatives and integrals, Fourier
transforms, time series analysis

Function/expression evaluation,
program control, function handles,
object oriented programming, error
handling, operators, data types,
dates and times, timers

Functions for working with classes
and objects

General and low-level file I/O, plus
specific file formats, like audio,
spreadsheet, HDF, images

Line plots, annotating graphs,
specialized plots, images, printing,
Handle Graphics

Surface and mesh plots, view control,
lighting and transparency, volume
visualization

1 Function Reference

GUI Development (p. 1-108)

External Interfaces (p. 1-113)

GUIDE, programming graphical
user interfaces

Interfaces to DLLs, Java, COM and
ActiveX, Web services, and serial
port devices, and C and Fortran
routines

Desktop Tools and Development Environment

Startup and Shutdown (p. 1-3)

Command Window and History
(p. 1-4)

Help for Using MATLAB (p. 1-5)

Workspace, Search Path, and File
Operations (p. 1-6)

Programming Tools (p. 1-8)

System (p. 1-11)

Startup and Shutdown

exit

finish

matlab (UNIX)
matlab (Windows)

matlabrc

prefdir

preferences

quit

Desktop Tools and Development Environment

Startup and shutdown options,
preferences

Control Command Window and
History, enter statements and run
functions

Command line help, online
documentation in the Help browser,
demos

Work with files, MATLAB search
path, manage variables

Edit and debug M-files, improve
performance, source control, publish
results

Identify current computer, license,
product version, and more

Terminate MATLAB® program
(same as quit)

Termination M-file for MATLAB
program

Start MATLAB program (UNIX®
platforms)

Start MATLAB program (Windows®
platforms)

Startup M-file for MATLAB program

Directory containing preferences,
history, and layout files

Open Preferences dialog box

Terminate MATLAB program

1-3

1 Function Reference

1-4

startup

userpath

Startup M-file for user-defined
options

View or change user portion of
search path

Command Window and History

clc

commandhistory

commandwindow

diary

dos

format

home

matlabcolon (matlab:)

more

perl

system

unix

Clear Command Window

Open Command History window, or
select it if already open

Open Command Window, or select
it if already open

Save session to file

Execute DOS command and return
result

Set display format for output

Move cursor to upper-left corner of
Command Window

Run specified function via hyperlink

Control paged output for Command
Window

Call Perl script using appropriate
operating system executable

Execute operating system command
and return result

Execute UNIX command and return
result

Desktop Tools and Development Environment

Help for Using MATLAB

builddocsearchdb
demo

doc
docopt

docsearch
echodemo
help
helpbrowser
helpwin
info
lookfor
playshow
support

web

whatsnew

Build searchable documentation
database

Access product demos via Help
browser

Reference page in Help browser
Web browser for UNIX platforms

Open Help browser and search for
specified term

Run M-file demo step-by-step in
Command Window

Help for functions in Command
Window

Open Help browser to access all
online documentation and demos

Provide access to M-file help for all
functions

Information about contacting The
MathWorks

Search for keyword in all help
entries

Run M-file demo (deprecated; use
echodemo instead)

Open MathWorks Technical Support
Web page

Open Web site or file in Web browser
or Help browser

Release Notes for MathWorks™
products

1 Function Reference

Workspace, Search Path, and File Operations

Workspace (p. 1-6)
Search Path (p. 1-6)

File Operations (p. 1-7)
Workspace

assignin

clear

evalin

exist

openvar

pack
uiimport
which
who, whos

workspace

Search Path

addpath
genpath

Manage variables

View and change MATLAB search
path

View and change files and directories

Assign value to variable in specified
workspace

Remove items from workspace,
freeing up system memory

Execute MATLAB expression in
specified workspace

Check existence of variable, function,
directory, or Java™ programming
language class

Open workspace variable in Variable
Editor or other tool for graphical
editing

Consolidate workspace memory
Open Import Wizard to import data
Locate functions and files

List variables in workspace

Open Workspace browser to manage
workspace

Add directories to search path
Generate path string

Desktop Tools and Development Environment

partialpath
path
path2rc

pathsep
pathtool

restoredefaultpath
rmpath
savepath

userpath

File Operations

Partial pathname description
View or change search path

Save current search path to
pathdef.m file

Path separator for current platform

Open Set Path dialog box to view
and change search path

Restore default search path
Remove directories from search path
Save current search path

View or change user portion of
search path

See also “File I/O” on page 1-79 functions.

cd
copyfile
delete
dir

exist

fileattrib

filebrowser

isdir

lookfor

Change working directory

Copy file or directory

Remove files or graphics objects
Directory listing

Check existence of variable, function,
directory, or Java programming
language class

Set or get attributes of file or
directory

Current Directory browser

Determine whether input is a
directory

Search for keyword in all help
entries

1-7

1 Function Reference

1s
matlabroot
mkdir
movefile
pwd

recycle
rehash

rmdir

toolboxdir

type
visdiff

what

which

Programming Tools

M-File Editing and Debugging
(p. 1-9)

M-File Performance (p. 1-9)
Source Control (p. 1-10)

Publishing (p. 1-10)

Directory contents

Root directory

Make new directory
Move file or directory
Identify current directory

Set option to move deleted files to
recycle folder

Refresh function and file system
path caches

Remove directory
Root directory for specified toolbox
Display contents of file

Compare two text files, MAT-Files,
or binary files

List MATLAB files in current
directory

Locate functions and files

Edit and debug M-files

Improve performance and find
potential problems in M-files

Interface MATLAB with source
control system

Publish M-file code and results

Desktop Tools and Development Environment

M-File Editing and Debugging

clipboard
datatipinfo

dbclear
dbcont
dbdown

dbquit
dbstack
dbstatus
dbstep

dbstop
dbtype
dbup
debug
edit
keyboard

M-File Performance

bench
mlint

mlintrpt

pack

profile

Copy and paste strings to and from
system clipboard

Produce short description of input
variable

Clear breakpoints
Resume execution

Change local workspace context
when in debug mode

Quit debug mode
Function call stack
List all breakpoints

Execute one or more lines from
current breakpoint

Set breakpoints

List M-file with line numbers
Change local workspace context
List M-file debugging functions
Edit or create M-file

Input from keyboard

MATLAB Benchmark
Check M-files for possible problems

Run mlint for file or directory,
reporting results in browser

Consolidate workspace memory

Profile execution time for function

1 Function Reference

1-10

profsave

rehash

sparse

zZeros

Source Control
checkin
checkout

cmopts

customverctrl
undocheckout

verctrl

Publishing

grabcode

notebook

publish

snapnow

Save profile report in HTML format

Refresh function and file system
path caches

Create sparse matrix

Create array of all zeros

Check files into a source control
system (UNIX platforms)

Check files out of a source control
system (UNIX platforms)

Name of source control system

Allow custom source control system
(UNIX platforms)

Undo previous checkout from source
control system (UNIX platforms)

Source control actions (Windows
platforms)

MATLAB code from M-files
published to HTML

Open M-book in Microsoft® Word
software (on Microsoft Windows
platforms)

Publish M-file containing cells,
saving output to a file of specified
type

Force snapshot of image for inclusion
in published document

Desktop Tools and Development Environment

System

Operating System Interface (p. 1-11)

MATLAB Version and License
(p. 1-12)

Operating System Interface
clipboard

computer

dos

getenv
hostid

maxNumCompThreads
perl

setenv

system
unix

winqueryreg

Exchange operating system
information and commands with
MATLAB

Information about MATLAB version
and license

Copy and paste strings to and from
system clipboard

Information about computer on
which MATLAB software is running

Execute DOS command and return
result

Environment variable
Server host identification number

Controls maximum number of
computational threads

Call Perl script using appropriate
operating system executable

Set environment variable

Execute operating system command
and return result

Execute UNIX command and return
result

Item from Windows registry

1-11

1 Function Reference

1-12

MATLAB Version and License

ismac

ispc

isstudent

isunix

javachk

license

prefdir

usejava

ver

verLessThan

version

Determine if version is for Mac OS®
X platform

Determine if version is for Windows
(PC) platform

Determine if version is Student
Version

Determine if version is for UNIX
platform.

Generate error message based on
Sun™ Java feature support

Return license number or perform
licensing task

Directory containing preferences,
history, and layout files

Determine whether Sun Java feature
is supported in MATLAB software

Version information for MathWorks
products

Compare toolbox version to specified
version string

Version number for the MATLAB
software

Mathematics

Mathematics

Arrays and Matrices (p. 1-14) Basic array operators and
operations, creation of elementary
and specialized arrays and matrices

Linear Algebra (p. 1-20) Matrix analysis, linear equations,
eigenvalues, singular values,
logarithms, exponentials,
factorization

Elementary Math (p. 1-24) Trigonometry, exponentials and
logarithms, complex values,
rounding, remainders, discrete math

Polynomials (p. 1-28) Multiplication, division, evaluation,
roots, derivatives, integration,
eigenvalue problem, curve fitting,
partial fraction expansion

Interpolation and Computational Interpolation, Delaunay

Geometry (p. 1-29) triangulation and tessellation,
convex hulls, Voronoi diagrams,
domain generation

Cartesian Coordinate System Conversions between Cartesian and
Conversion (p. 1-31) polar or spherical coordinates

Nonlinear Numerical Methods Differential equations, optimization,
(p. 1-32) integration

Specialized Math (p. 1-35) Airy, Bessel, Jacobi, Legendre, beta,
elliptic, error, exponential integral,
gamma functions

Sparse Matrices (p. 1-36) Elementary sparse matrices,
operations, reordering algorithms,
linear algebra, iterative methods,
tree operations

Math Constants (p. 1-40) Pi, imaginary unit, infinity,
Not-a-Number, largest and smallest
positive floating point numbers,
floating point relative accuracy

1-13

1 Function Reference

1-14

Arrays and Matrices

Basic Information (p. 1-14)

Operators (p. 1-15)

Elementary Matrices and Arrays
(p. 1-16)

Array Operations (p. 1-17)

Array Manipulation (p. 1-18)

Specialized Matrices (p. 1-19)

Basic Information

disp
display

isempty
isequal

isequalwithequalnans
isfinite

isfloat

isinf

isinteger

Display array contents, get array
information, determine array type

Arithmetic operators

Create elementary arrays of different
types, generate arrays for plotting,
array indexing, etc.

Operate on array content, apply
function to each array element, find
cumulative product or sum, etc.

Create, sort, rotate, permute,
reshape, and shift array contents

Create Hadamard, Companion,
Hankel, Vandermonde, Pascal
matrices, etc.

Display text or array

Display text or array (overloaded
method)

Determine whether array is empty
Test arrays for equality

Test arrays for equality, treating
NaNs as equal

Array elements that are finite

Determine whether input is
floating-point array

Array elements that are infinite

Determine whether input is integer
array

Mathematics

islogical

isnan

isnumeric

isscalar
issparse
isvector
length
max

min
ndims

numel

size

Operators

Determine whether input is logical
array

Array elements that are NaN

Determine whether input is numeric
array

Determine whether input is scalar
Determine whether input is sparse
Determine whether input is vector
Length of vector

Largest elements in array
Smallest elements in array
Number of array dimensions

Number of elements in array or
subscripted array expression

Array dimensions

Addition

Unary plus

Subtraction

Unary minus

Matrix multiplication

Matrix power

Backslash or left matrix divide
Slash or right matrix divide
Transpose

Nonconjugated transpose

Array multiplication (element-wise)

1-15

1 Function Reference

Array power (element-wise)
AN Left array divide (element-wise)

J Right array divide (element-wise)

Elementary Matrices and Arrays

blkdiag Construct block diagonal matrix
from input arguments

create (RandStream) Create random number streams

diag Diagonal matrices and diagonals of
matrix

eye Identity matrix

freqgspace Frequency spacing for frequency
response

get (RandStream) Random stream properties

getDefaultStream (RandStream) Default random number stream

ind2sub Subscripts from linear index

linspace Generate linearly spaced vectors

list (RandStream) Random number generator
algorithms

logspace Generate logarithmically spaced
vectors

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

ones Create array of all ones

rand Uniformly distributed
pseudorandom numbers

rand (RandStream) Uniformly distributed random
numbers

1-16

Mathematics

randi Uniformly distributed
pseudorandom integers

randi (RandStream) Uniformly distributed
pseudorandom integers

randn Normally distributed pseudorandom
numbers

randn (RandStream) Normally distributed pseudorandom
numbers

randperm (RandStream)

RandStream Random number stream
RandStream (RandStream) Random number stream
set (RandStream) Set a random stream property

setDefaultStream (RandStream) Set the default random number

stream
sub2ind Single index from subscripts
zeros Create array of all zeros

Array Operations

See “Linear Algebra” on page 1-20 and “Elementary Math” on page 1-24 for
other array operations.

accumarray Construct array with accumulation

arrayfun Apply function to each element of
array

bsxfun Apply element-by-element binary

operation to two arrays with
singleton expansion enabled

cast Cast variable to different data type
cross Vector cross product
cumprod Cumulative product

1-17

1 Function Reference

1-18

cumsum
dot

idivide

kron
prod
sum

tril

triu

Array Manipulation

blkdiag
cat

circshift

diag
end

flipdim
fliplr
flipud
horzcat
inline

ipermute

permute

repmat

Cumulative sum
Vector dot product

Integer division with rounding
option

Kronecker tensor product
Product of array elements

Sum of array elements

Lower triangular part of matrix

Upper triangular part of matrix

Construct block diagonal matrix
from input arguments

Concatenate arrays along specified
dimension

Shift array circularly

Diagonal matrices and diagonals of
matrix

Terminate block of code, or indicate
last array index

Flip array along specified dimension
Flip matrix left to right

Flip matrix up to down
Concatenate arrays horizontally
Construct inline object

Inverse permute dimensions of N-D
array

Rearrange dimensions of N-D array

Replicate and tile array

Mathematics

reshape
rot9o
shiftdim

sort

sortrows
squeeze
vectorize

vertcat

Specialized Matrices

compan
gallery
hadamard
hankel
hilb
invhilb
magic
pascal

rosser

toeplitz
vander

wilkinson

Reshape array
Rotate matrix 90 degrees

Shift dimensions

Sort array elements in ascending or

descending order

Sort rows in ascending order

Remove singleton dimensions

Vectorize expression

Concatenate arrays vertically

Companion matrix

Test matrices

Hadamard matrix
Hankel matrix

Hilbert matrix

Inverse of Hilbert matrix
Magic square

Pascal matrix

Classic symmetric eigenvalue test

problem
Toeplitz matrix

Vandermonde matrix

Wilkinson’s eigenvalue test matrix

1-19

1 Function Reference

1-20

Linear Algebra

Matrix Analysis (p. 1-20)

Linear Equations (p. 1-21)

Eigenvalues and Singular Values
(p. 1-22)

Matrix Logarithms and Exponentials
(p. 1-23)

Factorization (p. 1-23)

Matrix Analysis

cond

condeig

det
norm
normest
null
orth
rank

rcond

rref

Compute norm, rank, determinant,
condition number, etc.

Solve linear systems, least
squares, LU factorization, Cholesky
factorization, etc.

Eigenvalues, eigenvectors, Schur
decomposition, Hessenburg
matrices, etc.

Matrix logarithms, exponentials,
square root

Cholesky, LU, and QR factorizations,
diagonal forms, singular value
decomposition

Condition number with respect to
inversion

Condition number with respect to
eigenvalues

Matrix determinant
Vector and matrix norms
2-norm estimate

Null space

Range space of matrix
Rank of matrix

Matrix reciprocal condition number
estimate

Reduced row echelon form

Mathematics

subspace Angle between two subspaces

trace Sum of diagonal elements

Linear Equations

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

cond Condition number with respect to
inversion

condest 1-norm condition number estimate

funm Evaluate general matrix function

ilu Sparse incomplete LU factorization

inv Matrix inverse

linsolve Solve linear system of equations

lscov Least-squares solution in presence
of known covariance

1sgnonneg Solve nonnegative least-squares
constraints problem

lu LU matrix factorization

luinc Sparse incomplete LU factorization

pinv Moore-Penrose pseudoinverse of
matrix

qr Orthogonal-triangular
decomposition

rcond Matrix reciprocal condition number
estimate

1-21

1 Function Reference

Eigenvalues and Singular Values

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

condeig Condition number with respect to
eigenvalues

eig Eigenvalues and eigenvectors

eigs Largest eigenvalues and
eigenvectors of a matrix

gsvd Generalized singular value
decomposition

hess Hessenberg form of matrix

ordeig Eigenvalues of quasitriangular
matrices

ordqz Reorder eigenvalues in QZ
factorization

ordschur Reorder eigenvalues in Schur
factorization

poly Polynomial with specified roots

polyeig Polynomial eigenvalue problem

rsf2csf Convert real Schur form to complex
Schur form

schur Schur decomposition

sqrtm Matrix square root

ss2tf Convert state-space filter parameters
to transfer function form

svd Singular value decomposition

svds Find singular values and vectors

1-22

Mathematics

Matrix Logarithms and Exponentials

expm
logm

sqrtm

Factorization

balance

cdf2rdf

chol

cholinc
cholupdate
gsvd

ilu

1u

luinc

planerot

qr

qrdelete

grinsert

qrupdate

Matrix exponential
Matrix logarithm

Matrix square root

Diagonal scaling to improve
eigenvalue accuracy

Convert complex diagonal form to
real block diagonal form

Cholesky factorization

Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

Rank 1 update to Cholesky
factorization

Generalized singular value
decomposition

Sparse incomplete LU factorization
LU matrix factorization

Sparse incomplete LU factorization
Givens plane rotation

Orthogonal-triangular
decomposition

Remove column or row from QR
factorization

Insert column or row into QR
factorization

1-23

1 Function Reference

1-24

qz
rsf2csf

svd

Elementary Math

Trigonometric (p. 1-24)
Exponential (p. 1-26)
Complex (p. 1-26)

Rounding and Remainder (p. 1-27)
Discrete Math (p. 1-27)

Trigonometric

acos
acosd
acosh
acot

acotd
acoth
acsc

acscd

acsch

QZ factorization for generalized
eigenvalues

Convert real Schur form to complex
Schur form

Singular value decomposition

Trigonometric functions with results
in radians or degrees

Exponential, logarithm, power, and
root functions

Numbers with real and imaginary
components, phase angles

Rounding, modulus, and remainder

Prime factors, factorials,
permutations, rational fractions,
least common multiple, greatest
common divisor

Inverse cosine; result in radians
Inverse cosine; result in degrees
Inverse hyperbolic cosine

Inverse cotangent; result in radians
Inverse cotangent; result in degrees
Inverse hyperbolic cotangent
Inverse cosecant; result in radians
Inverse cosecant; result in degrees

Inverse hyperbolic cosecant

Mathematics

asec
asecd
asech
asin
asind
asinh
atan
atan2
atand
atanh
cos
cosd
cosh
cot
cotd
coth
csc
cscd
csch
hypot
sec
secd
sech
sin
sind

sinh

tan

Inverse secant; result in radians
Inverse secant; result in degrees
Inverse hyperbolic secant
Inverse sine; result in radians
Inverse sine; result in degrees
Inverse hyperbolic sine

Inverse tangent; result in radians
Four-quadrant inverse tangent
Inverse tangent; result in degrees
Inverse hyperbolic tangent
Cosine of argument in radians
Cosine of argument in degrees
Hyperbolic cosine

Cotangent of argument in radians
Cotangent of argument in degrees
Hyperbolic cotangent

Cosecant of argument in radians
Cosecant of argument in degrees
Hyperbolic cosecant

Square root of sum of squares
Secant of argument in radians
Secant of argument in degrees
Hyperbolic secant

Sine of argument in radians

Sine of argument in degrees

Hyperbolic sine of argument in
radians

Tangent of argument in radians

1-25

1 Function Reference

tand Tangent of argument in degrees

tanh Hyperbolic tangent
Exponential

exp Exponential

expm1i Compute exp(x) -1 accurately for

small values of x

log Natural logarithm

log10 Common (base 10) logarithm

logip Compute log(1+x) accurately for

small values of x

log2 Base 2 logarithm and dissect
floating-point numbers into
exponent and mantissa

nextpow?2 Next higher power of 2

nthroot Real nth root of real numbers

pow2 Base 2 power and scale floating-point
numbers

reallog Natural logarithm for nonnegative
real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real
arrays

sqrt Square root

Complex

abs Absolute value and complex
magnitude

angle Phase angle

1-26

Mathematics

complex

conj

cplxpair

imag
isreal
i

real
sign

unwrap

Rounding and Remainder

ceil
fix
floor

idivide

mod
rem

round

Discrete Math

factor
factorial

gcd

Construct complex data from real
and imaginary components

Complex conjugate

Sort complex numbers into complex
conjugate pairs

Imaginary unit

Imaginary part of complex number
Check if input is real array
Imaginary unit

Real part of complex number
Signum function

Correct phase angles to produce
smoother phase plots

Round toward positive infinity
Round toward zero
Round toward negative infinity

Integer division with rounding
option

Modulus after division
Remainder after division

Round to nearest integer

Prime factors
Factorial function

Greatest common divisor

1-27

1 Function Reference

isprime

lcm

nchoosek

perms
primes

rat, rats

Polynomials

conv

deconv

poly
polyder
polyeig
polyfit
polyint
polyval
polyvalm

residue

roots

1-28

Array elements that are prime
numbers

Least common multiple

Binomial coefficient or all
combinations

All possible permutations
Generate list of prime numbers

Rational fraction approximation

Convolution and polynomial
multiplication

Deconvolution and polynomial
division

Polynomial with specified roots
Polynomial derivative
Polynomial eigenvalue problem
Polynomial curve fitting
Integrate polynomial analytically
Polynomial evaluation

Matrix polynomial evaluation

Convert between partial fraction
expansion and polynomial
coefficients

Polynomial roots

Mathematics

Interpolation and Computational Geometry

Interpolation (p. 1-29)

Delaunay Triangulation and
Tessellation (p. 1-30)

Convex Hull (p. 1-31)
Voronoi Diagrams (p. 1-31)

Domain Generation (p. 1-31)

Interpolation

dsearch

dsearchn
griddata
griddata3

griddatan

interp1
interpiq
interp2
interp3
interpft
interpn

meshgrid

Data interpolation, data gridding,
polynomial evaluation, nearest point
search

Delaunay triangulation and
tessellation, triangular surface and
mesh plots

Plot convex hull, plotting functions

Plot Voronoi diagram, patch graphics
object, plotting functions

Generate arrays for 3-D plots, or for
N-D functions and interpolation

Search Delaunay triangulation for
nearest point

N-D nearest point search
Data gridding

Data gridding and hypersurface
fitting for 3-D data

Data gridding and hypersurface
fitting (dimension >= 2)

1-D data interpolation (table lookup)
Quick 1-D linear interpolation

2-D data interpolation (table lookup)
3-D data interpolation (table lookup)
1-D interpolation using FFT method
N-D data interpolation (table lookup)
Generate X and Y arrays for 3-D plots

1-29

1 Function Reference

mkpp
ndgrid

padecoef

pchip

ppval
spline
tsearchn

unmkpp

Make piecewise polynomial

Generate arrays for N-D functions
and interpolation

Padé approximation of time delays

Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP)

Evaluate piecewise polynomial
Cubic spline data interpolation
N-D closest simplex search

Piecewise polynomial details

Delaunay Triangulation and Tessellation

delaunay
delaunay3
delaunayn

dsearch

dsearchn
tetramesh
trimesh
triplot
trisurf

tsearch

tsearchn

1-30

Delaunay triangulation
3-D Delaunay tessellation
N-D Delaunay tessellation

Search Delaunay triangulation for
nearest point

N-D nearest point search
Tetrahedron mesh plot
Triangular mesh plot
2-D triangular plot
Triangular surface plot

Search for enclosing Delaunay
triangle

N-D closest simplex search

Mathematics

Convex Hull

convhull
convhulln
patch
plot

trisurf

Voronoi Diagrams
dsearch
patch
plot

voronoi

voronoin

Domain Generation

meshgrid

ndgrid

Convex hull

N-D convex hull

Create patch graphics object
2-D line plot

Triangular surface plot

Search Delaunay triangulation for
nearest point

Create patch graphics object
2-D line plot
Voronoi diagram

N-D Voronoi diagram

Generate X and Y arrays for 3-D plots

Generate arrays for N-D functions
and interpolation

Cartesian Coordinate System Conversion

cart2pol

cart2sph

Transform Cartesian coordinates to
polar or cylindrical

Transform Cartesian coordinates to
spherical

1-31

1 Function Reference

1-32

pol2cart

sph2cart

Transform polar or cylindrical
coordinates to Cartesian

Transform spherical coordinates to
Cartesian

Nonlinear Numerical Methods

Ordinary Differential Equations
(p. 1-32)

Delay Differential Equations
(p. 1-33)

Boundary Value Problems (p. 1-34)

Partial Differential Equations
(p. 1-34)

Optimization (p. 1-34)

Numerical Integration (Quadrature)
(p. 1-35)

Ordinary Differential Equations

decic

deval

Solve stiff and nonstiff differential
equations, define the problem, set
solver options, evaluate solution

Solve delay differential equations
with constant and general delays,
set solver options, evaluate solution

Solve boundary value problems for
ordinary differential equations, set
solver options, evaluate solution

Solve initial-boundary value
problems for parabolic-elliptic PDEs,
evaluate solution

Find minimum of single and
multivariable functions, solve
nonnegative least-squares constraint
problem

Evaluate Simpson, Lobatto, and
vectorized quadratures, evaluate
double and triple integrals

Compute consistent initial conditions
for ode151

Evaluate solution of differential
equation problem

Mathematics

ode15i Solve fully implicit differential
equations, variable order method

ode23, ode45, ode113, odeil5s, Solve initial value problems for
ode23s, ode23t, ode23tb ordinary differential equations

odefile Define differential equation problem
for ordinary differential equation
solvers

odeget Ordinary differential equation
options parameters

odeset Create or alter options structure
for ordinary differential equation
solvers

odextend Extend solution of initial value
problem for ordinary differential
equation

Delay Differential Equations

dde23 Solve delay differential equations
(DDEs) with constant delays

ddeget Extract properties from delay
differential equations options
structure

ddesd Solve delay differential equations
(DDEs) with general delays

ddeset Create or alter delay differential

equations options structure

deval Evaluate solution of differential
equation problem

1-33

1 Function Reference

Boundary Value Problems

bvp4c Solve boundary value problems for
ordinary differential equations
bvp5c Solve boundary value problems for
ordinary differential equations
bvpget Extract properties from options
structure created with bvpset
bvpinit Form initial guess for bvp4c
bvpset Create or alter options structure of

boundary value problem

bvpxtend Form guess structure for extending
boundary value solutions

deval Evaluate solution of differential
equation problem

Partial Differential Equations

pdepe Solve initial-boundary value
problems for parabolic-elliptic PDEs
in 1-D

pdeval Evaluate numerical solution of PDE

using output of pdepe

Optimization
fminbnd Find minimum of single-variable
function on fixed interval
fminsearch Find minimum of unconstrained
multivariable function using
derivative-free method
fzero Find root of continuous function of

one variable

1-34

Mathematics

1sgnonneg

optimget

optimset

Solve nonnegative least-squares
constraints problem

Optimization options values

Create or edit optimization options
structure

Numerical Integration (Quadrature)

dblquad
quad
quadgk
quadl

quadv

triplequad

Specialized Math

airy

besselh

besseli
besselj

besselk

bessely
beta

betainc

Numerically evaluate double
integral

Numerically evaluate integral,
adaptive Simpson quadrature

Numerically evaluate integral,
adaptive Gauss-Kronrod quadrature

Numerically evaluate integral,
adaptive Lobatto quadrature

Vectorized quadrature

Numerically evaluate triple integral

Airy functions

Bessel function of third kind (Hankel
function)

Modified Bessel function of first kind
Bessel function of first kind

Modified Bessel function of second
kind

Bessel function of second kind
Beta function

Incomplete beta function

1-35

1 Function Reference

1-36

betaln
ellipj
ellipke

erf, erfc, erfcx, erfinv,
erfcinv

expint
gamma, gammainc, gammaln
legendre

psi

Sparse Matrices

Elementary Sparse Matrices
(p. 1-37)

Full to Sparse Conversion (p. 1-37)

Sparse Matrix Manipulation (p. 1-37)

Reordering Algorithms (p. 1-38)

Linear Algebra (p. 1-39)

Logarithm of beta function
Jacobi elliptic functions

Complete elliptic integrals of first
and second kind

Error functions

Exponential integral
Gamma functions
Associated Legendre functions

Psi (polygamma) function

Create random and nonrandom
sparse matrices

Convert full matrix to sparse, sparse
matrix to full

Test matrix for sparseness, get
information on sparse matrix,
allocate sparse matrix, apply
function to nonzero elements,
visualize sparsity pattern

Random, column, minimum degree,
Dulmage-Mendelsohn, and reverse
Cuthill-McKee permutations

Compute norms, eigenvalues,
factorizations, least squares,
structural rank

Mathematics

Linear Equations (Iterative
Methods) (p. 1-39)

Tree Operations (p. 1-40)

Elementary Sparse Matrices
spdiags

speye

sprand
sprandn

sprandsym

Full to Sparse Conversion
find
full

sparse

spconvert

Sparse Matrix Manipulation

issparse
nnz

nonzeros

Methods for conjugate and
biconjugate gradients, residuals,
lower quartile

Elimination trees, tree plotting,
factorization analysis

Extract and create sparse band and
diagonal matrices

Sparse identity matrix

Sparse uniformly distributed
random matrix

Sparse normally distributed random
matrix

Sparse symmetric random matrix

Find indices and values of nonzero
elements

Convert sparse matrix to full matrix
Create sparse matrix

Import matrix from sparse matrix
external format

Determine whether input is sparse
Number of nonzero matrix elements

Nonzero matrix elements

1-37

1 Function Reference

nzmax

spalloc

spfun

spones

spparms

Spy

Reordering Algorithms

amd

colamd

colperm

dmperm
1d1

randperm

symamd

symrcm

1-38

Amount of storage allocated for
nonzero matrix elements

Allocate space for sparse matrix

Apply function to nonzero sparse
matrix elements

Replace nonzero sparse matrix
elements with ones

Set parameters for sparse matrix
routines

Visualize sparsity pattern

Approximate minimum degree
permutation

Column approximate minimum
degree permutation

Sparse column permutation based
on nonzero count

Dulmage-Mendelsohn decomposition

Block LDL’ factorization for
Hermitian indefinite matrices

Random permutation

Symmetric approximate minimum
degree permutation

Sparse reverse Cuthill-McKee
ordering

Mathematics

Linear Algebra

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

condest 1-norm condition number estimate

eigs Largest eigenvalues and
eigenvectors of a matrix

ilu Sparse incomplete LU factorization

luinc Sparse incomplete LU factorization

normest 2-norm estimate

spaugment Form least squares augmented
system

sprank Structural rank

svds Find singular values and vectors

Linear Equations (lterative Methods)

bicg Biconjugate gradients method

bicgstab Biconjugate gradients stabilized
method

cgs Conjugate gradients squared method

gmres Generalized minimum residual
method (with restarts)

lsqr LSQR method

minres Minimum residual method

pcyg Preconditioned conjugate gradients
method

gmr Quasi-minimal residual method

symmlq Symmetric LQ method

1-39

1 Function Reference

Tree Operations

etree Elimination tree

etreeplot Plot elimination tree

gplot Plot nodes and links representing
adjacency matrix

symbfact Symbolic factorization analysis

treelayout Lay out tree or forest

treeplot Plot picture of tree

Math Constants

eps Floating-point relative accuracy

i Imaginary unit

Inf Infinity

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

j Imaginary unit

NaN Not-a-Number

pi Ratio of circle’s circumference to its

diameter, o

realmax Largest positive floating-point
number
realmin Smallest positive normalized

floating-point number

1-40

Data Analysis

Data Analysis

Basic Operations (p. 1-41)
Descriptive Statistics (p. 1-41)
Filtering and Convolution (p. 1-42)

Interpolation and Regression
(p. 1-42)

Fourier Transforms (p. 1-43)
Derivatives and Integrals (p. 1-43)
Time Series Objects (p. 1-44)
Time Series Collections (p. 1-47)

Basic Operations

brush

cumprod
cumsum

linkdata

prod

sort

sortrows

sum

Descriptive Statistics

corrcoef

cov

Sums, products, sorting
Statistical summaries of data
Data preprocessing

Data fitting

Frequency content of data

Data rates and accumulations
Methods for timeseries objects
Methods for tscollection objects

Interactively mark, delete, modify,
and save observations in graphs

Cumulative product
Cumulative sum

Automatically update graphs when
variables change

Product of array elements

Sort array elements in ascending or
descending order

Sort rows in ascending order

Sum of array elements

Correlation coefficients

Covariance matrix

1-41

1 Function Reference

1-42

max
mean
median
min
mode
std

var

Filtering and Convolution

conv

conv2
convn

deconv

detrend
filter
filter2

Largest elements in array
Average or mean value of array
Median value of array
Smallest elements in array
Most frequent values in array
Standard deviation

Variance

Convolution and polynomial
multiplication

2-D convolution

N-D convolution
Deconvolution and polynomaial
division

Remove linear trends

1-D digital filter

2-D digital filter

Interpolation and Regression

interp1
interp2
interp3
interpn
mldivide \, mrdivide /
polyfit
polyval

1-D data interpolation (table lookup)
2-D data interpolation (table lookup)
3-D data interpolation (table lookup)
N-D data interpolation (table lookup)
Left or right matrix division
Polynomial curve fitting

Polynomial evaluation

Data Analysis

Fourier Transforms

abs

angle

cplxpair

fft

fft2
fftn
fftshift

fftw

ifft
ifft2

ifftn

ifftshift
nextpow?2

unwrap

Derivatives and Integrals

cumtrapz

del2
diff

Absolute value and complex
magnitude

Phase angle

Sort complex numbers into complex
conjugate pairs

Discrete Fourier transform
2-D discrete Fourier transform
N-D discrete Fourier transform

Shift zero-frequency component to
center of spectrum

Interface to FFTW library run-time
algorithm tuning control

Inverse discrete Fourier transform

2-D inverse discrete Fourier
transform

N-D inverse discrete Fourier
transform

Inverse FFT shift
Next higher power of 2

Correct phase angles to produce
smoother phase plots

Cumulative trapezoidal numerical
integration

Discrete Laplacian

Differences and approximate
derivatives

1-43

1 Function Reference

1-44

gradient
polyder
polyint

trapz

Time Series Objects

Utilities (p. 1-44)

Data Manipulation (p. 1-45)

Event Data (p. 1-46)

Descriptive Statistics (p. 1-46)

Utilities
get (timeseries)

getdatasamplesize

getqualitydesc

isempty (timeseries)

length (timeseries)
plot (timeseries)
set (timeseries)

size (timeseries)

Numerical gradient
Polynomial derivative
Integrate polynomial analytically

Trapezoidal numerical integration

Combine timeseries objects,
query and set timeseries object
properties, plot timeseries objects

Add or delete data, manipulate
timeseries objects

Add or delete events, create new
timeseries objects based on event
data

Descriptive statistics for timeseries
objects

Query timeseries object property
values

Size of data sample in timeseries
object

Data quality descriptions

Determine whether timeseries
object is empty

Length of time vector
Plot time series
Set properties of timeseries object

Size of timeseries object

Data Analysis

timeseries

tsdata.event
tsprops

tstool

Data Manipulation

addsample

ctranspose (timeseries)

delsample

detrend (timeseries)
filter (timeseries)
getabstime (timeseries)
getinterpmethod
getsampleusingtime
(timeseries)

idealfilter (timeseries)
resample (timeseries)

setabstime (timeseries)

setinterpmethod

Create timeseries object

Construct event object for
timeseries object

Help on timeseries object
properties

Open Time Series Tools GUI

Add data sample to timeseries
object

Transpose timeseries object

Remove sample from timeseries
object

Subtract mean or best-fit line and all
NaNs from time series

Shape frequency content of time
series

Extract date-string time vector into
cell array

Interpolation method for timeseries
object

Extract data samples into new
timeseries object

Apply ideal (noncausal) filter to
timeseries object

Select or interpolate timeseries
data using new time vector

Set times of timeseries object as
date strings

Set default interpolation method for
timeseries object

1-45

1 Function Reference

synchronize

transpose (timeseries)

vertcat (timeseries)

Event Data

addevent

delevent
gettsafteratevent
gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent

gettsbetweenevents

Descriptive Statistics

igr (timeseries)

max (timeseries)
mean (timeseries)

median (timeseries)

1-46

Synchronize and resample two
timeseries objects using common
time vector

Transpose timeseries object

Vertical concatenation of
timeseries objects

Add event to timeseries object

Remove tsdata.event objects from
timeseries object

New timeseries object with samples
occurring at or after event

New timeseries object with samples
occurring after event

New timeseries object with samples
occurring at event

New timeseries object with samples
occurring before or at event

New timeseries object with samples
occurring before event

New timeseries object with samples
occurring between events

Interquartile range of timeseries
data

Maximum value of timeseries data
Mean value of timeseries data

Median value of timeseries data

Data Analysis

min (timeseries)

std (timeseries)

sum (timeseries)

var (timeseries)

Time Series Collections

Utilities (p. 1-47)

Data Manipulation (p. 1-48)

Utilities
get (tscollection)

isempty (tscollection)

length (tscollection)
plot (timeseries)

set (tscollection)

size (tscollection)
tscollection
tstool

Minimum value of timeseries data

Standard deviation of timeseries
data

Sum of timeseries data

Variance of timeseries data

Query and set tscollection object
properties, plot tscollection
objects

Add or delete data, manipulate
tscollection objects

Query tscollection object property
values

Determine whether tscollection
object is empty

Length of time vector
Plot time series

Set properties of tscollection
object

Size of tscollection object
Create tscollection object
Open Time Series Tools GUI

1-47

1 Function Reference

1-48

Data Manipulation

addsampletocollection
addts

delsamplefromcollection
getabstime (tscollection)
getsampleusingtime
(tscollection)
gettimeseriesnames
horzcat (tscollection)
removets

resample (tscollection)
setabstime (tscollection)

settimeseriesnames

vertcat (tscollection)

Add sample to tscollection object

Add timeseries object to
tscollection object

Remove sample from tscollection
object

Extract date-string time vector into
cell array

Extract data samples into new
tscollection object

Cell array of names of timeseries
objects in tscollection object

Horizontal concatenation for
tscollection objects

Remove timeseries objects from
tscollection object

Select or interpolate data in
tscollection using new time vector

Set times of tscollection object as
date strings

Change name of timeseries object
in tscollection

Vertical concatenation for
tscollection objects

Programming and Data Types

Programming and Data Types

Data Types (p. 1-49)

Data Type Conversion (p. 1-57)

Operators and Special Characters
(p. 1-59)

Strings (p. 1-61)

Bit-Wise Operations (p. 1-64)
Logical Operations (p. 1-65)
Relational Operations (p. 1-66)
Set Operations (p. 1-66)

Date and Time Operations (p. 1-66)

Programming in MATLAB (p. 1-67)

Data Types

Numeric Types (p. 1-50)
Characters and Strings (p. 1-51)
Structures (p. 1-52)

Numeric, character, structures, cell
arrays, and data type conversion

Convert one numeric type to another,
numeric to string, string to numeric,
structure to cell array, etc.

Arithmetic, relational, and logical
operators, and special characters

Create, 1dentify, manipulate, parse,
evaluate, and compare strings

Perform set, shift, and, or, compare,
etc. on specific bit fields

Evaluate conditions, testing for true
or false

Compare values for equality, greater
than, less than, etc.

Find set members, unions,
intersections, etc.

Obtain information about dates and
times

M-files, function/expression
evaluation, program control,
function handles, object oriented
programming, error handling

Integer and floating-point data
Characters and arrays of characters

Data of varying types and sizes
stored in fields of a structure

1-49

1 Function Reference

1-50

Cell Arrays (p. 1-53)

Function Handles (p. 1-54)

Java Classes and Objects (p. 1-54)

Data Type Identification (p. 1-56)
Numeric Types

arrayfun

cast

cat

class
find

intmax
intmin

intwarning

ipermute
isa

isequal

isequalwithequalnans

isfinite

Data of varying types and sizes
stored in cells of array

Invoke a function indirectly via
handle

Access Java classes through
MATLAB interface

Determine data type of a variable

Apply function to each element of
array

Cast variable to different data type

Concatenate arrays along specified
dimension

Create object or return class of object

Find indices and values of nonzero
elements

Largest value of specified integer
type

Smallest value of specified integer
type

Control state of integer warnings

Inverse permute dimensions of N-D
array

Determine whether input is object
of given class

Test arrays for equality

Test arrays for equality, treating
NaNs as equal

Array elements that are finite

Programming and Data Types

isinf Array elements that are infinite

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isreal Check if input is real array

isscalar Determine whether input is scalar

isvector Determine whether input is vector

permute Rearrange dimensions of N-D array

realmax Largest positive floating-point
number

realmin Smallest positive normalized
floating-point number

reshape Reshape array

squeeze Remove singleton dimensions

zeros Create array of all zeros

Characters and Strings

See “Strings” on page 1-61 for all string-related functions.

cellstr Create cell array of strings from
character array

char Convert to character array (string)

eval Execute string containing MATLAB
expression

findstr Find string within another, longer
string

isstr Determine whether input is

character array
regexp, regexpi Match regular expression

sprintf Write formatted data to string

1-51

1 Function Reference

1-52

sscanf

strcat

strcmp, strcmpi
strings

strjust
strmatch
strread

strrep

strtrim

strvcat

Structures

arrayfun

cell2struct
class
deal

fieldnames

getfield
isa
isequal

isfield

isscalar

isstruct

Read formatted data from string
Concatenate strings horizontally
Compare strings

String handling

Justify character array

Find possible matches for string
Read formatted data from string
Find and replace substring

Remove leading and trailing white
space from string

Concatenate strings vertically

Apply function to each element of
array

Convert cell array to structure array
Create object or return class of object
Distribute inputs to outputs

Field names of structure, or public
fields of object

Field of structure array

Determine whether input is object
of given class

Test arrays for equality

Determine whether input is
structure array field

Determine whether input is scalar

Determine whether input is
structure array

Programming and Data Types

isvector Determine whether input is vector
orderfields Order fields of structure array
rmfield Remove fields from structure
setfield Set value of structure array field
struct Create structure array
struct2cell Convert structure to cell array
structfun Apply function to each field of scalar
structure

Cell Arrays

cell Construct cell array

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

celldisp Cell array contents

cellfun Apply function to each cell in cell
array

cellplot Graphically display structure of cell
array

cellstr Create cell array of strings from
character array

class Create object or return class of object

deal Distribute inputs to outputs

isa Determine whether input is object
of given class

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell

array of strings

1-53

1 Function Reference

isequal Test arrays for equality

isscalar Determine whether input is scalar

isvector Determine whether input is vector

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

struct2cell Convert structure to cell array

Function Handles

class Create object or return class of object

feval Evaluate function

func2str Construct function name string from
function handle

functions Information about function handle

function_handle (@) Handle used in calling functions
indirectly

isa Determine whether input is object
of given class

isequal Test arrays for equality

str2func Construct function handle from

function name string

Java Classes and Objects

cell Construct cell array

class Create object or return class of object

clear Remove items from workspace,
freeing up system memory

depfun List dependencies of M-file or P-file

1-54

Programming and Data Types

exist

fieldnames

im2java

import

inmem

isa

isjava

javaaddpath

javaArray

javachk

javaclasspath

javaMethod
javaObject

javarmpath

methods

methodsview

usejava

which

Check existence of variable, function,
directory, or Java programming

language class

Field names of structure, or public

fields of object

Convert image to Java image

Add package or class to current

import list

Names of M-files, MEX-files, Sun
Java classes in memory

Determine whether input is object

of given class

Determine whether input is Sun

Java object

Add entries to dynamic Sun Java

class path

Construct Sun Java array

Generate error message based on
Sun Java feature support

Set and get dynamic Sun Java class

path

Invoke Sun Java method

Construct Sun Java object

Remove entries from dynamic Sun

Java class path

Information on class methods

Information on class methods in

separate window

Determine whether Sun Java feature
is supported in MATLAB software

Locate functions and files

1-55

1 Function Reference

1-56

Data Type ldentification

is*

isa

iscell

iscellstr

ischar

isfield

isfloat

isinteger

isjava

islogical

isnumeric

isobject

isreal

isstr

isstruct

validateattributes

who, whos

Detect state

Determine whether input is object
of given class

Determine whether input is cell
array

Determine whether input is cell
array of strings

Determine whether item is character
array

Determine whether input is
structure array field

Determine whether input is
floating-point array

Determine whether input is integer
array

Determine whether input is Sun
Java object

Determine whether input is logical
array

Determine whether input is numeric
array

Determine if input is MATLAB
object

Check if input is real array

Determine whether input is
character array

Determine whether input is
structure array

Check validity of array

List variables in workspace

Programming and Data Types

Data Type Conversion

Numeric (p. 1-57)
String to Numeric (p. 1-57)
Numeric to String (p. 1-58)

Other Conversions (p. 1-58)

Numeric

cast

double

int8, int16, int32, int64
single

typecast

uint8, uint16, uint32, uint64
String to Numeric

base2dec

bin2dec

cast

hex2dec

hex2num

Convert data of one numeric type to
another numeric type

Convert characters to numeric
equivalent

Convert numeric to character
equivalent

Convert to structure, cell array,
function handle, etc.

Cast variable to different data type
Convert to double precision
Convert to signed integer

Convert to single precision

Convert data types without changing
underlying data

Convert to unsigned integer

Convert base N number string to
decimal number

Convert binary number string to
decimal number

Cast variable to different data type

Convert hexadecimal number string
to decimal number

Convert hexadecimal number string
to double-precision number

1-57

1 Function Reference

str2double

str2num

unicode2native

Numeric to String

cast
char

dec2base
dec2bin
dec2hex

int2str
mat2str

native2unicode
num2str

Other Conversions
cell2mat

cell2struct

datestr

func2str

1-58

Convert string to double-precision
value

Convert string to number

Convert Unicode® characters to
numeric bytes

Cast variable to different data type
Convert to character array (string)

Convert decimal to base N number
in string

Convert decimal to binary number
in string

Convert decimal to hexadecimal
number in string

Convert integer to string
Convert matrix to string

Convert numeric bytes to Unicode
characters

Convert number to string

Convert cell array of matrices to
single matrix

Convert cell array to structure array

Convert date and time to string
format

Construct function name string from
function handle

Programming and Data Types

logical
mat2cell

num2cell

num2hex

str2func

str2mat

struct2cell

Convert numeric values to logical

Divide matrix into cell array of
matrices

Convert numeric array to cell array

Convert singles and doubles to
IEEE® hexadecimal strings

Construct function handle from
function name string

Form blank-padded character matrix
from strings

Convert structure to cell array

Operators and Special Characters

Arithmetic Operators (p. 1-59)
Relational Operators (p. 1-60)
Logical Operators (p. 1-60)

Special Characters (p. 1-61)

Arithmetic Operators

+ Plus
- Minus

Decimal point

= Assignment
* Matrix multiplication
/ Matrix right division

Plus, minus, power, left and right
divide, transpose, etc.

Equal to, greater than, less than or
equal to, etc.

Element-wise and short circuit and,
or, not

Array constructors, line
continuation, comments, etc.

1-59

1 Function Reference

\ Matrix left division

Matrix power

Matrix transpose

Array multiplication (element-wise)
J Array right division (element-wise)
AN Array left division (element-wise)
Array power (element-wise)

Array transpose

Relational Operators

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
== Equal to

~= Not equal to

Logical Operators
See also for functions like xor, all, any, etc.

&& Logical AND
[Logical OR
& Logical AND for arrays

| Logical OR for arrays
~ Logical NOT

1-60

Programming and Data Types

Special Characters

Create vectors, subscript arrays, specify for-loop iterations

O) Pass function arguments, prioritize operators

[] Construct array, concatenate elements, specify multiple
outputs from function

{} Construct cell array, index into cell array
Insert decimal point, define structure field, reference methods
of object

.0) Reference dynamic field of structure
Reference parent directory
Continue statement to next line

, Separate rows of array, separate function input/output
arguments, separate commands

; Separate columns of array, suppress output from current
command

% Insert comment line into code

%{ %} Insert block of comments into code

! Issue command to operating system

7’ Construct character array

@ Construct function handle, reference class directory

Strings

Description of Strings in MATLAB Basics of string handling in

(p. 1-62) MATLAB

String Creation (p. 1-62) Create strings, cell arrays of strings,

concatenate strings together
String Identification (p. 1-62) Identify characteristics of strings

1-61

1 Function Reference

String Manipulation (p. 1-63) Convert case, strip blanks, replace
characters

String Parsing (p. 1-63) Formatted read, regular expressions,
locate substrings

String Evaluation (p. 1-64) Evaluate stated expression in string

String Comparison (p. 1-64) Compare contents of strings

Description of Strings in MATLAB

strings String handling

String Creation

blanks Create string of blank characters

cellstr Create cell array of strings from
character array

char Convert to character array (string)
sprintf Write formatted data to string
strcat Concatenate strings horizontally
strvcat Concatenate strings vertically

String Identification

class Create object or return class of object

isa Determine whether input is object
of given class

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

1-62

Programming and Data Types

isletter

isscalar

isspace
isstrprop

isvector

validatestring
String Manipulation
deblank

lower
strjust
strrep

strtrim
upper

String Parsing
findstr

regexp, regexpi

regexprep
regexptranslate

sscanf

Array elements that are alphabetic

letters

Determine whether input is scalar

Array elements that are space

characters

Determine whether string is of

specified category

Determine whether input is vector

Check validity of text string

Strip trailing blanks from end of

string

Convert string to lowercase

Justify character array

Find and replace substring

Remove leading and trailing white

space from string

Convert string to uppercase

Find string within another, longer

string

Match regular expression

Replace string using regular

expression

Translate string into regular

expression

Read formatted data from string

1-63

1 Function Reference

strfind
strread

strtok

String Evaluation

eval
evalc

evalin

String Comparison

strcmp, strcmpi
strmatch

strncmp, strncmpi

Bit-Wise Operations

bitand
bitcmp
bitget

bitmax

bitor
bitset
bitshift

1-64

Find one string within another
Read formatted data from string

Selected parts of string

Execute string containing MATLAB
expression

Evaluate MATLAB expression with
capture

Execute MATLAB expression in
specified workspace

Compare strings
Find possible matches for string

Compare first n characters of strings

Bitwise AND
Bitwise complement
Bit at specified position

Maximum double-precision
floating-point integer

Bitwise OR
Set bit at specified position
Shift bits specified number of places

Programming and Data Types

bitxor

swapbytes

Logical Operations

all

and

any

false
find

isa

iskeyword

isvarname

logical

not

or

true

xor

Bitwise XOR
Swap byte ordering

Determine whether all array
elements are nonzero

Find logical AND of array or scalar
inputs

Determine whether any array
elements are nonzero

Logical 0 (false)

Find indices and values of nonzero
elements

Determine whether input is object
of given class

Determine whether input is
MATLAB keyword

Determine whether input is valid
variable name

Convert numeric values to logical

Find logical NOT of array or scalar
input

Find logical OR of array or scalar
inputs

Logical 1 (true)

Logical exclusive-OR

See “Operators and Special Characters” on page 1-59 for logical operators.

1-65

1 Function Reference

1-66

Relational Operations

€q
ge
gt
le
1t

ne

Test for equality

Test for greater than or equal to
Test for greater than

Test for less than or equal to
Test for less than

Test for inequality

See “Operators and Special Characters” on page 1-59 for relational operators.

Set Operations

intersect

ismember
issorted

setdiff
setxor
union

unique

Date and Time Operations

addtodate
calendar
clock
cputime
date

Find set intersection of two vectors

Array elements that are members
of set

Determine whether set elements are
in sorted order

Find set difference of two vectors
Find set exclusive OR of two vectors
Find set union of two vectors

Find unique elements of vector

Modify date number by field
Calendar for specified month
Current time as date vector
Elapsed CPU time

Current date string

Programming and Data Types

datenum
datestr
datevec

eomday
etime
now

weekday

Programming in MATLAB

M-Files and Scripts (p. 1-68)

Evaluation (p. 1-69)
Timer (p. 1-70)

Variables and Functions in Memory
(p. 1-70)

Control Flow (p. 1-71)

Error Handling (p. 1-72)

MEX Programming (p. 1-73)

Convert date and time to serial date
number

Convert date and time to string
format

Convert date and time to vector of
components

Last day of month
Time elapsed between date vectors
Current date and time

Day of week

Declare functions, handle
arguments, identify dependencies,
etc.

Evaluate expression in string, apply
function to array, run script file, etc.

Schedule execution of MATLAB
commands

List files in memory, clear M-files
in memory, assign to variable in
nondefault workspace, refresh
caches

if-then-else, for loops, switch-case,
try-catch

Generate warnings and errors, test
for and catch errors, retrieve most
recent error message

Compile MEX function from C or
Fortran code, list MEX-files in
memory, debug MEX-files

1-67

1 Function Reference

1-68

M-Files and Scripts

addOptional (inputParser)
addParamValue (inputParser)
addRequired (inputParser)

createCopy (inputParser)

depdir

depfun
echo

end

function

input

inputname
inputParser
mfilename
namelengthmax
nargchk

nargin, nargout

nargoutchk

parse (inputParser)

pcode

script

syntax

Add optional argument to
inputParser schema

Add parameter-value argument to
inputParser schema

Add required argument to
inputParser schema

Create copy of inputParser object

List dependent directories of M-file
or P-file

List dependencies of M-file or P-file
Echo M-files during execution

Terminate block of code, or indicate
last array index

Declare M-file function

Request user input

Variable name of function input
Construct input parser object

Name of currently running M-file
Maximum identifier length

Validate number of input arguments
Number of function arguments

Validate number of output
arguments

Parse and validate named inputs

Create preparsed pseudocode file
(P-file)

Script M-file description
Two ways to call MATLAB functions

Programming and Data Types

varargin

varargout

Evaluation

ans

arrayfun

assert

builtin

cellfun

echo

eval

evalc

evalin

feval

iskeyword

isvarname

pause

run

script

Variable length input argument list

Variable length output argument list

Most recent answer

Apply function to each element of
array

Generate error when condition is
violated

Execute built-in function from
overloaded method

Apply function to each cell in cell
array

Echo M-files during execution

Execute string containing MATLAB
expression

Evaluate MATLAB expression with
capture

Execute MATLAB expression in
specified workspace

Evaluate function

Determine whether input is
MATLAB keyword

Determine whether input is valid
variable name

Halt execution temporarily

Run script that is not on current
path

Script M-file description

1-69

1 Function Reference

1-70

structfun

symvar

tic, toc

Timer

delete (timer)
disp (timer)
get (timer)

isvalid (timer)

set (timer)

start

startat

stop
timer
timerfind

timerfindall

wait

Apply function to each field of scalar
structure

Determine symbolic variables in
expression

Measure performance using
stopwatch timer

Remove timer object from memory
Information about timer object
Timer object properties

Determine whether timer object is
valid

Configure or display timer object
properties

Start timer(s) running

Start timer(s) running at specified
time

Stop timer(s)
Construct timer object
Find timer objects

Find timer objects, including
invisible objects

Wait until timer stops running

Variables and Functions in Memory

ans

assignin

Most recent answer

Assign value to variable in specified
workspace

Programming and Data Types

datatipinfo

genvarname

global

inmem

isglobal

memory

mislocked

mlock

munlock

namelengthmax
pack
persistent

rehash

Control Flow

break

case

catch

Produce short description of input
variable

Construct valid variable name from
string

Declare global variables

Names of M-files, MEX-files, Sun
Java classes in memory

Determine whether input is global
variable

Display memory information

Determine whether M-file or
MEX-file cannot be cleared from
memory

Prevent clearing M-file or MEX-file
from memory

Allow clearing M-file or MEX-file
from memory

Maximum identifier length
Consolidate workspace memory
Define persistent variable

Refresh function and file system
path caches

Terminate execution of for or while
loop

Execute block of code if condition is
true

Specify how to respond to error in
try statement

1-71

1 Function Reference

1-72

continue
else
elseif
end

error

for
if

otherwise
parfor
return

switch
try

while

Error Handling

addCause (MException)

assert
catch

disp (MException)

Pass control to next iteration of for
or while loop

Execute statements if condition is
false

Execute statements if additional
condition is true

Terminate block of code, or indicate
last array index

Display message and abort function

Execute block of code specified
number of times

Execute statements if condition is
true

Default part of switch statement
Parallel for-loop
Return to invoking function

Switch among several cases, based
on expression

Attempt to execute block of code, and
catch errors

Repeatedly execute statements while
condition is true

Append MException objects

Generate error when condition is
violated

Specify how to respond to error in
try statement

Display MException object

Programming and Data Types

eq (MException)

error

ferror

getReport (MException)
intwarning

isequal (MException)

last (MException)
lasterr

lasterror

lastwarn
MException

ne (MException)

rethrow
rethrow (MException)

throw (MException)
try
warning

MEX Programming

dbmex

inmem

Compare MException objects for
equality

Display message and abort function

Query the MATLAB software about
errors in file input or output

Get error message for exception
Control state of integer warnings

Compare MException objects for
equality

Last uncaught exception
Last error message

Last error message and related
information

Last warning message
Construct MException object

Compare MException objects for
inequality

Reissue error
Reissue existing exception

Terminate function and issue
exception

Attempt to execute block of code, and
catch errors

Warning message

Enable MEX-file debugging

Names of M-files, MEX-files, Sun
Java classes in memory

1-73

1 Function Reference

mex Compile MEX-function from C/ C++
or Fortran source code

mex.getCompilerConfigurations Get compiler configuration
information for building MEX-files

mexext Binary MEX-file name extension

1-74

Object-Oriented Programming

Object-Oriented Programming

Classes and Objects (p. 1-75)

Handle Classes (p. 1-76)
Events and Listeners (p. 1-77)
Meta-Classes (p. 1-77)

Classes and Obijects

class
classdef

fieldnames

inferiorto

isa
isobject
loadobj

methods

methodsview

properties

saveobj

subsasgn
subsindex

subsref

Get information about classes and
objects

Define and use handle classes
Define and use events and listeners

Access information about classes
without requiring instances

Create object or return class of object
Class definition key words

Field names of structure, or public
fields of object

Specify inferior class relationship

Determine whether input is object
of given class

Determine if input is MATLAB
object

User-defined class method called by
load function

Information on class methods

Information on class methods in
separate window

Display class property names

Method called by save function for
user-defined objects

Subscripted assignment for objects
Subscripted indexing for objects

Subscripted reference for objects

1-75

1 Function Reference

1-76

substruct

superiorto

Handle Classes

addlistener (handle)
addprop (dynamicprops)

delete (handle)

dynamicprops

findobj (handle)

findprop (handle)

get (hgsetget)

getdisp (hgsetget)

handle

hgsetget

isvalid (handle)
notify (handle)

relationaloperators (handle)

Create structure argument for
subsasgn or subsref

Establish superior class relationship

Create event listener
Add dynamic property
Handle object destructor function

Abstract class used to derive handle
class with dynamic properties

Finds objects matching specified
conditions

Find meta.property object
associated with property name

Query property values of handle
objects derived from hgsetget class

Override to change command
window display

Abstract class for deriving handle
classes

Abstract class used to derive handle
class with set and get methods

Is object valid handle object

notify listeners that event is
occurring

Equality and sorting of handle
objects

Object-Oriented Programming

set (hgsetget) Assign property values to handle
objects derived from hgsetget class

setdisp (hgsetget) Override to change command
window display

Events and Listeners

addlistener (handle) Create event listener

event.EventData Base class for all data objects passed
to event listeners

event.listener Class defining listener objects

event.PropertyEvent Listener for property events

event.proplistener Define listener object for property
events

events Display class event names

notify (handle) notify listeners that event is
occurring

Meta-Classes

meta.class meta.class class describes
MATLAB classes

meta.class.fromName Return meta.class object associated

with named class

meta.DynamicProperty meta.DynamicProperty class

describes dynamic property of
MATLAB object

meta.event meta.event class describes
MATLAB class events
meta.method meta.method class describes

MATLAB class methods

1-77

1 Function Reference

1-78

meta.package

meta.package.fromName

meta.package.getAllPackages

meta.property

metaclass

meta.package class describes
MATLAB packages

Return meta.package object for
specified package

Get all top-level packages

meta.property class describes
MATLAB class properties

Return meta.class object

File /O

File I/O

File Name Construction (p. 1-79)
File Opening, Loading, and Saving
(p. 1-80)

Memory Mapping (p. 1-80)
Low-Level File I/O (p. 1-80)

Text Files (p. 1-81)

XML Documents (p. 1-82)

Spreadsheets (p. 1-82)
Scientific Data (p. 1-83)
Audio and Audio/Video (p. 1-86)

Images (p. 1-88)
Internet Exchange (p. 1-88)

Get path, directory, filename
information; construct filenames

Open files; transfer data between
files and MATLAB workspace

Access file data via memory map
using MATLAB array indexing

Low-level operations that use a file
identifier

Delimited or formatted I/0 to text
files

Documents written in Extensible
Markup Language

Excel and Lotus 1-2-3 files
CDF, FITS, HDF formats

General audio functions;

SparcStation, WAVE, AVI files
Graphics files
URL, FTP, zip, tar, and e-mail

To see a listing of file formats that are readable from MATLAB, go to file

formats.

File Name Construction

filemarker

fileparts

filesep

fullfile

Character to separate file name and
internal function name

Parts of file name and path

Directory separator for current
platform

Build full filename from parts

1-79

1 Function Reference

tempdir

tempname

Name of system’s temporary
directory

Unique name for temporary file

File Opening, Loading, and Saving

dagread

filehandle

importdata

load
open
save
uiimport

winopen

Memory Mapping

disp (memmapfile)

get (memmapfile)

memmapfile

Low-Level File 1/0

fclose
feof

ferror

1-80

Read Data Acquisition Toolbox™
(.dagq) file

Construct file handle object

Load data from disk file

Load workspace variables from disk
Open files based on extension

Save workspace variables to disk
Open Import Wizard to import data

Open file in appropriate application
(Windows)

Information about memmapfile
object

Memmapfile object properties

Construct memmapfile object

Close one or more open files
Test for end-of-file

Query the MATLAB software about
errors in file input or output

File /O

fgetl
fgets
fopen

fprintf
fread

frewind

fscanf
fseek
ftell

fwrite

Text Files

csvread
csvwrite

dlmread

dlmwrite

fileread
textread

textscan

Read line from file, discarding
newline character

Read line from file, keeping newline
character

Open file, or obtain information
about open files

Write formatted data to file
Read binary data from file

Move file position indicator to
beginning of open file

Read formatted data from file
Set file position indicator
File position indicator

Write binary data to file

Read comma-separated value file
Write comma-separated value file

Read ASCII-delimited file of numeric
data into matrix

Write matrix to ASCII-delimited file

Return contents of file as string
vector

Read data from text file; write to
multiple outputs

Read formatted data from text file
or string

1-81

1 Function Reference

XML Documents

xmlread
xmlwrite

xslt

Spreadsheets

Microsoft Excel (p. 1-82)

Lotus 1-2-3 (p. 1-82)

Microsoft Excel

xlsfinfo
xlsread

xlswrite

Lotus 1-2-3

wkifinfo
wk1read

wkiwrite

1-82

Parse XML document and return
Document Object Model node

Serialize XML Document Object
Model node

Transform XML document using
XSLT engine

Read and write Microsoft Excel
spreadsheet

Read and write Lotus WK1
spreadsheet

Determine whether file contains
Microsoft® Excel® (. x1s) spreadsheet

Read Microsoft Excel spreadsheet
file (.x1s)

Write Microsoft Excel spreadsheet
file (.x1s)

Determine whether file contains
1-2-3 WK1 worksheet

Read Lotus 1-2-3 WK1 spreadsheet
file into matrix

Write matrix to Lotus 1-2-3 WK1
spreadsheet file

File /O

Scientific Data

Common Data Format (p. 1-83)

Network Common Data Form
(p. 1-83)

Flexible Image Transport System
(p. 1-85)

Hierarchical Data Format (p. 1-85)
Band-Interleaved Data (p. 1-86)

Common Data Format
cdfepoch
cdfinfo
cdfread
cdfwrite

todatenum

Network Common Data Form
File Operations

netcdf

netcdf.abort
netcdf.close

netcdf.create

Work with CDF files
Work with netCDF files

Work with FITS files

Work with HDF files
Work with band-interleaved files

Construct cdfepoch object for
Common Data Format (CDF) export

Information about Common Data
Format (CDF) file

Read data from Common Data
Format (CDF) file

Write data to Common Data Format
(CDF) file

Convert CDF epoch object to
MATLAB datenum

Summary of MATLAB Network
Common Data Form (netCDF)
capabilities

Revert recent netCDF file definitions
Close netCDF file
Create new netCDF dataset

1-83

1 Function Reference

1-84

netcdf.endDef

netcdf.getConstant

netcdf.getConstantNames

netcdf.inq

netcdf.inglLibVers

netcdf.open

netcdf.reDef

netcdf.setDefaultFormat

netcdf.setFill

netcdf.sync

Dimensions

netcdf.defDim

netcdf.ingDim

netcdf.ingDimID

netcdf.renameDim

Variables

netcdf.defVar
netcdf.getVvar
netcdf.inqgVar

netcdf.inqVarlID

End netCDF file define mode

Return numeric value of named
constant

Return list of constants known to
netCDF library

Return information about netCDF
file

Return netCDF library version
information

Open netCDF file

Put open netCDF file into define
mode

Change default netCDF file format
Set netCDF fill mode
Synchronize netCDF file to disk

Create netCDF dimension

Return netCDF dimension name and
length

Return dimension ID

Change name of netCDF dimension

Create netCDF variable
Return data from netCDF variable
Return information about variable

Return ID associated with variable
name

File /O

netcdf.putvar Write data to netCDF variable
netcdf.renamevar Change name of netCDF variable
Attributes
netcdf.copyAtt Copy attribute to new location
netcdf.delAtt Delete netCDF attribute
netcdf.getAtt Return netCDF attribute
netcdf.ingAtt Return information about netCDF
attribute
netcdf.ingAttID Return ID of netCDF attribute
netcdf.ingAttName Return name of netCDF attribute
netcdf.putAtt Write netCDF attribute
netcdf.renameAtt Change name of attribute

Flexible Image Transport System

fitsinfo Information about FITS file
fitsread Read data from FITS file

Hierarchical Data Format

hdf Summary of MATLAB HDF4
capabilities

hdf5 Summary of MATLAB HDF5
capabilities

hdf5info Information about HDF5 file

hdf5read Read HDF5 file

hdfswrite Write data to file in HDF5 format

1-85

1 Function Reference

hdfinfo Information about HDF4 or
HDF-EOS file

hdfread Read data from HDF4 or HDF-EOS
file

hdftool Browse and import data from HDF4

or HDF-EOS files

Band-Interleaved Data

multibandread Read band-interleaved data from
binary file
multibandwrite Write band-interleaved data to file

Audio and Audio/Video

Utilities (p. 1-86) Create audio player object, obtain
information about multimedia files,
convert to/from audio signal

SPARCstation-Specific Sound Access NeXT/SUN (. au) sound files

(p. 1-87)

Microsoft WAVE Sound (p. 1-87) Access Microsoft WAVE (.wav)
sound files

Audio/Video Interleaved (p. 1-88) Access Audio/Video interleaved
(.avi) sound files

Utilities
audioplayer Create audio player object
audiorecorder Create audio recorder object
beep Produce beep sound
lin2mu Convert linear audio signal to

mu-law

1-86

File /O

mmfileinfo

mmreader
mu2lin
read

sound

soundsc
SPARCstation-Specific Sound
aufinfo

auread

auwrite

Microsoft WAVE Sound

wavfinfo
wavplay
wavread
wavrecord

wavwrite

Information about multimedia file

Create multimedia reader object for
reading video files

Convert mu-law audio signal to
linear

Read video frame data from
multimedia reader object

Convert vector into sound

Scale data and play as sound

Information about NeXT/SUN (. au)
sound file

Read NeXT/SUN (. au) sound file
Write NeXT/SUN (. au) sound file

Information about Microsoft WAVE
(.wav) sound file

Play recorded sound on PC-based
audio output device

Read Microsoft WAVE (.wav) sound
file

Record sound using PC-based audio
input device

Write Microsoft WAVE (.wav) sound
file

1-87

1 Function Reference

Audio/Video Interleaved

addframe
avifile
aviinfo
aviread

close (avifile)

movie2avi

Images

exifread
im2java
imfinfo
imread

imwrite

Internet Exchange

URL, Zip, Tar, E-Mail (p. 1-89)

FTP (p. 1-89)

1-88

Add frame to Audio/Video
Interleaved (AVI]) file

Create new Audio/Video Interleaved
(AVI) file

Information about Audio/Video
Interleaved (AVI]) file

Read Audio/Video Interleaved (AVI)
file

Close Audio/Video Interleaved (AVI)
file

Create Audio/Video Interleaved
(AVI) movie from MATLAB movie

Read EXIF information from JPEG
and TIFF image files

Convert image to Java image
Information about graphics file
Read image from graphics file

Write image to graphics file

Send e-mail, read from given URL,
extract from tar or zip file, compress
and decompress files

Connect to FTP server, download
from server, manage FTP files, close
server connection

File /O

URL, Zip, Tar, E-Mail

gunzip Uncompress GNU zip files

gzip Compress files into GNU zip files

sendmail Send e-mail message to address list

tar Compress files into tar file

untar Extract contents of tar file

unzip Extract contents of zip file

urlread Read content at URL

urlwrite Save contents of URL to file

zip Compress files into zip file

FTP

ascii Set FTP transfer type to ASCII

binary Set FTP transfer type to binary

cd (ftp) Change current directory on FTP
server

close (ftp) Close connection to FTP server

delete (ftp) Remove file on FTP server

dir (ftp) Directory contents on FTP server

ftp Connect to FTP server, creating FTP
object

mget Download file from FTP server

mkdir (ftp) Create new directory on FTP server

mput Upload file or directory to FTP server

rename Rename file on FTP server

rmdir (ftp) Remove directory on FTP server

1-89

1 Function Reference

1-90

Graphics

Basic Plots and Graphs (p. 1-90)

Plotting Tools (p. 1-91)
Annotating Plots (p. 1-91)

Specialized Plotting (p. 1-92)
Bit-Mapped Images (p. 1-96)
Printing (p. 1-96)

Handle Graphics (p. 1-97)

Basic Plots and Graphs

box

errorbar

hold

LineSpec (Line Specification)
loglog

plot

plot3

plotyy

polar
semilogx, semilogy

subplot

Linear line plots, log and semilog
plots

GUIs for interacting with plots

Functions for and properties of titles,
axes labels, legends, mathematical
symbols

Bar graphs, histograms, pie charts,
contour plots, function plotters

Display image object, read and write
graphics file, convert to movie frames

Printing and exporting figures to
standard formats

Creating graphics objects, setting
properties, finding handles

Axes border

Plot error bars along curve
Retain current graph in figure
Line specification string syntax
Log-log scale plot

2-D line plot

3-D line plot

2-D line plots with y-axes on both
left and right side

Polar coordinate plot
Semilogarithmic plots

Create axes in tiled positions

Graphics

Plotting Tools

figurepalette
pan
plotbrowser
plotedit
plottools
propertyeditor
rotate3d
showplottool

Zoom

Annotating Plots

annotation
clabel

datacursormode

datetick
gtext
legend
line
rectangle

texlabel

title
xlabel, ylabel, zlabel

Show or hide figure palette

Pan view of graph interactively
Show or hide figure plot browser

Interactively edit and annotate plots

Show or hide plot tools

Show or hide property editor
Rotate 3-D view using mouse
Show or hide figure plot tool

Turn zooming on or off or magnify

by factor

Create annotation objects

Contour plot elevation labels

Enable or disable interactive data

cursor mode

Date formatted tick labels

Mouse placement of text in 2-D view

Graph legend for lines and patches

Create line object

Create 2-D rectangle object

Produce TeX format from character

string
Add title to current axes

Label x-, y-, and z-axis

1-91

1 Function Reference

1-92

Specialized Plotting

Area, Bar, and Pie Plots (p. 1-92)
Contour Plots (p. 1-93)

Direction and Velocity Plots (p. 1-93)

Discrete Data Plots (p. 1-93)
Function Plots (p. 1-93)

Histograms (p. 1-94)

Polygons and Surfaces (p. 1-94)

Scatter/Bubble Plots (p. 1-95)
Animation (p. 1-95)

Area, Bar, and Pie Plots

area

bar, barh

bar3, bar3h
pareto
pie

pie3

1-D, 2-D, and 3-D graphs and charts

Unfilled and filled contours in 2-D
and 3-D

Comet, compass, feather and quiver
plots

Stair, step, and stem plots

Easy-to-use plotting utilities for
graphing functions

Plots for showing distributions of
data

Functions to generate and plot
surface patches in two or more
dimensions

Plots of point distributions

Functions to create and play movies
of plots

Filled area 2-D plot

Plot bar graph (vertical and
horizontal)

Plot 3-D bar chart
Pareto chart

Pie chart

3-D pie chart

Graphics

Contour Plots

contour
contour3
contourc
contourf
ezcontour

ezcontourf

Direction and Velocity Plots

comet
comet3
compass
feather
quiver

quivers3

Discrete Data Plots

stairs
stem

stem3

Function Plots

ezcontour
ezcontourf

ezmesh

Contour plot of matrix

3-D contour plot

Low-level contour plot computation
Filled 2-D contour plot

Easy-to-use contour plotter

Easy-to-use filled contour plotter

2-D comet plot

3-D comet plot

Plot arrows emanating from origin
Plot velocity vectors

Quiver or velocity plot

3-D quiver or velocity plot

Stairstep graph
Plot discrete sequence data

Plot 3-D discrete sequence data

Easy-to-use contour plotter
Easy-to-use filled contour plotter

Easy-to-use 3-D mesh plotter

1-93

1 Function Reference

1-94

ezmeshc

ezplot
ezplot3

ezpolar

ezsurf
ezsurfc

fplot

Histograms

hist
histc

rose

Polygons and Surfaces

convhull
cylinder
delaunay
delaunay3
delaunayn

dsearch

dsearchn

ellipsoid

Easy-to-use combination
mesh/contour plotter

Easy-to-use function plotter

Easy-to-use 3-D parametric curve
plotter

Easy-to-use polar coordinate plotter

Easy-to-use 3-D colored surface
plotter

Easy-to-use combination
surface/contour plotter

Plot function between specified
limits

Histogram plot
Histogram count

Angle histogram plot

Convex hull

Generate cylinder
Delaunay triangulation
3-D Delaunay tessellation
N-D Delaunay tessellation

Search Delaunay triangulation for
nearest point

N-D nearest point search

Generate ellipsoid

Graphics

fill Filled 2-D polygons

fill3 Filled 3-D polygons

inpolygon Points inside polygonal region

pcolor Pseudocolor (checkerboard) plot

polyarea Area of polygon

rectint Rectangle intersection area

ribbon Ribbon plot

slice Volumetric slice plot

sphere Generate sphere

tsearch Search for enclosing Delaunay
triangle

tsearchn N-D closest simplex search

voronoi Voronoi diagram

waterfall Waterfall plot

Scatter/Bubble Plots

plotmatrix Scatter plot matrix

scatter Scatter plot

scatter3 3-D scatter plot

Animation

frame2im Return image data associated with
movie frame

getframe Capture movie frame

im2frame Convert image to movie frame

1-95

1 Function Reference

movie Play recorded movie frames
noanimate Change EraseMode of all objects to
normal

Bit-Mapped Images

frame2im Return image data associated with
movie frame

im2frame Convert image to movie frame

im2java Convert image to Java image

image Display image object

imagesc Scale data and display image object

imfinfo Information about graphics file

imformats Manage image file format registry

imread Read image from graphics file

imwrite Write image to graphics file

ind2rgb Convert indexed image to RGB
image

Printing

hgexport Export figure

orient Hardcopy paper orientation

print, printopt Print figure or save to file and
configure printer defaults

printdlg Print dialog box

printpreview Preview figure to print

saveas Save figure or Simulink block

diagram using specified format

1-96

Graphics

Handle Graphics

Graphics Object Identification Find and manipulate graphics

(p. 1-97) objects via their handles

Object Creation (p. 1-98) Constructors for core graphics
objects

Plot Objects (p. 1-98) Property descriptions for plot objects

Figure Windows (p. 1-99) Control and save figures

Axes Operations (p. 1-100) Operate on axes objects

Object Property Operations (p. 1-100) Query, set, and link object properties

Graphics Object Identification

allchild Find all children of specified objects

ancestor Ancestor of graphics object

copyobj Copy graphics objects and their
descendants

delete Remove files or graphics objects

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gca Current axes handle

gcbf Handle of figure containing object
whose callback is executing

gcbo Handle of object whose callback is
executing

gco Handle of current object

get Query Handle Graphics® object
properties

1-97

1 Function Reference

1-98

ishandle

propedit

set

Object Creation

axes
figure
hggroup
hgtransform
image

light

line

patch
rectangle
root object
surface
text

uicontextmenu

Plot Obijects

Annotation Arrow Properties

Annotation Doublearrow
Properties

Annotation Ellipse Properties

Annotation Line Properties

Determine whether input is valid
Handle Graphics handle

Open Property Editor

Set Handle Graphics object
properties

Create axes graphics object
Create figure graphics object
Create hggroup object

Create hgtransform graphics object
Display image object

Create light object

Create line object

Create patch graphics object
Create 2-D rectangle object

Root object properties

Create surface object

Create text object in current axes

Create context menu

Define annotation arrow properties

Define annotation doublearrow
properties

Define annotation ellipse properties

Define annotation line properties

Graphics

Annotation
Properties

Rectangle

Annotation Textarrow

Properties
Annotation Textbox Properties
Areaseries Properties
Barseries Properties
Contourgroup Properties
Errorbarseries Properties
Image Properties
Lineseries Properties
Quivergroup Properties
Scattergroup Properties
Stairseries Properties
Stemseries Properties

Surfaceplot Properties

Figure Windows

clf
close
closereq

drawnow

gcf
hgload

hgsave

Define annotation rectangle
properties

Define annotation textarrow
properties

Define annotation textbox properties

Define areaseries properties
Define barseries properties
Define contourgroup properties
Define errorbarseries properties
Define image properties

Define lineseries properties
Define quivergroup properties
Define scattergroup properties
Define stairseries properties
Define stemseries properties

Define surfaceplot properties

Clear current figure window
Remove specified figure

Default figure close request function

Flush event queue and update figure

window
Current figure handle

Load Handle Graphics object
hierarchy from file

Save Handle Graphics object
hierarchy to file

1-99

1 Function Reference

1-100

newplot

opengl
refresh

saveas

Axes Operations

axis
box
cla
gca
grid
ishold

makehgtform
Object Property Operations
get
linkaxes
linkprop
refreshdata

set

Determine where to draw graphics
objects

Control OpenGL® rendering
Redraw current figure

Save figure or Simulink block
diagram using specified format

Axis scaling and appearance
Axes border

Clear current axes

Current axes handle

Grid lines for 2-D and 3-D plots
Current hold state

Create 4-by-4 transform matrix

Query Handle Graphics object
properties

Synchronize limits of specified 2-D
axes

Keep same value for corresponding
properties

Refresh data in graph when data
source is specified

Set Handle Graphics object
properties

3-D Visualization

3-D Visualization

Surface and Mesh Plots (p. 1-101) Plot matrices, visualize functions of
two variables, specify colormap

View Control (p. 1-103) Control the camera viewpoint,
zooming, rotation, aspect ratio, set
axis limits

Lighting (p. 1-105) Add and control scene lighting

Transparency (p. 1-105) Specify and control object
transparency

Volume Visualization (p. 1-106) Visualize gridded volume data

Surface and Mesh Plots

Surface and Mesh Creation (p. 1-101) Visualizing gridded and triangulated
data as lines and surfaces

Domain Generation (p. 1-102) Gridding data and creating arrays

Color Operations (p. 1-102) Specifying, converting, and
manipulating color spaces,
colormaps, colorbars, and

backgrounds
Colormaps (p. 1-103) Built-in colormaps you can use
Surface and Mesh Creation
hidden Remove hidden lines from mesh plot
mesh, meshc, meshz Mesh plots
peaks Example function of two variables
surf, surfc 3-D shaded surface plot
surface Create surface object
surfl Surface plot with colormap-based
lighting

1-101

1 Function Reference

tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot 2-D triangular plot
trisurf Triangular surface plot

Domain Generation

griddata Data gridding
meshgrid Generate X and Y arrays for 3-D plots

Color Operations

brighten Brighten or darken colormap

caxis Color axis scaling

colorbar Colorbar showing color scale

colordef Set default property values to
display different color schemes

colormap Set and get current colormap

colormapeditor Start colormap editor

ColorSpec (Color Color specification

Specification)

graymon Set default figure properties for
grayscale monitors

hsv2rgb Convert HSV colormap to RGB
colormap

rgb2hsv Convert RGB colormap to HSV
colormap

rgbplot Plot colormap

shading Set color shading properties

spinmap Spin colormap

1-102

3-D Visualization

surfnorm Compute and display 3-D surface
normals
whitebg Change axes background color
Colormaps
contrast Grayscale colormap for contrast
enhancement

View Control

Camera Viewpoint (p. 1-103) Orbiting, dollying, pointing, rotating
camera positions and setting fields
of view

Aspect Ratio and Axis Limits Specifying what portions of axes to

(p. 1-104) view and how to scale them

Object Manipulation (p. 1-104) Panning, rotating, and zooming
views

Region of Interest (p. 1-105) Interactively identifying rectangular
regions

Camera Viewpoint

camdolly Move camera position and target

cameratoolbar Control camera toolbar
programmatically

camlookat Position camera to view object or
group of objects

camorbit Rotate camera position around
camera target

campan Rotate camera target around camera
position

1-103

1 Function Reference

1-104

campos
camproj
camroll

camtarget

camup
camva
camzoom
makehgtform
view

viewmtx

Aspect Ratio and Axis Limits

daspect
pbaspect
xlim, ylim, zlim

Object Manipulation

pan

reset

rotate
rotate3d

selectmoveresize

zoom

Set or query camera position
Set or query projection type
Rotate camera about view axis

Set or query location of camera
target

Set or query camera up vector
Set or query camera view angle
Zoom in and out on scene
Create 4-by-4 transform matrix
Viewpoint specification

View transformation matrices

Set or query axes data aspect ratio
Set or query plot box aspect ratio

Set or query axis limits

Pan view of graph interactively

Reset graphics object properties to
their defaults

Rotate object in specified direction
Rotate 3-D view using mouse

Select, move, resize, or copy axes
and uicontrol graphics objects

Turn zooming on or off or magnify
by factor

3-D Visualization

Region of Interest

dragrect

rbbox

Lighting

camlight

diffuse
light
lightangle

lighting

material

specular

Transparency

alim

alpha

alphamap

Drag rectangles with mouse

Create rubberband box for area
selection

Create or move light object in camera
coordinates

Calculate diffuse reflectance
Create light object

Create or position 1ight object in
spherical coordinates

Specify lighting algorithm

Control reflectance properties of
surfaces and patches

Calculate specular reflectance

Set or query axes alpha limits

Set transparency properties for
objects in current axes

Specify figure alphamap
(transparency)

1-105

1 Function Reference

1-106

Volume Visualization

coneplot

contourslice

curl

divergence
flow

interpstreamspeed

isocaps

isocolors

isonormals

isosurface

reducepatch

reducevolume

shrinkfaces
slice
smooth3
stream2
stream3

streamline

streamparticles

streamribbon

Plot velocity vectors as cones in 3-D
vector field

Draw contours in volume slice planes

Compute curl and angular velocity
of vector field

Compute divergence of vector field
Simple function of three variables

Interpolate stream-line vertices from
flow speed

Compute isosurface end-cap
geometry

Calculate isosurface and patch colors

Compute normals of isosurface
vertices

Extract isosurface data from volume
data

Reduce number of patch faces

Reduce number of elements in
volume data set

Reduce size of patch faces
Volumetric slice plot

Smooth 3-D data

Compute 2-D streamline data
Compute 3-D streamline data

Plot streamlines from 2-D or 3-D
vector data

Plot stream particles

3-D stream ribbon plot from vector
volume data

3-D Visualization

streamslice Plot streamlines in slice planes
streamtube Create 3-D stream tube plot
subvolume Extract subset of volume data set
surf2patch Convert surface data to patch data
volumebounds Coordinate and color limits for

volume data

1-107

1 Function Reference

GUI Development

1-108

Predefined Dialog Boxes (p. 1-108)
User Interface Deployment (p. 1-109)

User Interface Development
(p. 1-109)

User Interface Objects (p. 1-110)
Objects from Callbacks (p. 1-111)

GUI Utilities (p. 1-111)
Program Execution (p. 1-112)

Predefined Dialog Boxes

dialog
errordlg
export2wsdlg
helpdlg
inputdlg
listdlg

msgbox
printdlg
printpreview
questdlg

uigetdir

Dialog boxes for error, user input,
waiting, etc.

Launch GUIs, create the handles
structure

Start GUIDE, manage application
data, get user input

Create GUI components

Find object handles from within
callbacks functions

Move objects, wrap text

Wait and resume based on user
input

Create and display dialog box
Create and open error dialog box
Export variables to workspace
Create and open help dialog box
Create and open input dialog box

Create and open list-selection dialog
box

Create and open message box

Print dialog box

Preview figure to print

Create and open question dialog box

Open standard dialog box for
selecting a directory

GUI Development

uigetfile

uigetpref

uiopen

uiputfile

uisave

uisetcolor

uisetfont

waitbar

warndlg

User Interface Deployment

guidata
guihandles

movegui

openfig

Open standard dialog box for
retrieving files

Open dialog box for retrieving
preferences

Open file selection dialog box with
appropriate file filters

Open standard dialog box for saving
files

Open standard dialog box for saving
workspace variables

Open standard dialog box for setting
object’s ColorSpec

Open standard dialog box for setting
object’s font characteristics

Open waitbar

Open warning dialog box

Store or retrieve GUI data
Create structure of handles

Move GUI figure to specified location
on screen

Open new copy or raise existing copy
of saved figure

User Interface Development

addpref
getappdata
getpref

Add preference
Value of application-defined data

Preference

1-109

1 Function Reference

1-110

ginput

guidata
guide
inspect

isappdata

ispref
rmappdata
rmpref
setappdata
setpref
uigetpref

uisetpref
waitfor

waitforbuttonpress

User Interface Objects

menu

uibuttongroup

uicontextmenu

uicontrol

Graphical input from mouse or
cursor

Store or retrieve GUI data
Open GUI Layout Editor
Open Property Inspector

True if application-defined data
exists

Test for existence of preference
Remove application-defined data
Remove preference

Specify application-defined data
Set preference

Open dialog box for retrieving
preferences

Manage preferences used in
uigetpref

Wait for condition before resuming
execution

Wait for key press or mouse-button
click

Generate menu of choices for user
input

Create container object to exclusively
manage radio buttons and toggle
buttons

Create context menu

Create user interface control object

GUI Development

uimenu
uipanel
uipushtool

uitable

uitoggletool

uitoolbar

Objects from Callbacks

findall
findfigs
findobj

gcbf

gcho

GUI Utilities

getpixelposition
listfonts

selectmoveresize

setpixelposition

textwrap

uistack

Create menus on figure windows
Create panel container object
Create push button on toolbar

Create 2-D graphic table GUI
component

Create toggle button on toolbar

Create toolbar on figure

Find all graphics objects
Find visible offscreen figures

Locate graphics objects with specific
properties

Handle of figure containing object
whose callback is executing

Handle of object whose callback is
executing

Get component position in pixels
List available system fonts

Select, move, resize, or copy axes
and uicontrol graphics objects

Set component position in pixels

Wrapped string matrix for given
uicontrol

Reorder visual stacking order of
objects

1-111

1 Function Reference

Program Execution

uiresume Resume execution of blocked M-file

uiwait Block execution and wait for resume

1-112

External Interfaces

External Interfaces

Dynamic Link Libraries (p. 1-113) Access functions stored in external
shared library (.dll) files

Java (p. 1-114) Work with objects constructed from
Java API and third-party class
packages

Component Object Model and Integrate COM components into

ActiveX (p. 1-115) your application

Web Services (p. 1-117) Communicate between applications
over a network using SOAP and
WSDL

Serial Port Devices (p. 1-118) Read and write to devices connected

to your computer’s serial port

See also MATLAB C and Fortran API Reference for functions you can use
in external routines that interact with MATLAB programs and the data in
MATLAB workspaces.

Dynamic Link Libraries

calllib Call function in shared library

libfunctions Return information on functions in
shared library

libfunctionsview View functions in a shared library
libisloaded Determine if shared library is loaded
libpointer Create pointer object for use with

shared libraries

libstruct Create structure pointer for use with
shared libraries

1-113

1 Function Reference

loadlibrary

unloadlibrary

Java

class

fieldnames
import

inspect

isa
isjava
javaaddpath

javaArray

javachk
javaclasspath

javaMethod
javaObject

javarmpath

methods

1-114

Load shared library into MATLAB
software

Unload shared library from memory

Create object or return class of object

Field names of structure, or public
fields of object

Add package or class to current
import list

Open Property Inspector

Determine whether input is object
of given class

Determine whether input is Sun
Java object

Add entries to dynamic Sun Java
class path

Construct Sun Java array

Generate error message based on
Sun Java feature support

Set and get dynamic Sun Java class
path

Invoke Sun Java method
Construct Sun Java object

Remove entries from dynamic Sun
Java class path

Information on class methods

External Interfaces

methodsview

usejava

Information on class methods in
separate window

Determine whether Sun Java feature
is supported in MATLAB software

Component Object Model and ActiveX

actxcontrol

actxcontrollist

actxcontrolselect

actxGetRunningServer

actxserver
addproperty
class

delete (COM)
deleteproperty

enableservice

eventlisteners

events (COM)

Execute

Feval (COM)

Create Microsoft® ActiveX® control
in figure window

List all currently installed Microsoft
ActiveX controls

Open GUI to create Microsoft
ActiveX control

Get handle to running instance of
Automation server

Create COM server

Add custom property to COM object
Create object or return class of object
Remove COM control or server

Remove custom property from COM
object

Enable, disable, or report status of
Automation server

List all event handler functions
registered for COM object

List of events COM object can trigger

Execute MATLAB command in
Automation server

Evaluate MATLAB function in
Automation server

1-115

1 Function Reference

1-116

fieldnames

get (COM)

GetCharArray
GetFullMatrix
GetVariable

GetWorkspaceData
inspect
interfaces

invoke

isa

iscom
isevent
isinterface

ismethod

isprop

load (COM)

MaximizeCommandWindow

methods

methodsview

MinimizeCommandWindow

Field names of structure, or public
fields of object

Get property value from interface, or
display properties

Get character array from server
Get matrix from server

Get data from variable in server
workspace

Get data from server workspace
Open Property Inspector
List custom interfaces to COM server

Invoke method on COM object or
interface, or display methods

Determine whether input is object
of given class

Is input COM object
True if COM object event
Is input COM interface

Determine whether input is COM
object method

Determine whether input is COM
object property

Initialize control object from file

Open server window on Microsoft
Windows desktop

Information on class methods

Information on class methods in
separate window

Minimize size of server window

External Interfaces

move
propedit (COM)

PutCharArray
PutFullMatrix
PutWorkspaceData
Quit (COM)

registerevent

release
save (COM)
set (COM)

unregisterallevents

unregisterevent

Web Services

callSoapService

createClassFromWsdl
createSoapMessage

parseSoapResponse

Move or resize control in parent
window

Open built-in property page for
control

Store character array in server
Store matrix in server

Store data in server workspace
Terminate MATLAB server

Register event handler for COM
object event at run-time

Release COM interface
Serialize control object to file

Set object or interface property to
specified value

Unregister all event handlers for
COM object event at run-time

Unregister event handler for COM
object event at run-time

Send SOAP message off to endpoint

Create MATLAB object based on
WSDL file

Create SOAP message to send to
server

Convert response string from SOAP
server into MATLAB types

1-117

1 Function Reference

1-118

Serial Port Devices

clear (serial)

delete (serial)

fgetl (serial)

fgets (serial)

fopen (serial)
fprintf (serial)
fread (serial)

fscanf (serial)

fwrite (serial)
get (serial)

instrcallback

instrfind

instrfindall

isvalid (serial)

length (serial)

load (serial)

readasync

record

Remove serial port object from
MATLAB workspace

Remove serial port object from
memory

Read line of text from device and
discard terminator

Read line of text from device and
include terminator

Connect serial port object to device
Write text to device
Read binary data from device

Read data from device, and format
as text

Write binary data to device
Serial port object properties

Event information when event
occurs

Read serial port objects from memory
to MATLAB workspace

Find visible and hidden serial port
objects

Determine whether serial port
objects are valid

Length of serial port object array

Load serial port objects and variables
into MATLAB workspace

Read data asynchronously from
device

Record data and event information
to file

External Interfaces

save (serial)

serial

serialbreak

set (serial)

size (serial)

stopasync

Save serial port objects and variables
to MAT-file

Create serial port object

Send break to device connected to
serial port

Configure or display serial port
object properties

Size of serial port object array

Stop asynchronous read and write
operations

1-119

1 Function Reference

1-120

Functions — Alphabetical
List

Arithmetic Operators + - * /\ ~’
Relational Operators < > <= >= == ~=
Logical Operators: Elementwise & | ~
Logical Operators: Short-circuit && | |
Special Characters [[() {}=". ... ,;: %! @
colon ()

abs

accumarray

acos

acosd

acosh

acot

acotd

acoth

acsc

acscd

acsch

actxcontrol

actxcontrollist

actxcontrolselect
actxGetRunningServer

actxserver

addCause (MException)

addevent

addframe

addlistener (handle)

2 Functions — Alphabetical List

2-2

addOptional (inputParser)
addParamValue (inputParser)
addpath

addpref

addprop (dynamicprops)
addproperty

addRequired (inputParser)
addsample
addsampletocollection
addtodate

addts

airy

align

alim

all

allchild

alpha

alphamap

amd

ancestor

and

angle

annotation

Annotation Arrow Properties
Annotation Doublearrow Properties
Annotation Ellipse Properties
Annotation Line Properties
Annotation Rectangle Properties
Annotation Textarrow Properties
Annotation Textbox Properties
ans

any

area

Areaseries Properties
arrayfun

ascii

asec

asecd

asech

asin

asind

asinh
assert
assignin
atan

atan2
atand
atanh
audioplayer
audiorecorder
aufinfo
auread
auwrite
avifile
aviinfo
aviread
axes

Axes Properties
axis
balance
bar, barh
bar3, bar3h
Barseries Properties
base2dec
beep

bench
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaln

2 Functions — Alphabetical List

2-4

bicg
bicgstab
bin2dec
binary
bitand
bitcmp
bitget
bitmax
bitor
bitset
bitshift
bitxor
blanks
blkdiag
box

break
brighten
brush
bsxfun
builddocsearchdb
builtin
bvp4c
bvpbc
bvpget
bvpinit
bvpset
bvpxtend
calendar
calllib
callSoapService
camdolly
cameratoolbar
camlight
camlookat
camorbit
campan
campos

camproj
camroll
camtarget
camup
camva
camzoom
cart2pol
cart2sph
case
cast

cat

catch
caxis

cd

cd (ftp)
cdf2rdf
cdfepoch
cdfinfo
cdfread
cdfwrite
ceil

cell
cell2mat
cell2struct
celldisp
cellfun
cellplot
cellstr
cgs

char
checkin
checkout
chol
cholinc
cholupdate
circshift
cla

2-5

2 Functions — Alphabetical List

2-6

clabel

class

classdef

cle

clear

clearvars

clear (serial)
clf

clipboard

clock

close

close (avifile)
close (ftp)
closereq
cmopts

colamd
colorbar
colordef
colormap
colormapeditor
ColorSpec (Color Specification)
colperm

comet

comet3
commandhistory
commandwindow
compan
compass
complex
computer

cond

condeig
condest
coneplot

conj

continue
contour

contour3

contourc

contourf
Contourgroup Properties
contourslice

contrast

conv

conv2

convhull

convhulln

convn

copyfile

copyobj

corrcoef

cos

cosd

cosh

cot

cotd

coth

cov

cplxpair

cputime

create (RandStream)
createClassFromWsdl
createCopy (inputParser)
createSoapMessage
cross

csce

csed

csch

csvread

csvwrite

ctranspose (timeseries)
cumprod

cumsum

cumtrapz

2-7

2 Functions — Alphabetical List

curl
customverctrl
cylinder
daqread
daspect
datacursormode
datatipinfo
date
datenum
datestr
datetick
datevec
dbclear
dbcont
dbdown
dblquad
dbmex
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
dde23
ddeget
ddesd
ddeset
deal
deblank
debug
dec2base
dec2bin
dec2hex
decic

deconv
del2

2-8

delaunay
delaunay3
delaunayn

delete

delete (COM)
delete (ftp)

delete (handle)
delete (serial)
delete (timer)
deleteproperty
delevent
delsample
delsamplefromcollection
demo

depdir

depfun

det

detrend

detrend (timeseries)
deval

diag

dialog

diary

diff

diffuse

dir

dir (ftp)

disp

disp (memmapfile)
disp (MException)
disp (serial)

disp (timer)
display
divergence
dlmread

dlmwrite

dmperm

2-9

2 Functions — Alphabetical List

doc

docopt
docsearch
dos

dot

double
dragrect
drawnow
dsearch
dsearchn
dynamicprops
echo
echodemo
edit

eig

eigs

ellip;

ellipke
ellipsoid

else

elseif
enableservice
end

eomday

eps

eq

eq (MException)
erf, erfe, erfex, erfinv, erfcinv
error
errorbar
Errorbarseries Properties
errordlg
etime

etree
etreeplot
eval

evalc

2-10

evalin

event.EventData
event.PropertyEvent

event.listener

event.proplistener

eventlisteners
events
events (COM)
Execute
exifread
exist

exit

exp

expint

expm

expml
export2wsdlg
eye
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
factor
factorial
false

fclose

fclose (serial)
feather

feof

ferror

feval

Feval (COM)

2-11

2 Functions — Alphabetical List

2-12

fft

fft2

fftn

fftshift

fitw

fgetl

fgetl (serial)
fgets

fgets (serial)
fieldnames
figure

Figure Properties
figurepalette
fileattrib
filebrowser

File Formats
filehandle
filemarker
fileparts
fileread

filesep

fill

fill3

filter

filter (timeseries)
filter2

find

findall

findfigs

findobj

findobj (handle)
findprop (handle)
findstr

finish

fitsinfo

fitsread

fix

flipdim

fliplr

flipud

floor

flow

fminbnd
fminsearch
fopen

fopen (serial)
for

format

fplot

fprintf
fprintf (serial)
frame2im
fread

fread (serial)
freqgspace
frewind
fscanf

fscanf (serial)
fseek

ftell

ftp

full

fullfile
func2str
function
function_handle (@)
functions
funm

fwrite

fwrite (serial)
fzero

gallery
gamma, gammainc, gammaln
gca

2-13

2 Functions — Alphabetical List

2-14

gcbf

gcbo

ged

gef

gco

ge

genpath

genvarname

get

get (COM)

get (hgsetget)

get (memmapfile)

get (RandStream)

get (serial)

get (timer)

get (timeseries)

get (tscollection)
getabstime (timeseries)
getabstime (tscollection)
getappdata
GetCharArray
getdatasamplesize
getDefaultStream (RandStream)
getdisp (hgsetget)
getenv

getfield

getframe
GetFullMatrix
getinterpmethod
getpixelposition

getpref

getqualitydesc
getReport (MException)
getsampleusingtime (timeseries)
getsampleusingtime (tscollection)
gettimeseriesnames
gettsafteratevent

gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent
gettsbetweenevents
GetVariable
GetWorkspaceData
ginput

global

gmres

gplot

grabcode
gradient
graymon

grid

griddata
griddatas3
griddatan

gsvd

gt

gtext

guidata

guide
guihandles
gunzip

gzip

hadamard
handle

hankel

hdf

hdf5

hdf5info
hdf5read
hdf5write
hdfinfo

hdfread

hdftool

2-15

2 Functions — Alphabetical List

2-16

help

helpbrowser
helpdesk

helpdlg

helpwin

hess

hex2dec

hex2num

hgexport

hggroup

Hggroup Properties
hgload

hgsave

hgsetget
hgtransform
Hgtransform Properties
hidden

hilb

hist

histe

hold

home

horzcat

horzcat (tscollection)
hostid

hsv2rgb

hypot

i

idealfilter (timeseries)
idivide

if

ifft

ifft2

ifftn

ifftshift

ilu

im2frame

im2java
imag

image
Image Properties
imagesc
1imfinfo
imformats
import
importdata
imread
imwrite
ind2rgb
ind2sub

Inf
inferiorto
info

inline
Inmem
inpolygon
input
inputdlg
inputname
inputParser
inspect
instrcallback
instrfind
instrfindall
int2str

int8, int16, int32, int64
interfaces
interpl
interplq
interp2
interp3
interpft
interpn
interpstreamspeed

2-17

2 Functions — Alphabetical List

2-18

intersect
intmax
Iintmin
intwarning
nv

invhilb

invoke
ipermute

iqr (timeseries)
is*

isa

isappdata

iscell

iscellstr

ischar

iscom

isdir

isempty

isempty (timeseries)
isempty (tscollection)
isequal

isequal (MException)
isequalwithequalnans
isevent

isfield

isfinite

isfloat

isglobal

ishandle

ishold

isinf

isinteger

isinterface

isjava

isKey (Map)
iskeyword

isletter

islogical
ismac
ismember
ismethod
isnan
isnumeric
1sobject
isocaps
isocolors
isonormals
isosurface
ispc

ispref
isprime
isprop

isreal
isscalar
issorted
isspace
issparse
isstr
isstrprop
isstruct
isstudent
1sunix

isvalid (handle)
isvalid (serial)
isvalid (timer)
isvarname
isvector

J
javaaddpath
javaArray
javachk
javaclasspath
javaMethod
javaObject

2-19

2 Functions — Alphabetical List

javarmpath
keyboard

keys (Map)

kron

last (M Exception)
lasterr

lasterror

lastwarn

lem

1dl

Idivide, rdivide

le

legend

legendre

length

length (Map)
length (serial)
length (timeseries)
length (tscollection)
libfunctions
libfunctionsview
libisloaded
libpointer
libstruct

license

light

Light Properties
lightangle

lighting

lin2mu

line

Line Properties
Lineseries Properties
LineSpec (Line Specification)
linkaxes

linkdata

linkprop

2-20

linsolve
linspace

list (RandStream)
listdlg
listfonts

load

load (COM)
load (serial)
loadlibrary
loadobj

log

log10

loglp

log2

logical

loglog

logm
logspace
lookfor

lower

Is

Iscov
Isgqnonneg
Isqr

It

Iu

luinc

magic
makehgtform
containers.Map
mat2cell
mat2str
material
matlabcolon (matlab:)
matlabre

matlabroot
matlab (UNIX)

2-21

2 Functions — Alphabetical List

2-22

matlab (Windows)

max

max (timeseries)
MaximizeCommandWindow
maxNumCompThreads
mean

mean (timeseries)

median

median (timeseries)
memmapfile

memory

menu

mesh, meshc, meshz
meshgrid

meta.class
meta.class.fromName
meta.DynamicProperty
meta.event

meta.method

meta.package
meta.package.fromName
meta.package.getAllPackages
meta.property

metaclass

methods

methodsview

mex
mex.getCompilerConfigurations
MException

mexext

mfilename

mget

min

min (timeseries)
MinimizeCommandWindow
minres

mislocked

mkdir
mkdir (ftp)
mkpp

mldivide \, mrdivide /

mlint

mlintrpt

mlock
mmfileinfo
mmreader

mod

mode

more

move

movefile
movegui

movie
movie2avi
mput

msgbox

mtimes

mu2lin
multibandread
multibandwrite
munlock
namelengthmax
NaN

nargchk
nargin, nargout
nargoutchk
native2unicode
nchoosek
ndgrid

ndims

ne

ne (MException)
netedf
netedf.abort

2-23

2 Functions — Alphabetical List

2-24

netedf.close
netcdf.copyAtt
netedf.create
netedf.defDim
netedf.defVar
netedf.delAtt
netcedf.endDef
netcdf.getAtt
netcdf.getConstant
netedf.getConstantNames
netedf.getVar
netcdf.ing
netcdf.inqAtt
netedf.inqAttID
netedf.ingAttName
netedf.inqgDim
netcedf.ingDimID
netcdf.inqLibVers
netedf.inqVar
netedf.inqVarID
netedf.open
netedf.putAtt
netedf.putVar
netcdf.reDef
netcdf.renameAtt
netcdf.renameDim
netcdf.renameVar
netedf.setDefaultFormat
netedf.setFill
netedf.sync
newplot

nextpow?2

nnz

noanimate
nonzeros

norm

normest

not
notebook
notify (handle)
now
nthroot
null
num?2cell
numZ2hex
num2str
numel
nzmax
odelbi
ode23, ode45, odel13, odel5s, ode23s, ode23t, ode23thb
odefile
odeget
odeset
odextend
onCleanup
ones

open
openfig
opengl
openvar
optimget
optimset
or

ordeig
orderfields
ordqz
ordschur
orient
orth
otherwise
pack
padecoef
pagesetupdlg
pan

2-25

2 Functions — Alphabetical List

pareto

parfor

parse (inputParser)
parseSoapResponse
partialpath
pascal

patch

Patch Properties
path

path2rc
pathsep
pathtool

pause

pbaspect

pcg

pchip

pcode

pcolor

pdepe

pdeval

peaks

perl

perms

permute
persistent

pi

pie

pie3

pinv

planerot
playshow

plot

plot (timeseries)
plot3
plotbrowser
plotedit
plotmatrix

2-26

plottools
plotyy
pol2cart

polar

poly

polyarea
polyder
polyeig

polyfit

polyint
polyval
polyvalm
pow2

power

ppval

prefdir
preferences
primes

print, printopt
printdlg
printpreview
prod

profile
profsave
propedit
propedit (COM)
properties
propertyeditor
psi

publish
PutCharArray
PutFullMatrix
PutWorkspaceData
pwd

qmr

qr

qrdelete

2-27

2 Functions — Alphabetical List

2-28

qrinsert

qrupdate

quad

quadgk

quadl

quadv

questdlg

quit

Quit (COM)

quiver

quiver3
Quivergroup Properties
qz

rand

rand (RandStream)
randi

randi (RandStream)
randn

randn (RandStream)
randperm

randperm (RandStream)
RandStream
RandStream (RandStream)
rank

rat, rats

rbbox

rcond

read

readasync

real

reallog

realmax

realmin

realpow

realsqrt

record

rectangle

Rectangle Properties
rectint

recycle
reducepatch
reducevolume
refresh
refreshdata
regexp, regexpi
regexprep
regexptranslate
registerevent
rehash

release

relationaloperators (handle)

rem
remove (Map)
removets

rename

repmat

resample (timeseries)
resample (tscollection)
reset

reset (RandStream)
reshape

residue
restoredefaultpath
rethrow

rethrow (MException)
return

rgh2hsv

rgbplot

ribbon

rmappdata

rmdir

rmdir (ftp)

rmfield

rmpath

2-29

2 Functions — Alphabetical List

2-30

rmpref

root object

Root Properties
roots

rose

rosser

rot90

rotate

rotate3d

round

rref

rsf2csf

run

save

save (COM)
save (serial)
saveas

saveobj
savepath
scatter

scatter3
Scattergroup Properties
schur

script

sec

secd

sech
selectmoveresize
semilogx, semilogy
sendmail

serial
serialbreak

set

set (COM)

set (hgsetget)
set (RandStream)
set (serial)

set (timer)

set (timeseries)

set (tscollection)
setabstime (timeseries)
setabstime (tscollection)
setappdata
setDefaultStream (RandStream)
setdiff

setdisp (hgsetget)
setenv

setfield
setinterpmethod
setpixelposition
setpref

setstr
settimeseriesnames
setxor

shading

shg

shiftdim
showplottool
shrinkfaces

sign

sin

sind

single

sinh

size

size (Map)

size (serial)

size (timeseries)
size (tscollection)
slice

smooth3

snapnow

sort

sortrows

2-31

2 Functions — Alphabetical List

sound
soundsc
spalloc
sparse
spaugment
spconvert
spdiags
specular
speye
spfun
sph2cart
sphere
spinmap
spline
spones
spparms
sprand
sprandn
sprandsym
sprank
sprintf
spy

sqrt

sqrtm
squeeze
ss2tf
sscanf
stairs
Stairseries Properties
start
startat
startup
std

std (timeseries)
stem
stem3
Stemseries Properties

2-32

stop
stopasync
str2double
str2func
str2mat
str2num
strcat
stremp, strempi
stream2
stream3
streamline
streamparticles
streamribbon
streamslice
streamtube
strfind
strings
strjust
strmatch
strncmp, strnempi
strread
strrep

strtok
strtrim

struct
struct2cell
structfun
strvcat
sub2ind
subplot
subsasgn
subsindex
subspace
subsref
substruct
subvolume
sum

2-33

2 Functions — Alphabetical List

sum (timeseries)
superiorto
support

surf, surfe
surf2patch
surface

Surface Properties
Surfaceplot Properties
surfl

surfnorm

svd

svds

swapbytes

switch

symamd

symbfact

symmlq

symrcm

symvar
synchronize
syntax

system

tan

tand

tanh

tar

tempdir
tempname
tetramesh
texlabel

text

Text Properties
textread

textscan

textwrap

throw (MException)
throwAsCaller (MException)

2-34

tic, toc

timer

timerfind
timerfindall
timeseries

title

todatenum

toeplitz

toolboxdir

trace

transpose (timeseries)
trapz

treelayout

treeplot

tril

trimesh

triplequad

triplot

trisurf

triu

true

try

tscollection
tsdata.event
tsearch

tsearchn

tsprops

tstool

type

typecast
uibuttongroup
Uibuttongroup Properties
uicontextmenu
Uicontextmenu Properties
uicontrol

Uicontrol Properties
uigetdir

2-35

2 Functions — Alphabetical List

uigetfile

uigetpref

uiimport

uimenu

Uimenu Properties
uint8, uint16, uint32, uint64
ulopen

uipanel

Uipanel Properties
uipushtool
Uipushtool Properties
uiputfile

uiresume

uisave

uisetcolor

uisetfont

uisetpref

uistack

uitable

Uitable Properties
uitoggletool
Uitoggletool Properties
uitoolbar

Uitoolbar Properties
uiwait
undocheckout
unicode2native
union

unique

unix

unloadlibrary
unmkpp
unregisterallevents
unregisterevent
untar

unwrap

unzip

2-36

upper
urlread

urlwrite

usejava

userpath
validateattributes
validatestring
values (Map)
vander

var

var (timeseries)
varargin
varargout
vectorize

ver

verctrl
verLessThan
version

vertcat

vertcat (timeseries)
vertcat (tscollection)
view

viewmtx

visdiff
volumebounds
voronoi

voronoin

wait

waitbar

waitfor
waitforbuttonpress
warndlg

warning

waterfall

wavfinfo

wavplay

wavread

2-37

2 Functions — Alphabetical List

wavrecord
wavwrite
web
weekday
what
whatsnew
which

while
whitebg
who, whos
wilkinson
winopen
winqueryreg
wk1finfo
wklread
wklwrite
workspace
xlabel, ylabel, zlabel
xlim, ylim, zlim
xlsfinfo
xlsread
xlswrite
xmlread
xmlwrite
Xor

xslt

Zeros

Zip

Zoom

2-38

Arithmetic Operators + - * / \ */

Purpose Matrix and array arithmetic

Syntax A+B
A-B
A*B
A.*B
A/B
A./B
A\B
A.\B
A"B
A."B
A
A.'

Description MATLAB software has two different types of arithmetic operations.
Matrix arithmetic operations are defined by the rules of linear algebra.
Array arithmetic operations are carried out element by element, and
can be used with multidimensional arrays. The period character
(.) distinguishes the array operations from the matrix operations.
However, since the matrix and array operations are the same for
addition and subtraction, the character pairs .+ and . - are not used.

+ Addition or unary plus. A+B adds A and B. A and B must have
the same size, unless one is a scalar. A scalar can be added
to a matrix of any size.

- Subtraction or unary minus. A-B subtracts B from A. A and B
must have the same size, unless one is a scalar. A scalar can
be subtracted from a matrix of any size.

2-39

Arithmetic Operators + - * / \ */

2-40

Matrix multiplication. C = A*B is the linear algebraic product
of the matrices A and B. More precisely,

CG,)=y, AG, Bk,))
k=1

For nonscalar A and B, the number of columns of A must equal
the number of rows of B. A scalar can multiply a matrix of
any size.

Array multiplication. A. *B is the element-by-element product
of the arrays A and B. A and B must have the same size, unless
one of them is a scalar.

Slash or matrix right division. B/A is roughly the same as
B*inv (A). More precisely, B/A = (A'\B')'. See the reference
page for mrdivide for more information.

Array right division. A./B is the matrix with elements
A(i,j)/B(i,j). A and B must have the same size, unless one
of them is a scalar.

Backslash or matrix left division. If A is a square matrix, A\B
is roughly the same as inv(A) *B, except it is computed in a
different way. If A is an n-by-n matrix and B is a column vector
with n components, or a matrix with several such columns,
then X = A\B is the solution to the equation AX = B computed
by Gaussian elimination. A warning message is displayed if A
is badly scaled or nearly singular. See the reference page for
mldivide for more information.

Arithmetic Operators + - * / \ */

If Ais an m-by-n matrix with m ~= n and B is a column vector
with m components, or a matrix with several such columns,
then X = A\B is the solution in the least squares sense to the
under- or overdetermined system of equations AX = B. The
effective rank, k, of A is determined from the QR decomposition
with pivoting (see “Algorithm” on page 2-2333 for details). A
solution X is computed that has at most k nonzero components
per column. If k < n, this is usually not the same solution

as pinv(A)*B, which is the least squares solution with the

smallest norm | X]|.

Array left division. A.\B is the matrix with elements
B(i,j)/A(i,j). A and B must have the same size, unless one
of them is a scalar.

Matrix power. X*p is X to the power p, if p 1s a scalar. If p is an
integer, the power is computed by repeated squaring. If the
integer is negative, X is inverted first. For other values of p,
the calculation involves eigenvalues and eigenvectors, such
that if [V,D] = eig(X), then X*p = V*D."p/V.

If x 1is a scalar and P is a matrix, X"P is x raised to the matrix
power P using eigenvalues and eigenvectors. X"P, where X and
P are both matrices, is an error.

Array power. A. "B is the matrix with elements A(i,j) to the
B(i,j) power. A and B must have the same size, unless one of
them is a scalar.

Matrix transpose. A' is the linear algebraic transpose of A. For
complex matrices, this is the complex conjugate transpose.

Array transpose. A. ' 1s the array transpose of A. For complex
matrices, this does not involve conjugation.

2-41

Arithmetic Operators + - * / \ */

2-42

Nondouble
Data Type
Support

This section describes the arithmetic operators’ support for data types
other than double.

Data Type single

You can apply any of the arithmetic operators to arrays of type single
and MATLAB software returns an answer of type single. You can
also combine an array of type double with an array of type single,
and the result has type single.

Integer Data Types

You can apply most of the arithmetic operators to real arrays of the
following integer data types:

® int8 and uint8

® int16 and uint16

® int32 and uint32

All operands must have the same integer data type and MATLAB
returns an answer of that type.

Note The arithmetic operators do not support operations on the data
types int64 or uint64. Except for the unary operators +A and A. ',
the arithmetic operators do not support operations on complex arrays
of any integer data type.

For example,

X = int8(3) + int8(4);
class(x)

ans =

int8

Arithmetic Operators + - * / \ */

The following table lists the binary arithmetic operators that you can
apply to arrays of the same integer data type. In the table, A and B are
arrays of the same integer data type and c is a scalar of type double or
the same type as A and B.

Operation | Support when A and B Have Same Integer Type

+A, -A Yes

A+B, A+c, Yes

c+B

A-B, A-c, Yes

c-B

A.*B Yes

A*c, c*B Yes

A*B No

A/c, c/B Yes

A.\B,A./B | Yes

A\B, A/B No

A."B Yes, if B has nonnegative integer values.

c*k Yes, for a scalar ¢ and a nonnegative scalar integer Kk,
which have the same integer data type or one of which
has type double

A.'LA' Yes

Combining Integer Data Types with Type Double

For the operations that support integer data types, you can combine a
scalar or array of an integer data type with a scalar, but not an array,
of type double and the result has the same integer data type as the
input of integer type. For example,

y =5 + int32(7);

class(y)

2-43

Arithmetic Operators + - * / \ */

ans =

int32

However, you cannot combine an array of an integer data type with
either of the following:

e A scalar or array of a different integer data type

® A scalar or array of type single

The section “Numeric Classes”, under “Classes (Data Types)” in the

MATLAB Programming Fundamentals documentation, provides more
information about operations on nondouble data types.

Remarks The arithmetic operators have M-file function equivalents, as shown:
Binary addition A+B plus(A,B)
Unary plus +A uplus(A)
Binary subtraction A-B minus(A,B)
Unary minus -A uminus (A)
Matrix A*B mtimes (A,B)
multiplication
Arraywise A.*B times(A,B)
multiplication
Matrix right A/B mrdivide (A,B)
division
Arraywise right A./B rdivide(A,B)
division
Matrix left division A\B mldivide(A,B)
Arraywise left A.\B ldivide(A,B)
division

2-44

Arithmetic Operators + - * / \ */

Examples

Matrix power A"B
Arraywise power A."B
Complex transpose A’

Matrix transpose A.'

mpower (A,B)
power (A,B)
ctranspose(A)

transpose(A)

Note For some toolboxes, the arithmetic operators are overloaded,
that is, they perform differently in the context of that toolbox. To see
the toolboxes that overload a given operator, type help followed by
the operator name. For example, type help plus. The toolboxes that
overload plus (+) are listed. For information about using the operator
in that toolbox, see the documentation for the toolbox.

Here are two vectors, and the results of various matrix and array
operations on them, printed with format rat.

Matrix Operations Array Operations
X 1 y 4
2 5
3 6
X' 1283 ' 456
X+y 5 X-y -3
7 -3
9 -3
X + 2 3 X-2 =1
4 0
5 1

2-45

Arithmetic Operators + - * / \ */

2-46

Matrix Operations

Array Operations

X *y Error X.*y 4
10
18
X'*y 32 X'.*y Error
X*y' 456 X.*y' Error
8 10 12
12 15 18
X*2 2 X.*2 2
4 4
6 6
x\y 16/7 X.\y 4
5/2
2
2\x 1/2 2./x 2
1 1
3/2 2/3
x/y 001/6 X.ly 1/4
00 1/3 2/5
00 1/2 1/2
x/2 1/2 X./2 1/2
1 1
3/2 3/2

Arithmetic Operators + - * / \ */

Diagnostics

Matrix Operations

Array Operations

X"y Error X."y 1
32
729
X"2 Error X."2 1
4
9
2°X Error 2.°X 2
4
8
(x+i*y)" 1-4i2 - 5i
3 - 61
(x+i*y) . 1+ 4i2+5i
3 + 61

From matrix division, if a square A is singular,

Warning: Matrix is singular to working precision.

From elementwise division, if the divisor has zero elements,

Warning: Divide by zero.

Matrix division and elementwise division can produce NaNs or Infs

where appropriate.

If the inverse was found, but is not reliable,

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate.

RCOND = xxx

From matrix division, if a nonsquare A is rank deficient,

2-47

Arithmetic Operators + - * / \ */

Warning: Rank deficient, rank = xxx tol = xxx

See Also mldivide, mrdivide, chol, det, inv, lu, orth, permute, ipermute, qr,
rref
References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, STAM, Philadelphia, 1999.

[2] Davis, T.A., UMFPACK Version 4.6 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack),

Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2002.

[3] Davis, T. A., CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod), Dept. of
Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, 2005.

2-48

http://www.netlib.org/lapack/lug/lapack_lug.html
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/cholmod

Relational Operators < > <= >= ==

Purpose

Syntax

Description

Examples

Relational operations

vV A
o @

I v A
Inmn

>> > > > >
I
W W ww

The relational operators are <, >, <=, >=, ==, and ~=. Relational
operators perform element-by-element comparisons between two
arrays. They return a logical array of the same size, with elements
set to logical 1 (true) where the relation is true, and elements set to
logical 0 (false) where it is not.

The operators <, >, <=, and >= use only the real part of their operands for
the comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors
of dissimilar length to be compared.

Note For some toolboxes, the relational operators are overloaded,

that is, they perform differently in the context of that toolbox. To see
the toolboxes that overload a given operator, type help followed by the
operator name. For example, type help 1t. The toolboxes that overload
1t (<) are listed. For information about using the operator in that
toolbox, see the documentation for the toolbox.

If one of the operands is a scalar and the other a matrix, the scalar
expands to the size of the matrix. For example, the two pairs of
statements

X
X

5; X >=[123; 456; 7 8 10]
5*ones(3,3); X >=[1 2 3; 45 6; 7 8 10]

produce the same result:

2-49

Relational Operators < > <= >= == ~=

ans =

See Also all, any, find, strcmp

Logical Operators: Elementwise & | -, Logical Operators:
Short-circuit && ||

2-50

Logical Operators: Elementwise & | ~

Purpose

Syntax

Description

Elementwise logical operations on arrays

expri & expr2
expri | expr2
~expr

The symbols &, |, and ~ are the logical array operators AND, OR, and NOT.
These operators are commonly used in conditional statements, such as
if and while, to determine whether or not to execute a particular block
of code. Logical operations return a logical array with elements set to
1 (true) or 0 (false), as appropriate.

expri1 & expr2 represents a logical AND operation between values,
arrays, or expressions expr1 and expr2. In an AND operation, if expr1
is true and expr2 is true, then the AND of those inputs is true. If
either expression is false, the result is false. Here is a pseudocode
example of AND:

IF (expri: all required inputs were passed) AND ...
(expr2: all inputs are valid)
THEN (result: execute the function)

expril | expr2 represents a logical OR operation between values,
arrays, or expressions expri1 and expr2. In an OR operation, if expri
is true or expr2 is true, then the OR of those inputs is true. If both
expressions are false, the result is false. Here is a pseudocode
example of OR:

IF (expri1: S is a string) OR
(expr2: S is a cell array of strings)
THEN (result: parse string S)

~expr represents a logical NOT operation applied to expression expr. In
a NOT operation, if expr is false, then the result of the operation is
true. If expr is true, the result is false. Here is a pseudocode example
of NOT:

IF (expr: function returned a Success status) is NOT true

2-51

Logical Operators: Elementwise & | ~

2-52

THEN (result: throw an error)

The function xor (A,B) implements the exclusive OR operation.

Logical Operations on Arrays

The expression operands for AND, OR, and NOT are often arrays of
nonsingleton dimensions. When this is the case, The MATLAB software
performs the logical operation on each element of the arrays. The
output is an array that is the same size as the input array or arrays.

If just one operand is an array and the other a scalar, then the scalar is
matched against each element of the array. When the operands include
two or more nonscalar arrays, the sizes of those arrays must be equal.

This table shows the output of AND, OR, and NOT statements that
use scalar and/or array inputs. In the table, S is a scalar array, Ais a
nonscalar array, and R is the resulting array:

Operation Result

S1 & S2 R = S1 & S2

S &A R(1) =S & A(1);
R(2) = S & A(2);

Al & A2 R(1) = A1(1) & A2(1);
R(2) = A1(2) & A2(2);

S1 | s2 R=s51] S2

S| A R(1) =8 | A(1);
R(2) =S | A(2);

Al | A2 R(1) = A1(1) | A2(1);
R(2) = A1(2) | A2(2);

~S R = ~S

~A R(1) = ~A(1);
R(2) = ~-A(2),

Logical Operators: Elementwise & | ~

Compound Logical Statements

The number of expressions that you can evaluate with AND or OR is
not limited to two (e.g., A & B). Statements such as the following are
also valid:

expr1 & expr2 & expr3 | expr4 & exprb

Use parentheses to establish the order in which MATLAB evaluates
a compound operation. Note the difference in the following two
statements:

(expr1 & expr2) | (expr3 & expré4) % 2-component OR
expri & (expr2 | expr3) & expr4 % 3-component AND

Operator Precedence

The precedence for the logical operators with respect to each other

is shown in the table below. MATLAB always gives the & operator
precedence over the | operator. Although MATLAB typically evaluates
expressions from left to right, the expression a|b&c is evaluated as

a| (b&c). It is a good idea to use parentheses to explicitly specify the
intended precedence of statements containing combinations of & and |.

Operator | Operation Priority
- NOT Highest
& Elementwise AND

| Elementwise OR

&& Short-circuit AND

|| Short-circuit OR Lowest

Short-Circuiting in Elementwise Operators

The &, and |operators do not short-circuit. See the documentation on
the && and | | operators if you need short-circuiting capability.

When used in the context of an if or while expression, and only in
this context, the elementwise & and | operators use short-circuiting in

2-53

Logical Operators: Elementwise & | ~

2-54

evaluating their expressions. That is, A&B and A|B ignore the second
operand, B, if the first operand, A, is sufficient to determine the result.

So, although the statement 1| [] evaluates to false, the same statement
evaluates to true when used in either an if or while expression:

A=1; B=I[];
if (A|B) disp 'The statement is true', end;
The statement is true

while the reverse logical expression, which does not short-circuit,
evaluates to false:

if (B|A) disp 'The statement is true', end;

Another example of short-circuiting with elementwise operators shows
that a logical expression such as the one shown below, which under
most circumstances is invalid due to a size mismatch between A and B,
works within the context of an if or while expression:

The A|B statement generates an error:
A=1[11]; B=1[201];
A|B

??? Error using ==> or
Matrix dimensions must agree.

But the same statement used to test an if condition does not error:

if (A|B) disp 'The statement is true', end;
The statement is true

Operator Truth Table

The following is a truth table for the operators and functions in the
previous example.

Logical Operators: Elementwise & | ~

Examples

Inputs and or not xor
A A&B A|B ~A xor (A,B)
0 0 0 1 0

0 0 1 1 1

1 0 1 1

1 1 1 0 0

Equivalent Functions

These logical operators have M-file function equivalents, as shown here.

Logical

Operation Equivalent Function
A &B and(A,B)

A| B or(A,B)

~A not(A)

Example 1 — Conditional Statement with OR

Using OR in a conditional statement, call function parseString on S,

but only if S is a character array or a cell array of strings:

if ischar(S)

|| iscellstr(S)

parseString(S)

end

Example 2 — Array AND Array

Find those elements of array R that are both greater than 0.3 AND

less then 0.9:

rand('state',0);

R=rand(5,7);

R>0.3 & R<0.9

2-55

Logical Operators: Elementwise & | ~

2-56

ans =

oo —+0o0o
—_— O =2 40

1
0
0
1
1

—_ a0 4 a
O 2 O = =
oo -+ —=0

Example 3 — Array AND Scalar

Find those elements of array R that are greater than or equal to 25
AND are less than or equal to 50:

rand('state',0);
R = rand(3,5) * 50;

R > 40

ans =
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0

Example 4 — Check Status with NOT

Throw an error if the return status of a function does NOT indicate
success:

[Z, status] = myfun(X, Y);

if ~(status == SUCCESS);
error('Error in function myfun')

end

Example 5 — OR of Binary Arrays

This example shows the logical OR of the elements in the vector u with
the corresponding elements in the vector v:

[0 0
= [0 1
| v

1
1 .

H

10 1];
0 1]

Cc < Cc

Logical Operators: Elementwise & | ~

ans =

See Also all, any, find, logical, xor, true, false
Logical Operators: Short-circuit && ||

Relational Operators < > <= >= == ~=

2-57

Logical Operators: Short-circuit && | |

2-58

Purpose

Syntax

Description

Examples

Logical operations, with short-circuiting capability

expri && expr2
expr1 || expr2

expri1 && expr2 represents a logical AND operation that employs
short-circuiting behavior. With short-circuiting, the second operand
expr2 is evaluated only when the result is not fully determined by the
first operand expri. For example, if A =0, then the following statement
evaluates to false, regardless of the value of B, so the MATLAB
software does not evaluate B:

A && B

These two expressions must each be a valid MATLAB statement that
evaluates to a scalar logical result.

expril || expr2 represents a logical OR operation that employs
short-circuiting behavior.

Note Always use the && and | | operators when short-circuiting is
required. Using the elementwise operators (& and |) for short-circuiting
can yield unexpected results.

In the following statement, it doesn’t make sense to evaluate the
relation on the right if the divisor, b, is zero. The test on the left is put
in to avoid generating a warning under these circumstances:

x = (b ~= 0) & (a/b > 18.5)

By definition, if any operands of an AND expression are false, the
entire expression must be false. So, if (b ~= 0) evaluates to false,
MATLAB assumes the entire expression to be false and terminates its
evaluation of the expression early. This avoids the warning that would
be generated if MATLAB were to evaluate the operand on the right.

Logical Operators: Short-circuit && | |
|

See Also all, any, find, logical, xor, true, false
Logical Operators: Elementwise & | -~

Relational Operators < > <= >= == ~=

2-59

Special Characters [] () {}=". . ,;: %! @

Purpose Special characters
Syntax []

{1}

()

()

s{ %}

!

@

2-60

Special Characters [] () {} ="+ «.. ,

Description

[1 Brackets are used to form vectors and matrices. [6.9 9.64

sqrt(-1)] is a vector with three elements separated by blanks.
[6.9, 9.64, i] is the same thing. [1+j 2-j 3] and [1 +j
2 -j 3] are not the same. The first has three elements, the

second has five.

[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends

the first row.

Vectors and matrices can be used inside [] brackets. [A
B;C] is allowed if the number of rows of A equals the number
of rows of B and the number of columns of A plus the number

of columns of B equals the number of columns of C. This

rule generalizes in a hopefully obvious way to allow fairly

complicated constructions.

A = [] stores an empty matrix in A. A(m,:) = [] deletes

row mof A. A(:,n) = [] deletes column n of A. A(n)

[

reshapes A into a column vector and deletes the third element.

[A1,A2,A3...] = function assigns function output to

multiple variables.

For the use of [and] on the left of an “=” in multiple

assignment statements, see lu, eig, svd, and so on.

{ } Curly braces are used in cell array assignment statements. For
example, A(2,1) = {[1 2 3; 4 5 6]},0orA{2,2} = ('str').

See help paren for more information about { }.

2-61

Special Characters [] () {} ="+ «. ,

%! @

2-62

Parentheses are used to indicate precedence in arithmetic
expressions in the usual way. They are used to enclose
arguments of functions in the usual way. They are also used
to enclose subscripts of vectors and matrices in a manner
somewhat more general than usual. If X and V are vectors,
then X (V) is [X(V(1)), X(V(2)), ..., X(V(n))]. The
components of V must be integers to be used as subscripts. An
error occurs if any such subscript is less than 1 or greater than
the size of X. Some examples are

® X(3) is the third element of X.
® X([1 2 3]) is the first three elements of X.
See help paren for more information about ().

If X has n components, X(n: 1:1) reverses them. The same
indirect subscripting works in matrices. If V has m components
and W has n components, then A(V,W) is the m-by-n matrix
formed from the elements of A whose subscripts are the
elements of V and W. For example, A([1,5],:) = A([5,1],:)
interchanges rows 1 and 5 of A.

Used in assignment statements. B = A stores the elements of A
in B. == is the relational equals operator. See the Relational
Operators < > <= >= == ~= page.

Matrix transpose. X' is the complex conjugate transpose of X.
X. ' 1s the nonconjugate transpose.

Quotation mark. 'any text' is a vector whose components are
the ASCII codes for the characters. A quotation mark within
the text is indicated by two quotation marks.

Decimal point. 314/100, 3.14, and .314e1 are all the same.

Element-by-element operations. These are obtained using .*,
.", ./, or .\. See the Arithmetic Operators page.

Field access. S(m).f when S is a structure, accesses the
contents of field f of that structure.

Special Characters [] (){} =/« vee ,2: %! @

A Dynamic Field access. S. (df) when A is a structure, accesses
) the contents of dynamic field df of that structure. Dynamic
field names are defined at runtime.

Parent directory. See cd.

Continuation. Three or more periods at the end of a line
continue the current function on the next line. Three or more
periods before the end of a line cause the MATLAB software to
ignore the remaining text on the current line and continue the
function on the next line. This effectively makes a comment
out of anything on the current line that follows the three
periods. See “Entering Multiple-Line (Long) Statements —
Line Continuation” for more information.

) Comma. Used to separate matrix subscripts and function
arguments. Used to separate statements in multistatement
lines. For multistatement lines, the comma can be replaced by
a semicolon to suppress printing.

; Semicolon. Used inside brackets to end rows. Used after an
expression or statement to suppress printing or to separate
statements.

Colon. Create vectors, array subscripting, and for loop
iterations. See colon (:) for details.

% Percent. The percent symbol denotes a comment; it indicates
a logical end of line. Any following text is ignored. MATLAB
displays the first contiguous comment lines in a M-file in
response to a help command.

o°

Percent-brace. The text enclosed within the %{ and %} symbols
is a comment block. Use these symbols to insert comments that
take up more than a single line in your M-file code. Any text
between these two symbols is ignored by MATLAB.

-~

o°

With the exception of whitespace characters, the %{ and %}
operators must appear alone on the lines that immediately
precede and follow the block of help text. Do not include any
other text on these lines.

2-63

Special Characters [](){}=". . ,;: %! @

2-64

Remarks

See Also

! Exclamation point. Indicates that the rest of the input line is
issued as a command to the operating system. See “Running
External Programs” for more information.

@ Function handle. MATLAB data type that is a handle to a
function. See function_handle (@) for details.

Some uses of special characters have M-file function equivalents, as
shown:

Horizontal [A,B,C...] horzcat(A,B,C...)
concatenation
Vertical [A;B;C...] vertcat(A,B,C...)
concatenation

Subscript reference A(i,j,k...)subsref(A,S). See help

subsref.
Subscript A(i,j,k...)subsasgn(A,S,B). See help
assignment B subsasgn.

Note For some toolboxes, the special characters are overloaded, that
is, they perform differently in the context of that toolbox. To see the
toolboxes that overload a given character, type help followed by the
character name. For example, type help transpose. The toolboxes
that overload transpose (. ') are listed. For information about using
the character in that toolbox, see the documentation for the toolbox.

Arithmetic Operators + - * / \ ~ !
Relational Operators < > <= >= == ~=

Logical Operators: Elementwise & | ~,

colon (:)

Purpose

Description

Create vectors, array subscripting, and for-loop iterators
The colon is one of the most useful operators in MATLAB. It can create
vectors, subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced
vectors:

jik is the same as [j,j+1,...,k]
j:k is empty if j > k
j:i:k isthesameas [j,j+i,j+2i, ...,k]

jii:k isemptyifi == 0,ifi > Oandj > k,orifi < Oandj < k

where i, j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick
out selected rows, columns, and elements of vectors, matrices, and
higher-dimensional arrays:

A(:,7) is the jth column of A
A(i,:) is the ith row of A

A(:,:) is the equivalent two-dimensional array. For matrices this
is the same as A.

A(jrk) isA(3), A(i*+1),...,A(k)

A(s,3tk) 1sA(:,3), A(:,341), .. ,A(,k)
A(:,:,K) 1sthe kth page of three-dimensional array A.
A(

i,j,k, s avector in four-dimensional array A. The vector includes
A(i,j,k,1),A(i,7,k,2),A(i,],k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On
the left side of an assignment statement, A(:) fills A,
preserving its shape from before. In this case, the right
side must contain the same number of elements as A.

2-65

colon (:)

For more information on how the colon operator works, see
http://www.mathworks.com/support/solutions/data/1-4FLI96.html?solution=1-4FLI96.

Examples Using the colon with integers,
D =1:4
results in

D =
1 2 3 4

Using two colons to create a vector with arbitrary real increments
between the elements,

E =0:.1:.5
results in
E =

0 0.1000 0.2000 0.3000 0.4000 0.5000
The command
A(:,:,2) = pascal(3)

generates a three-dimensional array whose first page is all zeros.

A(:,i,1) =
0 0 0
0 0 0
0 0 0
A(:,1,2) =
1 1 1
1 2 3
1 3 6

Using a colon with characters to iterate a for-loop,

2-66

http://www.mathworks.com/support/solutions/data/1-4FLI96.html?solution=1-4FLI96

colon (:)

for x='a':'d',x,end

results in
X =
a
X =
b
X =
C
X =
d
See Also for, linspace, logspace, reshape

2-67

abs

2-68

Purpose
Syntax

Description

Examples

See Also

Absolute value and complex magnitude
abs (X)
abs (X) returns an array Y such that each element of Y is the absolute

value of the corresponding element of X.

If X is complex, abs(X) returns the complex modulus (magnitude),
which is the same as

sqrt(real(X).”2 + imag(X)."2)

abs(-5)
ans =
5

abs(3+41)

ans =
5

angle, sign, unwrap

accumarray

Purpose

Syntax

Description

Construct array with accumulation

A = accumarray(subs,val)

A = accumarray(subs,val,sz)

A = accumarray(subs,val,sz,fun)

A = accumarray(subs,val,sz,fun,fillval)

A = accumarray(subs,val,sz,fun,fillval,issparse)
A = accumarray({subs1, subs2, ...}, val, ...)

accumarray groups elements from a data set and applies a function
to each group. A = accumarray(subs,val) creates an array A by
accumulating elements of the vector val using the elements of subs as
indices. The position of an element in subs determines which value of
vals it selects for the accumulated vector; the value of an element in
subs determines the position of the accumulated vector in the output.

A = accumarray(subs,val,sz) creates an array A with size sz,
where sz is a vector of positive integers. If subs is nonempty with
N>1 columns, then sz must have N elements, where all(sz >=

max (subs,[],1)). If subs is a nonempty column vector, then sz must
be [M 1], where M >= MAX(subs). Specify sz as [] for the default
behavior.

A = accumarray(subs,val,sz,fun) applies function fun to each
subset of elements of val. The default accumulating function is sum. To
specify another function fun, use the @ symbol (e.g., @max). The function
fun must accept a column vector and return a numeric, logical, or
character scalar, or a scalar cell. Return value A has the same class as
the values returned by fun. Specify fun as [] for the default behavior.

A = accumarray(subs,val,sz,fun,fillval) puts the scalar value
fillval in elements of A that are not referred to by any row of subs.
For example, if subs is empty, then A is repmat(fillval,sz). fillval
and the values returned by fun must belong to the same class. The
default value of fillval is O.

A = accumarray(subs,val,sz,fun,fillval,issparse) creates an
array A that is sparse if the scalar input issparse is equal to logical 1
(i.e., true), or full if issparse is equal to logical 0 (false). A is full by

2-69

accumarray

2-70

default. If issparse is true, then fillval must be zero or [], and val
and the output of fun must be double.

A = accumarray({subsi1, subs2, ...}, val, ...) passes multiple
subs vectors in a cell array. You can use any of the four optional inputs
(sz, fun, fillval, or issparse) with this syntax.

Note If the subscripts in subs are not sorted, fun should not depend on
the order of the values in its input data.

The function processes the input as follows:

1 Find out how many unique indices there are in subs. Each unique
index defines a bin in the output array. The maximum index value in
subs determines the size of the output array.

2 Find out how many times each index is repeated.

This determines how many elements of vals are going to be
accumulated at each bin in the output array.

3 Create an output array. The output array is of size max(subs) or
of size sz.

4 Accumulate the entries in vals into bins using the values of the
indices in subs and apply fun to the entries in each bin.

5 Fill the values in the output for positions not referred to by subs.
Default fill value is zero; use fillval to set a different value.

accumarray

Examples

Note subs should contain positive integers. subs can also be a cell
vector with one or more elements, each element a vector of positive
integers. All the vectors must have the same length. In this case, subs
1s treated as if the vectors formed columns of an index matrix.val must
be a numeric, logical, or character vector with the same length as

the number of rows in subs. val can also be a scalar whose value is
repeated for all the rows of subs.

Example 1

Create a 5-by-1 vector and sum values for repeated 1-D subscripts:

val = 101:105;
subs = [1; 2; 4; 2; 4]
subs

AN AN

A = accumarray(subs, val)

A =
101 % A(1) = val(1) = 101
206 % A(2) = val(2)+val(4) = 102+104 = 206
0 % A(3) =0
208 % A(4) = val(3)+val(5) = 103+105 = 208
Example 2

Create a 4-by-4 matrix and subtract values for repeated 2-D subscripts:
val = 101:106;
subs=[1 2; 1 2; 3 1; 4 1; 4 4; 4 1];
B = accumarray(subs,val,[],@(x)sum(diff(x)))

B =

2-71

accumarray

N O OO
o o oo
o O oo

-1
0
0
0

The order of the subscripts matters:

val = 101:106;
subs=[1 2; 3 1; 1 2; 4 4; 4 1; 4 1];
B1 = accumarray(subs,val,[],@(x)sum(diff(x)))

B1 =
0 -2 0 0
0 0 0 0
0 0 0 0
-1 0 0 0
Example 3

Create a 2-by-3-by-2 array and sum values for repeated 3-D subscripts:

val = 101:105;
subs = [111; 212; 232;212; 23 2];

A = accumarray(subs, val)
A(:,1,1) =
101 0 0
0 0 0
A(:,1,2) =
0 0 0
206 0 208
Example 4

Create a 2-by-3-by-2 array, and sum values natively:

val = 101:105;
subs = [111; 212; 232; 212; 23 2];

2-72

accumarray

A = accumarray(subs, int8(val), [], @(x) sum(x, 'native'))
A(:,:,1) =
101 0 0
0 0 0
A(:,:,2) =
0 0 0
127 0 127
class(A)
ans =
int8
Example 5

Pass multiple subscript arguments in a cell array.
1 Create a 12-element vector V:
V = 101:112;

2 Create three 12-element vectors, one for each dimension of the
resulting array A. Note how the indices of these vectors determine
which elements of V are accumulated in A:

% index 1 index 6 => V(1)+V(6) => A(1,3,1)
% I |

rowsubs = [1 3323122331 2];

colsubs = [3 4214342243 4];

pagsubs = [1 1221121112 2];

% I

% index 4 => V(4) => A(2,1,2)

% A(1,3,1) V(1) + V(6) = 101 + 106 = 207
% A(2,1,2) = V(4) = 104

3 Call accumarray, passing the subscript vectors in a cell array:

A = accumarray ({rowsubs colsubs pagsubs}, V)

2-73

accumarray

A(:,:,1) =
0 0 207 0 % A(1,3,1) is 207
0 108 0 0
0 109 0 317
A(:,:,2) =
0 0 111 0
104 0 0 219 % A(2,1,2) is 104
0 103 0 0
Example 6

Create an array with the max function, and fill all empty elements of
that array with NaN:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @max, NaN)

A =
101 NaN NaN NaN
104 NaN 105 NaN
Example 7

Create a sparse matrix using the prod function:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @prod, 0, true)

A =
(1,1) 101
(2,1) 10608
(2,3) 10815
Example 8

Count the number of entries accumulated in each bin:

val = 1;

2-74

accumarray

subs = [11; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4])

A =
1 0 0 0
2 0 2 0
Example 9

Create a logical array that shows which bins will accumulate two or
more values:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @(x) length(x) > 1)

A =
0 0 0 0
1 0 1 0
Example 10

Group values in a cell array:

val = 101:105;
subs = [11; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @(x) {x})

A =
[101] [] [] []
[2x1 double] [1 [2x1 double] [1]
A{2}
ans =
104
102
See Also full, sparse, sum

2-75

acos

2-76

Purpose
Syntax

Description

Examples

Inverse cosine; result in radians

Y

acos (X)

Y = acos(X) returns the inverse cosine (arccosine) for each element of
X. For real elements of X in the domain [—1, 1], acos(X) is real and in
the range [0, ®]. For real elements of X outside the domain [=1, 1],
acos(X) is complex.

The acos function operates element-wise on arrays. The function’s

domains and ranges include complex values. All angles are in radians.

Graph the inverse cosine function over the domain —1 = x < 1.

X = -1:.05:1;
plot(x,acos(x)), grid on

acos

Definition

Algorithm

See Also

The inverse cosine can be defined as
1

ms_l{z] = —ilog| z+ i(l—zz)

acos uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems™ business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

acosd, acosh, cos

2-77

http://www.netlib.org

acosd

Purpose Inverse cosine; result in degrees
Syntax Y = acosd(X)
Descripl’ion Y = acosd(X) is the inverse cosine, expressed in degrees, of the

elements of X.

See Also cosd, acos

2-78

acosh

Purpose Inverse hyperbolic cosine

Syntax Y = acosh(X)

Description Y = acosh(X) returns the inverse hyperbolic cosine for each element
of X.

The acosh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosine function over the domain 1 < x < 7.

X = 1:pi/40:pi;
plot(x,acosh(x)), grid on

Definition The hyperbolic inverse cosine can be defined as

2-79

acosh

1
-1 9
cosh (z) = logl z+(2"-1)
Algorithm acosh uses FDLIBM, which was developed at SunSoft, a Sun

Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also acos, cosh

2-80

http://www.netlib.org

acot

Purpose Inverse cotangent; result in radians
Syntax Y = acot(X)
Description Y = acot(X) returns the inverse cotangent (arccotangent) for each

element of X.

The acot function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse cotangent over the domains —2m < x < 0 and
O<x=<2nm
X1 = -2*pi:pi/30:-0.1;

X2 = 0.1:pi/30:2*pi;
plot(x1,acot(x1),x2,acot(x2)), grid on

15 :) : . : : :

At

-15
g’

Definition The inverse cotangent can be defined as

2-81

acot

cot—1 (z) = tan‘l(% j

Algorithm acot uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also cot, acotd, acoth

2-82

http://www.netlib.org

acotd

Purpose Inverse cotangent; result in degrees
Syntax Y = acosd(X)
Description Y = acosd(X) is the inverse cotangent, expressed in degrees, of the

elements of X.

See Also cotd, acot

2-83

acoth

Purpose Inverse hyperbolic cotangent
Syntax Y = acoth(X)
Description Y = acoth(X) returns the inverse hyperbolic cotangent for each

element of X.

The acoth function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cotangent over the domains —a0 < x < -1
and 1 < x < 30.
X1 = 30 0.1:-1.1;
x2 = 1.1:0.1:30;
plot(x1,acoth(x1) x2,acoth(x2)), grid on
2)))))
1.5

o 20 -10 0 10 20 a0
Definition The hyperbolic inverse cotangent can be defined as

2-84

acoth

coth™1(z) = tanh‘l[% j

Algorithm acoth uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also acot, coth

2-85

http://www.netlib.org

acsc

2-86

Purpose
Syntax

Description

Examples

Inverse cosecant; result in radians

Y

acsc(X)

Y = acsc(X) returns the inverse cosecant (arccosecant) for each
element of X.

The acsc function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Graph the inverse cosecant over the domains —10 < x < —1 and

l<x<10.

X1 -10:0.01:-1.01;
x2 = 1.01:0.01:10;
plot(x1,acsc(x1),x2,acsc(x2)), grid on

15

0.5

-1

acsc

Definition The inverse cosecant can be defined as

esc1(z) = sj.n‘l[§ j

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also csc, acscd, acsch

2-87

http://www.netlib.org

acscd

Purpose Inverse cosecant; result in degrees
Syntax Y = acscd(X)
Description Y = acscd(X) is the inverse cotangent, expressed in degrees, of the

elements of X.

See Also cscd, acsc

2-88

acsch

Purpose Inverse hyperbolic cosecant

Syntax Y = acsch(X)

Description Y = acsch(X) returns the inverse hyperbolic cosecant for each element
of X.

The acsch function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosecant over the domains —20 < x < -1
and 1 < x < 20.

X1 -20:0.01:-1;
X2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2)), grid on

1 — T T
0.8
06
0.4
0.2

4]

0.2

0.4

-08

0.8

Definition The hyperbolic inverse cosecant can be defined as

2-89

acsch

esch™1(z) = sj_nh‘l(é j

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also acsc, csch

2-90

http://www.netlib.org

actxcontrol

Purpose

Syntax

Description

Create Microsoft ActiveX control in figure window

h = actxcontrol('progid"')

h = actxcontrol('progid', 'parami',valuel,...)

h = actxcontrol('progid', position)

h = actxcontrol('progid', position, fig_handle)

h = actxcontrol('progid',position,fig_handle,event_handler)

h = actxcontrol('progid',position,fig_handle,event_handler,
'filename')

h = actxcontrol('progid') creates an ActiveX® control in a

figure window. The programmatic identifier (progid) for the control
determines the type of control created. (See the documentation provided
by the control vendor to get this string.) The returned object, h,
represents the default interface for the control.

Note that progid cannot be an ActiveX server because the MATLAB
software cannot insert ActiveX servers in a figure. See actxserver for
use with ActiveX servers.

h = actxcontrol('progid', 'parami',valuel,...) creates an
ActiveX control using the optional parameter name/value pairs.
Parameter names include:

e position — MATLAB position vector specifying the control’s
position. The format is [left, bottom, width, height] using pixel units.

¢ parent — Handle to parent figure, model, or command window.

® callback — Name of event handler. Specify a single name to use the
same handler for all events. Specify a cell array of event name/event
handler pairs to handle specific events.

e filename — Sets the control’s initial conditions to those in the
previously saved control.

e licensekey — License key to create licensed ActiveX controls that
require design-time licenses. See “Deploying ActiveX Controls
Requiring Run-Time Licenses” for information on how to use controls
that require run-time licenses.

2-91

actxcontrol

One possible format is:

h = actxcontrol('myProgid', 'newPosition',[0 O 200 200],...
‘myFigHandle',gcf,...
‘myCallback',{'Click' 'myClickHandler';...
‘DblClick' 'myDblClickHandler';...
'"MouseDown' 'myMouseDownHandler'});

The following syntaxes are deprecated and will not become obsolete.
They are included for reference, but the above syntaxes are preferred.

h = actxcontrol('progid', position) creates an ActiveX control
having the location and size specified in the vector, position. The
format of this vector is:

[x y width height]

The first two elements of the vector determine where the control is
placed in the figure window, with x and y being offsets, in pixels, from
the bottom left corner of the figure window to the same corner of the
control. The last two elements, width and height, determine the size
of the control itself.

The default position vector is [20 20 60 60].

h = actxcontrol('progid', position, fig_handle) creates an
ActiveX control at the specified position in an existing figure window.
This window is identified by the Handle Graphics handle, fig_handle.

The current figure handle is returned by the gcf command.

Note If the figure window designated by fig handle is invisible, the
control is invisible. If you want the control you are creating to be
invisible, use the handle of an invisible figure window.

h = actxcontrol('progid',position,fig_handle,event_handler)
creates an ActiveX control that responds to events. Controls respond
to events by invoking an M-file function whenever an event (such

2-92

actxcontrol

as clicking a mouse button) is fired. The event_handler argument
1dentifies one or more M-file functions to be used in handling events (see
“Specifying Event Handlers” on page 2-93 below).

h =
actxcontrol('progid',position,fig_handle,event_handler, 'filename')
creates an ActiveX control with the first four arguments, and sets its

initial state to that of a previously saved control. MATLAB loads the

initial state from the file specified in the string filename.

If you don’t want to specify an event_handler, you can use an empty
string (' ') as the fourth argument.

The progid argument must match the progid of the saved control.

Specifying Event Handlers

There is more than one valid format for the event_handler argument.

Use this argument to specify one of the following:

¢ A different event handler routine for each event supported by the
control

® One common routine to handle selected events

® One common routine to handle all events

In the first case, use a cell array for the event_handler argument, with
each row of the array specifying an event and handler pair:

{'event' 'eventhandler'; 'event2' 'eventhandler2'; ...}

event can be either a string containing the event name or a numeric
event identifier (see Example 2 below), and eventhandler is a string
identifying the M-file function you want the control to use in handling
the event. Include only those events that you want enabled.

In the second case, use the same cell array syntax just described, but
specify the same eventhandler for each event. Again, include only
those events that you want enabled.

2-93

actxcontrol

2-94

Remarks

In the third case, make event_handler a string (instead of a cell array)
that contains the name of the one M-file function that is to handle all
events for the control.

There 1s no limit to the number of event and handler pairs you can
specify in the event_handler cell array.

Event handler functions should accept a variable number of arguments.

Strings used in the event_handler argument are not case sensitive.

Note Although using a single handler for all events may be easier in
some cases, specifying an individual handler for each event creates
more efficient code that results in better performance.

If the control implements any custom interfaces, use the interfaces
function to list them, and the invoke function to get a handle to a
selected interface.

When you no longer need the control, call release to release the
interface and free memory and other resources used by the interface.
Note that releasing the interface does not delete the control itself. Use
the delete function to do this.

For more information on handling control events, see Writing Event
Handlers in the External Interfaces documentation.

For an example event handler, see the file sampev.m in the
toolbox\matlab\winfun\comcli directory.

COM functions are available on Microsoft Windows systems only.

Note If you encounter problems creating Microsoft Forms 2.0 controls
in MATLAB software or other non-VBA container applications, see
“Using Microsoft Forms 2.0 Controls” in the External Interfaces
documentation.

actxcontrol

Examples Example 1 — Basic Control Methods

Start by creating a figure window to contain the control. Then create a
control to run a Microsoft Calendar application in the window. Position
the control at a [0 0] x-y offset from the bottom left of the figure
window, and make it the same size (600 x 500 pixels) as the figure
window.

f = figure('position', [300 300 600 500]);
cal = actxcontrol('mscal.calendar', [0 O 600 500], f);

Call the get method on cal to list all properties of the calendar,
including today’s date:

cal.get
For example, MATLAB displays (in part):
BackColor: 2.1475e+009
Day: 23

DayFont: [1x1 Interface.Standard_OLE_Types.Font]
Value: '8/20/2001'

Read today’s date:
date = cal.Value

MATLAB displays a date similar to:

date =
8/20/2001

Set the Day property to a new value:

cal.Day = 5;
date = cal.Value

2-95

actxcontrol

MATLAB displays a date similar to:

date =
8/5/2001

Call invoke to list all available methods:
meth = cal.invoke
MATLAB displays (in part):

meth =
NextDay: 'HRESULT NextDay(handle)'
NextMonth: 'HRESULT NextMonth(handle)'
NextWeek: 'HRESULT NextWeek(handle)'
NextYear: 'HRESULT NextYear(handle)'

Invoke the NextWeek method to advance the current date by one week:

cal.NextWeek;
date = cal.Value

MATLAB displays a date similar to:

date =
8/12/2001

Call events to list all calendar events that can be triggered:

cal.events

MATLAB displays:

Click = void Click()
DblClick = void DblClick()

2-96

actxcontrol

KeyDown = void KeyDown(int16 KeyCode, int16 Shift)
KeyPress = void KeyPress(int16 KeyAscii)

KeyUp = void KeyUp(int16 KeyCode, int16 Shift)
BeforeUpdate = void BeforeUpdate(int16 Cancel)
AfterUpdate = void AfterUpdate()

NewMonth = void NewMonth()

NewYear = void NewYear()

Example 2 — Event Handling

The event_handler argument specifies how you want the control to
handle any events that occur. The control can handle all events with
one common handler function, selected events with a common handler
function, or each type of event can be handled by a separate function.

This command creates an mwsamp control that uses one event handler,
sampev, to respond to all events:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200],
gcf, 'sampev');

The next command also uses a common event handler, but will only
invoke the handler when selected events, Click and Db1Click are fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200],
gcf, {'Click' 'sampev'; 'DblClick' 'sampev'});

This command assigns a different handler routine to each event. For
example, Click is an event, and myclick is the routine that executes
whenever a Click event is fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200],

gcef, {'Click', 'myclick'; 'DblClick' 'my2click';
"MouseDown' 'mymoused'});

The next command does the same thing, but specifies the events using
numeric event identifiers:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200],
gcf, {-600, 'myclick'; -601 'my2click'; -605 'mymoused'});

2-97

actxcontrol

See the section, “Sample Event Handlers” in the External Interfaces
documentation for examples of event handler functions and how to
register them with MATLAB software.

See Also actxserver, release, delete (COM), save (COM), load (COM),
interfaces

2-98

actxcontrollist

Purpose List all currently installed Microsoft ActiveX controls

Syntax C = actxcontrollist

Descripl‘ion C = actxcontrollist returns a list of each control, including its name,
programmatic identifier (or ProgID), and filename, in output cell array
C.

Remarks COM functions are available on Microsoft Windows systems only.

Examples Here is an example of the information that might be returned for

several controls:

list = actxcontrollist;

for k = 1:2

sprintf (' Name = %s\n ProgID = %s\n File = %s\n', list{k,

end

MATLAB software displays information similar to:

ans =

Name = Calendar Control 11.0

ProgID = MSCAL.Calendar.7

File = C:\Program Files\MSOffice\OFFICE11\MSCAL.OCX

ans =

Name = CTreeView Control

ProgID = CTREEVIEW.CTreeViewCtrl.1
File = C:\WINNT\system32\dmocx.dll

See Also actxcontrolselect, actxcontrol

'}

2-99

actxcontrolselect

Purpose

Syntax

Description

2-100

Open GUI to create Microsoft ActiveX control

h = actxcontrolselect
[h, info] = actxcontrolselect

h = actxcontrolselect displays a graphical interface that lists all
ActiveX controls installed on the system and creates the one that you
select from the list. The function returns a handle h for the object. Use
the handle to identify this particular control object when calling other
MATLAB COM functions.

[h, info] = actxcontrolselect returns the handle h and also the
1-by-3 cell array info containing information about the control. The
information returned in the cell array shows the name, programmatic
identifier (or ProgID), and filename for the control.

Select an ActiveX Control

Activel Control List:

(-1 VideoSoft FlexArray Contral -
(-1 VideoSoft FlexString Contral

Apr 2004 IA vllznn I
ActivedovieControl Object P pr

4 -
A ctiveXPlugin Object Sun | Mon | Tue | Wed | Thu Fri Sat
Adaptec CD Guide 26 25 a0 | 1 B 3
Adaptec EasyCDDevice Class
Adaptec EasyCDEngine Class
#.dabe Acrobat Control for ActiveX 4 3 8 7 g
Application Data Contral
Apps Control 1 1z |13 |14 16 |17
CODECortrol Class
COMMNEYiew Class
CTreeiew Control
Calendar Cortrol 10.0
DHTML Edit Control Safe for Scripting f 25 25 27 28 29 30 1
DHTML Eclit Contral for IES
D=DizplayPanel Class
DSStatusBar Class
DrirgCtl Class
DirectsR Class
Direct=s Class
DizkManagement Control
FTI Device Digita Infrared Contral
FTI Device Digita Serial Control
FTI Device Digita USE Control

Previgw:

9 10

18 149 20 2 22 23 24

2 <) 4 & B i g

Program I0: MSCAL Calendar.7
Location: DrispplicationsMSOfficelOffice] MSCAL OC
x

Properties |

Create Cancel | Help |

»

actxcontrolselect

Remarks

The actxcontrolselect interface has a selection pane at the left of the
window and a preview pane at the right. Click on one of the control
names in the selection pane to see a preview of the control displayed. (If
MATLAB cannot create the control, an error message is displayed in
the preview pane.) Select an item from the list and click the Create
button at the bottom.

Click the Properties button on the actxcontrolselect window to
enter nondefault values for properties when creating the control. You
can select which figure window to put the control in (Parent field),
where to position it in the window (X and Y fields), and what size to
make the control (Width and Height).

You can also register any events you want the control to respond to and
what event handling routines to use when any of these events fire. Do
this by entering the name of the appropriate event handling routine

to the right of the event, or clicking the Browse button to search for
the event handler file.

Choose ActiveX Control Creation Parameters x|

Frogram ID: MSCAL Calendar. 7

Parent: |Cunent Figure [gcf) d
Position: |—2U ﬂ ‘i |_20 ﬂ W'idth:l 500 ﬂ Height:l 350 ﬂ

Everts: Event Hame Callback M-File | Brawse |
Click =

DhlClick Select event(s) and
HeyDown click on Browse
KeyPress button to azzign a
;Z;ﬁgupdm callback M-File.
AfterUpdate

(NIRRT T) LI

oK | Cancel |

COM functions are available on Microsoft Windows systems only.

2-101

actxcontrolselect

Examples

2-102

Note If you encounter problems creating Microsoft Forms 2.0 controls
in MATLAB software or other non-VBA container applications, see
“Using Microsoft Forms 2.0 Controls” in the External Interfaces
documentation.

Open a window showing the ActiveXcontrols on your system:

[h, info] = actxcontrolselect

Select the Calendar Control in the window and click Properties to
open the window shown above. Enter new values for the size of the
control, setting Width to 500 and Height to 350, then click OK. Click
Create in the actxcontrolselect window to create the control.

The control appears in a MATLAB figure window. MATLAB displays
information similar to (your version number may be different):

h =
COM.MSCAL_Calendar_7

info =
[1x21 char] 'MSCAL.Calendar.7' [1x44 char]%}

Expand the info cell array to show the control name, ProgID, and
filename:

info{:}
MATLAB displays information similar to:

ans =
Calendar Control 11.0

ans =
MSCAL.Calendar.7

ans =

actxcontrolselect

C:\Program Files\MSOffice\OFFICE11\MSCAL.OCX

See Also actxcontrollist, actxcontrol

2-103

actxGetRunningServer

Purpose
Syntax

Description

Remarks

Example

See Also

2-104

Get handle to running instance of Automation server

>
I}

actxGetRunningServer('progid"')

h actxGetRunningServer('progid') gets a reference to a
running instance of the OLE Automation server, where progid is the
programmatic identifier of the Automation server object and h is the
handle to the server object’s default interface.

The function issues an error if the server specified by progid is not
currently running or if the server object is not registered. When there
are multiple instances of the Automation server already running, the
behavior of this function is controlled by the operating system.

COM functions are available on Microsoft Windows systems only.

h = actxGetRunningServer('matlab.application')

actxcontrol, actxserver

actxserver

Purpose

Syntax

Description

Create COM server

h = actxserver('progid')

h = actxserver('progid', 'machine', 'machineName')

h = actxserver('progid', 'interface', 'interfaceName')

h = actxserver('progid', 'machine', 'machineName',
"interface', 'interfaceName')

h = actxserver('progid', machine)

h = actxserver('progid') creates a local OLE Automation server,
where progid is the programmatic identifier of the COM server, and h
is the handle of the server’s default interface.

Get progid from the control or server vendor’s documentation. To
see the progid values for MATLAB software, refer to “Programmatic
Identifiers” in the MATLAB External Interfaces documentation.

h = actxserver('progid', 'machine', 'machineName') creates an
OLE Automation server on a remote machine, where machineName is a
string specifying the name of the machine on which to launch the server.

h = actxserver('progid', 'interface', 'interfaceName')
creates a Custom interface server, where interfaceName is a
string specifying the interface name of the COM object. Values for
interfaceName are

e TUnknown — Use the IUnknown interface.

¢ The Custom interface name

You must know the name of the interface and have the server vendor’s
documentation in order to use the interfaceName value. See “COM

Server Types” in the MATLAB External Interfaces documentation for
information about Custom COM servers and interfaces.

Note The MATLAB COM Interface does not support invoking
functions with optional parameters.

2-105

actxserver

Remarks

Microsoft
Excel
Workbook
Example

2-106

h = actxserver('progid', 'machine', 'machineName’,
"interface', 'interfaceName') creates a Custom interface server on
a remote machine.

The following syntaxes are deprecated and will not become obsolete.
They are included for reference, but the syntaxes described earlier are
preferred:

h = actxserver('progid', machine) creates a COM server running
on the remote system named by the machine argument. This can be an
IP address or a DNS name. Use this syntax only in environments that
support Distributed Component Object Model (DCOM).

For components implemented in a dynamic link library (DLL),
actxserver creates an in-process server. For components implemented
as an executable (EXE), actxserver creates an out-of-process server.
Out-of-process servers can be created either on the client system or on
any other system on a network that supports DCOM.

If the control implements any Custom interfaces, use the interfaces
function to list them, and the invoke function to get a handle to a
selected interface.

You can register events for COM servers.

COM functions are available on Microsoft Windows systems only.

This example creates an OLE Automation server, Excel® version 9.0,
and manipulates a workbook in the application:

% Create a COM server running Microsoft Excel
e = actxserver ('Excel.Application')

{

o°

(9]

COM.Excel.application

o°

}

% Make the Excel frame window visible
e.Visible = 1;

actxserver

o°

Use the get method on the Excel object "e"
to list all properties of the application:
.get

{

o°

@

o°

Application: [1x1
Interface.Microsoft _Excel 9.0 Object Library. Application]
Creator: 'x1lCreatorCode'

Workbooks: [1x1
Interface.Microsoft _Excel 9.0 Object_Library.Workbooks]

Caption: 'Microsoft Excel - Booki'
CellDragAndDrop: O
ClipboardFormats: {3x1 cell}

Cursor: 'x1NorthwestArrow'

o°

}

% Create an interface "eWorkBooks"

eWorkbooks = e.Workbooks

%{

eWorkbooks =
Interface.Microsoft_Excel_9.0_Object_Library.Workbooks

o°

}
% List all methods for that interface
eWorkbooks.invoke
%{

Add: 'handle Add(handle, [Optional]Variant)'
Close: 'void Close(handle)'

2-107

actxserver

Item: 'handle Item(handle, Variant)'
Open: 'handle Open(handle, string, [Optional]Variant)'
OpenText: 'void OpenText(handle, string, [Optional]Variant)'

o°

}

Add a new workbook "w",
also creating a new interface
= eWorkbooks.Add

{

o = o° o°

=

Interface.Microsoft_Excel 9.0 Object _Library. Workbook
}
% Close Excel and delete the object
e.Quit;
e.delete;

o°

See Also actxcontrol, actxGetRunningServer, release, delete (COM), save
(COM), load (COM), interfaces

COM functions are available on Microsoft Windows systems only.

2-108

addCause (MException)

Purpose

Syntax

Description

Examples

Append MException objects

new_ME = addCause(base_ME, cause_ME)
base_ME = addCause(base_ME, cause_ME)

new_ME = addCause(base_ME, cause_ME) creates a new MException
object new_ME from two existing MException objects, base_ME and
cause_ME. addCause constructs new_ME by making a copy of the base_ME
object and appending cause_ME to the cause property of that object.

If other errors have contributed to the exception currently being thrown,
you can add the MException objects that represent these errors to the
cause field of the current MException to provide further information
for diagnosing the error at hand. All objects of the MException class
have a property called cause which is defined as a vector of additional
MException objects that can be added onto a base object of that class.

base ME = addCause(base ME, cause ME) modifies existing
MException object base ME by appending cause ME to the cause
property of that object.

Example 1

This example attempts to assign data from array D. If D does not exist,
the code attempts to recreate D by loading it from a MAT-file. The code
constructs a new MException object new ME to store the causes of the
first two errors, cause1_ME and cause2_ ME:

try
x = D(1:25);
catch causel1_ME
try

filename = 'test204';
testdata = load(filename);
X = testdata.D(1:25)
catch cause2_ME
base_ME = MException('MATLAB:LoadErr',
'Unable to load from file %s', filename);

2-109

addCause (MException)

new_ME addCause(base_ME, causel_ME);
new_ME = addCause(new_ME, cause2_ME);
throw(new_ME);

end

end

When you run the code, the MATLAB software displays the following
message:

??7? Unable to load from file test204

There are two exceptions in the cause field of new_ME:

new_ME.cause

ans =
[1x1 MException]
[1x1 MException]

Examine the cause field of new_ME to see the related errors:

new_ME.cause{:}
ans =

MException object with properties:

identifier: 'MATLAB:UndefinedFunction'
message: 'Undefined function or method 'D' for
input arguments of type 'double'.’
stack: [0x1 struct]
cause: {}
ans =

MException object with properties:
identifier: 'MATLAB:load:couldNotReadFile'
message: 'Unable to read file test204: No such file

or directory.'
stack: [0Ox1 struct]

2-110

addCause (MException)

cause: {}

Example 2

This example attempts to open a file in a directory that is not on the
MATLAB path. It uses a nested try-catch block to give the user the
opportunity to extend the path. If the file still cannot be found, the
program issues an exception with the first error appended to the second
using addCause:

function data = read_it(filename);
try
fid = fopen(filename, 'r');
data = fread(fid);

catch ME1
if strcmp(ME1.identifier, 'MATLAB:FileIO:InvalidFid')
msg = sprintf('\n%s%s%s', 'Cannot open file ',
filename, '. Try another location? ');
reply = input(msg, 's')
if reply(1) == 'y’
newdir = input('Enter directory name: ', 's');
else
throw(ME1) ;
end
addpath(newdir);
try

fid = fopen(filename, 'r');
data = fread(fid);
catch ME2
ME3 = addCause(ME2, MET1)
throw(ME3) ;
end
rmpath(newdir);
end
end
fclose(fid);

2-111

addCause (MException)

If you run this function in a try-catch block at the command line, you
can look at the MException object by assigning it to a variable (e) with
the catch command.

try

d = read_it('anytextfile.txt');
catch e
end

e
e:
MException object with properties:

identifier: 'MATLAB:FileIO:InvalidFid'
message: 'Invalid file identifier. Use fopen
to generate a valid file identifier.'
stack: [1x1 struct]
cause: {[1x1 MException]}

Cannot open file anytextfile.txt. Try another location?y
Enter directory name: XXXXXXX
Warning: Name is nonexistent or not a directory: XXXXXXX.
> In path at 110

In addpath at 89

See Also try, catch, error, assert, , MException, throw(MException),
rethrow(MException), throwAsCaller (MException),
getReport (MException), disp(MException), isequal (MException),
eq(MException), ne(MException), last(MException)

2-112

addevent

Purpose

Syntax

Description

Examples

Add event to timeseries object

ts
ts

addevent(ts,e)
addevent(ts,Name,Time)

ts = addevent(ts,e) adds one or more tsdata.event objects, e, to
the timeseries object ts. e is either a single tsdata.event object or
an array of tsdata.event objects.

ts = addevent(ts,Name,Time) constructs one or more tsdata.event
objects and adds them to the Events property of ts. Name is a cell array
of event name strings. Time is a cell array of event times.

Create a time-series object and add an event to this object.

%% Import the sample data
load count.dat

%% Create time-series object
counti=timeseries(count(:,1),1:24, 'name', 'data');

%% Modify the time units to be 'hours' ('seconds' is default)
count1.TimeInfo.Units = 'hours';

%% Construct and add the first event at 8 AM
1 = tsdata.event('AMCommute',8);

@

%% Specify the time units of the time
el.Units = 'hours';

View the properties (EventData, Name, Time, Units, and StartDate)
of the event object.

get(etl)
MATLAB software responds with

EventData: []

2-113

addevent

Name: 'AMCommute’
Time: 8
Units: 'hours'
StartDate: '
%% Add the event to counti
counti = addevent(countil,el);

An alternative syntax for adding two events to the time series count1 is
as follows:

count1l = addevent(counti1,{'AMCommute' 'PMCommute'},{8 18})

See Also timeseries, tsdata.event, tsprops

2-114

addframe

Purpose

Syntax

Description

Add frame to Audio/Video Interleaved (AVI) file

aviobj = addframe(aviobj,frame)

(
aviobj = addframe(aviobj,framel,frame2,frame3,...)
aviobj = addframe(aviobj,mov)
aviobj = addframe(aviobj,h)

aviobj = addframe(aviobj,frame) appends the data in frame to
the AVI file identified by aviobj, which was created by a previous
call to avifile. frame can be either an indexed image (m-by-n) or a
truecolor image (m-by-n-by-3) of double or uint8 precision. If frame is
not the first frame added to the AVI file, it must be consistent with the
dimensions of the previous frames.

addframe returns a handle to the updated AVI file object, aviobj. For
example, addframe updates the TotalFrames property of the AVI file
object each time it adds a frame to the AVI file.

aviobj = addframe(aviobj,framel,frame2,frame3,...) adds
multiple frames to an AVI file.

aviobj = addframe(aviobj,mov) appends the frames contained in the
MATLAB movie mov to the AVI file aviobj. MATLAB movies that store
frames as indexed images use the colormap in the first frame as the
colormap for the AVI file, unless the colormap has been previously set.

aviobj = addframe(aviobj,h) captures a frame from the figure or
axis handle h and appends this frame to the AVI file. addframe renders
the figure into an offscreen array before appending it to the AVI file.
This ensures that the figure is written correctly to the AVI file even if
the figure is obscured on the screen by another window or screen saver.

Note If an animation uses XOR graphics, you must use getframe to
capture the graphics into a frame of a MATLAB movie. You can then
add the frame to an AVI movie using the addframe syntax aviobj =
addframe (aviobj,mov). See the example for an illustration.

2-115

addframe

Example This example calls addframe to add frames to the AVI file object aviobj.

t = linspace(0,2.5*pi,40);
fact = 10*sin(t);
fig=figure;
aviobj = avifile('example.avi')
[X,y,z] = peaks;
for k=1:length(fact)
h = surf(x,y,fact(k)*z);
axis([-3 3 -3 3 -80 80])
axis off
caxis([-90 90])
F = getframe(fig);
aviobj = addframe(aviobj,F);
end
close(fig)
aviobj = close(aviobj);

See Also avifile, close, movie2avi

2-116

addlistener (handle)

Purpose

Syntax

Description

Create event listener

1h = addlistener(Hsource, 'EventName',callback)
lh = addlistener(Hsource,property, 'EventName',callback)
lh = addlistener(Hsource, 'EventName',callback)) creates a

listener for the specified event.

1h = addlistener(Hsource,property, 'EventName',callback)
creates a listener for one of the predefined property events. There are
four property events:

® PreSet — triggered just before the property value is set, before
calling its set access method.
® PostSet — triggered just after the property value is set.

® PreGet — triggered just before a property value query is serviced,
before calling its get access method.

® PostGet — triggered just after returning the property value to the
query
See “Defining Events and Listeners — Syntax and Techniques” for more

information.

Arguments

Hsource
Handle of the object that is the source of the event, or an array
of source handles.

EventName
Name of the event, which is triggered by the source objects.

callback
Function handle referencing a function to execute when the event
is triggered.

property
Character string that can be:

2-117

addlistener (handle)

See Also

2-118

® the name of the property

e g cell array of strings where each string is the name of a
property that exists in object array Hsource

e ameta.property object or an array of meta.property objects
e g cell array of meta.property objects

If Hsource is a scalar, then any of the properties can be dynamic
properties. If Hsource is non-scalar, then the properties must
belong to the class of Hsource and can not include dynamic
properties (which are not part of the class definition).

For more information, see the following sections:

¢ The GetObservable and SetObservable property attributes in
the “Property Attributes” table.

e “Creating Property Listeners”
¢ “Dynamic Properties — Adding Properties to an Instance”

1h
Handle of the event.listener object returned by addlistener.

Removing a Listener

To remove a listener, delete the listener object returned by addlistener.
For example,

delete(1lh)

calls the handle class delete method to delete the object from the
workspace and remove the listener.

delete (handle), handle, notify (handle)

addOptional (inputParser)

Purpose

Syntax

Description

Examples

Add optional argument to inputParser schema

p.addOptional (argname, default, validator)
addOptional(p, argname, default, validator)

p.addOptional(argname, default, validator) updates the schema
for inputParser object p by adding an optional argument, argname.
Specify the argument name in a string enclosed within single quotation
marks. The default input specifies the value to use when the optional
argument argname is not present in the actual inputs to the function.
The optional validator input is a handle to a function that the
MATLAB software uses during parsing to validate the input arguments.
If the validator function returns false or errors, the parsing fails and
MATLAB throws an error.

MATLAB parses parameter-value arguments after required arguments
and optional arguments.

addOptional(p, argname, default, validator) is functionally the
same as the syntax above.

For more information on the inputParser class, see “Parsing Inputs
with inputParser’in the MATLAB Programming Fundamentals
documentation.

Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class.

There are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these three syntaxes, you can see that there is one required
argument (script), one optional argument (format), and some number
of optional arguments that are specified as parameter-value pairs
(options).

2-119

addOptional (inputParser)

2-120

Begin writing the example publish_ip M-file by entering the following
two statements. The second statement calls the class constructor for
inputParser to create an instance of the class. This class instance, or
object, gives you access to all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

Following the constructor, add this block of code to the M-file.

This code uses the addRequired(inputParser), addOptional, and
addParamValue (inputParser) methods to define the input arguments
to the function:

p.addRequired('script', @ischar);

p.addOptional('format', 'html',
@(x)any(strcmpi(x,{'html', 'ppt', 'xml', 'latex'})));

p.addParamValue('outputDir', pwd, @ischar);

p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);

p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)"

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
‘format'
'maxHeight'
'maxwidth'
"outputDir'
'script’

addOptional (inputParser)
|

See Also inputParser, addRequired(inputParser),
addParamValue (inputParser), parse(inputParser),
createCopy(inputParser)

2-121

addParamValue (inputParser)

Purpose

Syntax

Description

Examples

2-122

Add parameter-value argument to inputParser schema

p.addParamValue(argname, default, validator)
addParamValue(p, argname, default, validator)

p.addParamValue(argname, default, validator) updates the
schema for inputParser object p by adding a parameter-value
argument, argname. Specify the argument name in a string enclosed
within single quotation marks. The default input specifies the value
to use when the optional argument name is not present in the actual
inputs to the function. The optional validator is a handle to a function
that the MATLAB software uses during parsing to validate the input
arguments. If the validator function returns false or errors, the
parsing fails and MATLAB throws an error.

MATLAB parses parameter-value arguments after required arguments
and optional arguments.

addParamValue(p, argname, default, validator) is functionally
the same as the syntax above.

For more information on the inputParser class, see “Parsing Inputs
with inputParser’in the MATLAB Programming Fundamentals
documentation.

Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class. There
are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these calling syntaxes, you can see that there is one required
argument (script), one optional argument (format), and a number
of optional arguments that are specified as parameter-value pairs
(options).

addParamValue (inputParser)

Begin writing the example publish_ip M-file by entering the following
two statements. Call the class constructor for inputParser to create an
instance of the class. This class instance, or object, gives you access to
all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

After calling the constructor, add the following lines to the

M-file. This code uses the addRequired(inputParser),
addOptional(inputParser), and addParamValue methods to define the
input arguments to the function:

p.addRequired('script', @ischar);

p.addOptional('format', 'html',
@(x)any(strcmpi(x,{'html', 'ppt', 'xml', 'latex'})));

p.addParamValue('outputDir', pwd, @ischar);

p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);

p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)"

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
‘format'
'maxHeight'
'maxwidth'
"outputDir'
'script’

2-123

addParamValue (inputParser)

See Also inputParser, addRequired(inputParser),
addOptional(inputParser), parse(inputParser),
createCopy(inputParser)

2-124

addpath

Purpose

GUI
Alternatives

Syntax

Description

Remarks

Add directories to search path

As an alternative to the addpath function, use the Set Path dialog box.

addpath('directory')

addpath('dir','dir2','dir3"' ...)
addpath('dir','dir2','dir3"' ...'-flag')
addpath dir1 dir2 dir3 ... -flag

addpath('directory') adds the specified directory to the top (also
called front) of the current MATLAB search path. Use the full
pathname for directory.

addpath('dir','dir2','dir3"' ...) adds all the specified directories
to the top of the path. Use the full pathname for each dir.

addpath('dir','dir2','dir3"' ...'-flag') adds the specified
directories to either the top or bottom of the path, depending on the
value of flag.

flag Argument Result

0 or begin Add specified directories to the top of the path

1 or end Add specified directories to the bottom (also
called end) of the path

addpath dirt1 dir2 dir3d ... -flag is the unquoted form of the
syntax.

To recursively add subdirectories of your directory in addition to the
directory itself, run

addpath(genpath('directory'))

Use addpath statements in your startup.m file to use the modified path
in future sessions. For details, see “Automatically Modifying the Search

2-125

addpath

Examples

See Also

2-126

Path at Startup” in the MATLAB Desktop Tools and Development
Environment Documentation.

For the current path, viewed by running path,

MATLABPATH
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

you can add c:/matlab/mymfiles to the front of the path by running

addpath('c:/matlab/mymfiles")

Verify that the files were added to the path by running

path

and MATLAB returns

MATLABPATH
c:\matlab\mymfiles
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

You can also use genpath in conjunction with addpath to add
subdirectories to the path. For example, to add /control and its
subdirectories to the path, use

addpath(genpath(fullfile(matlabroot, 'toolbox/control')))

genpath, path, pathsep, pathtool, rehash, restoredefaultpath,
rmpath, savepath, startup

“Search Path” in the MATLAB Desktop Tools and Development
Environment Documentation

addpref

Purpose

Syntax

Description

Examples

See Also

Add preference

addpref('group', 'pref',val)
addpref('group',{'prefi1', 'pref2',..."'prefn'},{vali,val2,
...valn})

addpref('group', 'pref',val) creates the preference specified by
group and pref and sets its value to val. It is an error to add a
preference that already exists.

group labels a related collection of preferences. You can choose any
name that is a legal variable name, and is descriptive enough to be
unique, e.g. 'ApplicationOnePrefs'. The input argument pref
identifies an individual preference in that group, and must be a legal
variable name.

addpref('group',{'prefi1', 'pref2',..."'prefn'},{vali,val2,...valn})
creates the preferences specified by the cell array of names 'prefi’,
'pref2',..., " 'prefn’', setting each to the corresponding value.

Note Preference values are persistent and maintain their values
between MATLAB sessions. Where they are stored is system dependent.

This example adds a preference called version to the mytoolbox group
of preferences and sets its value to the string 1.0.

addpref('mytoolbox', 'version','1.0")

getpref, ispref, rmpref, setpref, uigetpref, uisetpref

2-127

addprop (dynamicprops)

Purpose
Syntax

Description

See Also

2-128

Add dynamic property

U
I}

addprop(Hobj, 'PropName')

P addprop(Hobj, 'PropName') adds a property named PropName
to each object in array Hobj. The class definition is not affected by
the addition of dynamic properties. Note that you can add dynamic
properties only to objects derived from the dynamicprops class. You
can set and retrieve the data in dynamic properties as you would any
property.

The output argument P is an array the same size as Hobj of
meta.DynamicProperty objects, which you can use to assign SetMethod
and GetMethod functions to the property. These functions operate just
like property set and get access methods.

See “Dynamic Properties — Adding Properties to an Instance” for more
information and examples.

handle, dynamicprops

addproperty

Purpose

Syntax

Description

Remarks

Examples

Add custom property to COM object

h.addproperty('propertyname')
addproperty(h, 'propertyname')

h.addproperty('propertyname') adds the custom property specified
in the string, propertyname, to the object or interface, h. Use set to
assign a value to the property.

addproperty(h, 'propertyname') is an alternate syntax for the same
operation.

COM functions are available on Microsoft Windows systems only.

Create an mwsamp control and display its properties:

f = figure('position', [100 200 200 200]);
h actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200], f);
h.get

MATLAB software displays:

Label: 'Label'
Radius: 20

Add a new property named Position to the control. Assign an array
value to the property:

h.addproperty('Position');
h.Position = [200 120];
h.get

MATLAB displays (in part):

Label: 'Label'
Radius: 20
Position: [200 120]

2-129

addproperty

Delete the custom Position property:

h.deleteproperty('Position');
h.get

MATLAB displays:

Label: 'Label'
Radius: 20

Create an mwsamp control and add a new property named Position to
it. Assign an array value to the property:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200], f);
h.get
Label: 'Label'
Radius: 20

h.addproperty('Position');

h.Position = [200 120];
h.get
Label: 'Label'
Radius: 20

Position: [200 120]
h.get('Position')
ans =

200 120

Delete the custom Position property:

h.deleteproperty('Position');

h.get
Label: 'Label'’
Radius: 20
See Also deleteproperty, get (COM), set (COM), inspect

2-130

addRequired (inputParser)

Purpose

Syntax

Description

Examples

Add required argument to inputParser schema

p.addRequired(argname, validator)
addRequired(p, argname, validator)

p.addRequired(argname, validator) updates the schema for
inputParser object p by adding a required argument, argname. Specify
the argument name in a string enclosed within single quotation marks.
The optional validator is a handle to a function that the MATLAB
software uses during parsing to validate the input arguments. If

the validator function returns false or errors, the parsing fails and
MATLAB throws an error.

MATLAB parses required arguments before optional or parameter-value
arguments.

addRequired(p, argname, validator) is functionally the same as
the syntax above.

Note For more information on the inputParser class, see “Parsing
Inputs with inputParser’in the MATLAB Programming Fundamentals
documentation.

Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class. There
are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these calling syntaxes, you can see that there is one required
argument (script), one optional argument (format), and a number
of optional arguments that are specified as parameter-value pairs
(options).

2-131

addRequired (inputParser)

2-132

Begin writing the example publish_ip M-file by entering the following
two statements. Call the class constructor for inputParser to create an
instance of the class. This class instance, or object, gives you access to
all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

After calling the constructor, add the following lines to the M-file.
This code uses the addRequired, addOptional(inputParser), and
addParamValue (inputParser) methods to define the input arguments
to the function:

p.addRequired('script', @ischar);

p.addOptional('format', 'html',
@(x)any(strcmpi(x,{'html', 'ppt', 'xml', 'latex'})));

p.addParamValue('outputDir', pwd, @ischar);

p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);

p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)"

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
‘format'
'maxHeight'
'maxwidth'
"outputDir'
'script’

addRequired (inputParser)
|

See Also inputParser, addOptional(inputParser),
addParamValue (inputParser), parse(inputParser),
createCopy(inputParser)

2-133

addsample

Purpose

Syntax

Description

Remarks

2-134

Add data sample to timeseries object

ts = addsample(ts,'Field1',Valuel,'Field2',Value2,...)
ts addsample(ts,s)

ts addsample(ts,'Field1',Valuel, 'Field2',Value2,...) adds
one or more data samples to the timeseries object ts, where one field
must specify Time and another must specify Data. You can also specify
the following optional property-value pairs:

® 'Quality' — Array of data quality codes

e 'OverwriteFlag' — Logical value that controls whether to overwrite
a data sample at the same time with the new sample you are adding
to your timeseries object. When set to true, the new sample
overwrites the old sample at the same time.

ts = addsample(ts,s) adds one or more new samples stored in a
structure s to the timeseries object ts. You must define the fields
of the structure s before passing it as an argument to addsample by
assigning values to the following optional s fields:

® s.data

® s.time

® s.quality

® s.overwriteflag

A time-series data sample consists of one or more values recorded at a
specific time. The number of data samples in a time series is the same
as the length of the time vector.

The Time value must be a valid time vector.

Suppose that N is the number of samples. The sample size of each
time series is given by SampleSize = getsamplesize(ts). When

addsample

Examples

See Also

ts.IsTimeFirst is true, the size of the data is N-by-SampleSize. When
ts.IsTimeFirst is false, the size of the data is SampleSize-by-N.

Add a data value of 420 at time 3.

ts = ts.addsample('Time',3, 'Data',420);

Add a data value of 420 at time 3 and specify quality code 1 for this data
value. Set the flag to overwrite an existing value at time 3.

ts = ts.addsample('Data',3.2,'Quality',1, 'OverwriteFlag',...
true, 'Time',3);

delsample, getdatasamplesize, tsprops

2-135

addsampletocollection

Purpose

Syntax

Description

Remarks

Examples

2-136

Add sample to tscollection object

tsc = addsampletocollection(tsc,'time',Time,TS1Name,TS1Data,
TSnName, TSnData)

tsc =

addsampletocollection(tsc, 'time',Time,TS1Name,TS1Data,
TSnName, TSnData) adds data samples TSnData to the collection
member TSnName in the tscollection object tsc at one or more Time
values. Here, TSnName is the string that represents the name of a time
series in tsc, and TSnData is an array containing data samples.

If you do not specify data samples for a time-series member in tsc,
that time-series member will contain missing data at the times given
by Time (for numerical time-series data), NaN values, or (for logical
time-series data) false values.

When a time-series member requires Quality values, you can specify
data quality codes together with the data samples by using the following
syntax:

tsc = addsampletocollection(tsc, 'time',time,TS1Name,...
tsicellarray,TS2Name,ts2cellarray,...)

Specify data in the first cell array element and Quality in the second
cell array element.

Note If a time-series member already has Quality values but you only
provide data samples, Os are added to the existing Quality array at
the times given by Time.

The following example shows how to create a tscollection that
consists of two timeseries objects, where one timeseries does not
have quality codes and the other does. The final step of the example
adds a sample to the tscollection.

addsampletocollection

See Also

1 Create two timeseries objects, ts1 and ts2.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0],1:5,...
"name', 'acceleration');
ts2 = timeseries([3.2 4.2 6.2 8.5 1.1],1:5,...

‘name', 'speed');
2 Define a dictionary of quality codes and descriptions for ts2.

ts2.QualityInfo.Code = [0 1];
ts2.QualityInfo.Description = {'bad', 'good'};

3 Assign a quality of code of 1, which is equivalent to 'good"', to each
data value in ts2.

ts2.Quality = ones(5,1);

4 Create a time-series collection tsc, which includes time series ts1
and ts2.

tsc = tscollection({ts1,ts2});

5 Add a data sample to the collection tsc at 3.5 seconds.

tsc = addsampletocollection(tsc, 'time',3.5, 'acceleration',10,

‘speed', {5 1});

The cell array for the timeseries object 'speed' specifies both the
data value 5 and the quality code 1.

Note If you do not specify a quality code when adding a data sample
to a time series that has quality codes, then the lowest quality code is
assigned to the new sample by default.

delsamplefromcollection, tscollection, tsprops

2-137

addtodate

Purpose
Syntax

Description

Examples

2-138

Modify date number by field

X
I}

addtodate(D, Q, F)

R = addtodate(D, Q, F) adds quantity Q to the indicated date field F
of a scalar serial date number D, returning the updated date number R.

The quantity Q to be added must be a double scalar whole number, and
can be either positive or negative. The date field F must be a 1-by-N
character array equal to one of the following: 'year', 'month', 'day",
"hour', 'minute', 'second', or 'millisecond"'.

If the addition to the date field causes the field to roll over, the MATLAB
software adjusts the next more significant fields accordingly. Adding a
negative quantity to the indicated date field rolls back the calender on
the indicated field. If the addition causes the field to roll back, MATLAB
adjusts the next less significant fields accordingly.

Modify the hours, days, and minutes of a given date:

t = datenum('07-Apr-2008 23:00:00');
datestr(t)
ans =

07-Apr-2008 23:00:00

t= addtodate(t, 2, 'hour');
datestr(t)
ans =

08-Apr-2008 01:00:00

t= addtodate(t, -7, 'day');
datestr(t)
ans =

01-Apr-2008 01:00:00

t= addtodate(t, 59, 'minute');
datestr(t)
ans =

addtodate
|

01-Apr-2008 01:59:00

Adding 20 days to the given date in late December causes the calendar
to roll over to January of the next year:

R = addtodate(datenum('12/24/2007 12:45"'), 20, 'day');

datestr(R)
ans =
13-Jan-1985 12:45:00

See Also date, datenum, datestr, datevec

2-139

addts

Purpose

Syntax

Description

Remarks

Examples

2-140

Add timeseries object to tscollection object

tsc = addts(tsc,ts)

tsc = addts(tsc,ts)

tsc = addts(tsc,ts,Name)
tsc = addts(tsc,Data,Name)

tsc = addts(tsc,ts) adds the timeseries object ts to tscollection
object tsc.

tsc = addts(tsc,ts) adds a cell array of timeseries objects ts to
the tscollection tsc.

tsc = addts(tsc,ts,Name) adds a cell array of timeseries objects
ts to tscollection tsc. Name is a cell array of strings that gives the
names of the timeseries objects in ts.

tsc = addts(tsc,Data,Name) creates a new timeseries object from
Data with the name Name and adds it to the tscollection object tsc.
Data is a numerical array and Name is a string.

The timeseries objects you add to the collection must have the same
time vector as the collection. That is, the time vectors must have the
same time values and units.

Suppose that the time vector of a timeseries object is associated with
calendar dates. When you add this timeseries to a collection with a
time vector without calendar dates, the time vectors are compared based
on the units and the values relative to the StartDate property. For
more information about properties, see the timeseries reference page.

The following example shows how to add a time series to a time-series
collection:

1 Create two timeseries objects, ts1 and ts2.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0],1:5,...
'name', 'acceleration');

addts

ts2 = timeseries([3.2 4.2 6.2 8.5 1.1],1:5,...
'name', 'speed');

2 Create a time-series collection tsc, which includes ts1.

tsc = tscollection(tsi);

3 Add ts2 to the tsc collection.

tsc = addts(tsc, ts2);

4 To view the members of tsc, type

tsc

at the MATLAB prompt. the response is

Time Series Collection Object: unnamed
Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:

acceleration
speed

The members of tsc are listed by name at the bottom: acceleration
and speed. These are the Name properties of the timeseries objects
ts1 and ts2, respectively.

See Also removets, tscollection

2-141

airy

Purpose

Syntax

Definition

Description

2-142

Airy functions

w airy(Z2)
w airy(k,2z)
[W,ierr] = airy(k,Z)

The Airy functions form a pair of linearly independent solutions to

2
dW_zw =0
dz?
The relationship between the Airy and modified Bessel functions is
i 1
Ai(Z) = [-?.-, sza} K ,4(0)
Bi(Z) = 4Z/3 [1_1,3(C) + I7,3(0)]

where

2,32
‘:—gz

W = airy(Z) returns the Airy function, AE{Z}, for each element of
the complex array Z.

W = airy(k,Z) returns different results depending on the value of k.

k Returns

0 The same result as airy(Z)

1 The derivative, Ai'(Z)

2 The Airy function of the second kind, Bi(Z)
8 The derivative, Bi r(z)

airy

[W,ierr] = airy(k,Z) also returns completion flags in an array the
same size as W.

ierr Description

0 airy successfully computed the Airy function
for this element.

—_

Illegal arguments

2 Overflow. Returns Inf
3 Some loss of accuracy in argument reduction
4 Unacceptable loss of accuracy, Z too large
5 No convergence. Returns NaN
See Also besseli, besselj, besselk, bessely
References [1] Amos, D. E., “A Subroutine Package for Bessel Functions of

a Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-143

Purpose

Syntax

Description

2-144

Align user interface controls (uicontrols) and axes

align(HandlelList, 'HorizontalAlignment', 'VerticalAlignment')

Positions = align(HandlelList, 'HorizontalAlignment’,
’VerticalAlignment’)

Positions = align(CurPositions, 'HorizontalAlignment’,
’VerticalAlignment’)

align(HandlelList, 'HorizontalAlignment', 'VerticalAlignment')
aligns the uicontrol and axes objects in HandleList, a vector

of handles, according to the options HorizontalAlignment and
VerticalAlignment. The following table shows the possible values for
HorizontalAlignment and VerticalAlignment.

HorizontalAlignment | Definition

None No horizontal alignment is made

Left Shifts the objects’ left edges to that of the
first object selected

Center Shifts objects to center their positions to
the average of the extreme x-values of the
group

Right Shifts the objects’ right edges to that of

the first object selected

Distribute Equalizes x-distances between all objects
within the span of the extreme x-values

Fixed Spaces objects to have a specified number
of points between them in the y-direction

VerticalAlignment Definition

None No vertical alignment is made

VerticalAlignment Definition

Top Shifts the objects’ top edges to that of the
first object selected

Middle Shifts objects to center their positions to
the average of the extreme y-values of the
group

Bottom Shifts the objects’ bottom edges to that of
the first object selected

Distribute Equalizes y-distances between all objects
within the span of the extreme y-values

Fixed Spaces objects to have a specified number

of points between them in the x-direction

Aligning objects does not change their absolute sizes. All alignment
options align the objects within the bounding box that encloses the
objects. Distribute and Fixed align objects to the bottom left of the
bounding box. Distribute evenly distributes the objects while Fixed
distributes the objects with a fixed distance (in points) between them.
When you specify both horizontal and vertical distance together, the
keywords ’HorizontalAlignment’ and ’VerticalAlignment’ are not
necessary.

If you use Fixed for Horizontal Alignment or Vertical Alignment,
then you must specify the distance, in points, as an extra argument.
These are some examples:

align(HandlelList, 'Fixed',Distance, 'VerticalAlignment')

distributes the specified components Distance points horizontally and
aligns them vertically as specified.

align(HandlelList, 'HorizontalAlignment', 'Fixed',Distance)

aligns the specified components horizontally as specified and distributes
them Distance points vertically.

2-145

Examples

2-146

align(HandlelList, 'Fixed',HorizontalDistance, ...
'Fixed',VerticalDistance)

distributes the specified components HorizontalDistance points
horizontally and distributes them VerticalDistance points vertically.

Note 72 points equals 1 inch.

Positions = align(HandlelList, 'HorizontalAlignment’,
’VerticalAlignment’) returns updated positions for the specified
objects as a vector of Position vectors. The position of the objects on
the figure does not change.

Positions = align(CurPositions, 'HorizontalAlignment’,
*VerticalAlignment’) returns updated positions for the objects whose
positions are contained in CurPositions, where CurPositions is a
vector of Position vectors. The position of the objects on the figure
does not change.

Create a GUI with three buttons and use align to line up the buttons.
Create a figure window and one button object.

f=figure;
ul = uicontrol('Style', 'push', 'parent', f,'pos',...
[20 100 100 100], 'string', 'buttoni');

Figure 1

Create two more button objects, not aligned with each other or any
part of the figure window.

u2 = uicontrol('Style', 'push', 'parent', f,'pos',...
[150 250 100 100], 'string', 'button2');
u3 = uicontrol('Style', 'push', 'parent', f,'pos’',...
[250 100 100 100], 'string', 'button3');

2-147

Figure 1

Align the button objects with the bottom of the first button object,
equalizing the distance between the objects within the span of the
extreme x-values.

align([ul u2 u3], 'distribute', 'bottom');

2-148

Figure 1

See Also uicontrol, uistack

2-149

Purpose

Syntax

Description

See Also

2-150

Set or query axes alpha limits

alpha_limits = alim
alim([amin amax])
alim_mode = alim('mode')
alim('alim_mode")
alim(axes_handle,...)

alpha_limits = alim returns the alpha limits (the axes ALim property)
of the current axes.

alim([amin amax]) sets the alpha limits to the specified values. amin
is the value of the data mapped to the first alpha value in the alphamap,
and amax is the value of the data mapped to the last alpha value in the
alphamap. Data values in between are linearly interpolated across the
alphamap, while data values outside are clamped to either the first or
last alphamap value, whichever is closest.

alim mode = alim('mode') returns the alpha limits mode (the axes
ALimMode property) of the current axes.

alim('alim_mode') sets the alpha limits mode on the current axes.

alim_mode can be

¢ auto — The MATLAB software automatically sets the alpha limits
based on the alpha data of the objects in the axes.

* manual — MATLAB does not change the alpha limits.

alim(axes_handle,...) operates on the specified axes.

alpha, alphamap, caxis

Axes ALim and ALimMode properties
Patch FaceVertexAlphaData property
Image and surface AlphaData properties

Transparency for related functions

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ALim
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ALimMode
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ALim
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ALimMode
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceVertexAlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AlphaData

“Transparency” in 3-D Visualization for examples

2-151

Purpose

Syntax

Description

Examples

2-152

Determine whether all array elements are nonzero

B = all(A)
B = all(A, dim)
B = all(A) tests whether all the elements along various dimensions of

an array are nonzero or logical 1 (true).

If A is a vector, all(A) returns logical 1 (true) if all the elements are
nonzero and returns logical 0 (false) if one or more elements are zero.

If A is a matrix, all(A) treats the columns of A as vectors, returning a
row vector of logical 1’s and 0’s.

If A is a multidimensional array, all(A) treats the values along the
first nonsingleton dimension as vectors, returning a logical condition
for each vector.

B = all(A, dim) tests along the dimension of A specified by scalar dim.

0]

A alkAT) alkA,2)

Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical 1 (true) only where A is less than
one half:

0 0 1 1 1 1 0

The all function reduces such a vector of logical conditions to a single
condition. In this case, all(B) yields 0.

See Also

This makes all particularly useful in if statements:

if all(A < 0.5)
do something
end

where code 1s executed depending on a single condition, not a vector
of possibly conflicting conditions.

Applying the all function twice to a matrix, as in all(all(A)), always
reduces it to a scalar condition.

all(all(eye(3)))
ans =
0

any, logical operators (elementwise and short-circuit), relational
operators, colon

Other functions that collapse an array’s dimensions include max, mean,
median, min, prod, std, sum, and trapz.

2-153

allchild

Purpose
Syntax

Description

Examples

See Also

2-154

Find all children of specified objects
child_handles = allchild(handle_list)

child_handles allchild(handle_list) returns the list of all
children (including ones with hidden handles) for each handle. If
handle_list is a single element, allchild returns the output in a
vector. If handle list is a vector of handles, the output is a cell array.

Compare the results returned by these two statements.

get(gca, 'Children')
allchild(gca)

findall, findobj

alpha

Purpose

Syntax

Description

Set transparency properties for objects in current axes

alpha

alpha(face_alpha)
alpha(alpha_data)
alpha(alpha_data)
alpha(alpha_data)
alpha(alpha_data_mapping)
alpha(object_handle,value)

alpha sets one of three transparency properties, depending on what

arguments you specify with the call to this function.

FaceAlpha

alpha(face_alpha) sets the FaceAlpha property of all image, patch,

and surface objects in the current axes. You can set face_alpha to

® A scalar — Set the FaceAlpha property to the specified value (for
images, set the AlphaData property to the specified value).

e 'flat' — Set the FaceAlpha property to flat.

e 'interp' — Set the FaceAlpha property to interp.

e 'texture' — Set the FaceAlpha property to texture.

® 'opaque' — Set the FaceAlpha property to 1.

e 'clear' — Set the FaceAlpha property to 0.

See for more information.

AlphaData (Surface Objects)

alpha(alpha_data) sets the AlphaData property of all surface objects

in the current axes. You can set alpha_data to

® A matrix the same size as CData — Set the AlphaData property to
the specified values.

® 'x' — Set the AlphaData property to be the same as XData.

2-155

alpha

e 'y' — Set the AlphaData property to be the same as YData.
e 'z' — Set the AlphaData property to be the same as ZData.
® 'color' — Set the AlphaData property to be the same as CData.

® 'rand' — Set the AlphaData property to a matrix of random values
equal in size to CData.

AlphaData (Image Objects)

alpha(alpha_data) sets the AlphaData property of all image objects in

the current axes. You can set alpha_data to

® A matrix the same size as CData — Set the AlphaData property to
the specified value.

e 'x' — Ignored.

e 'y' — Ignored.

e 'z' — Ignored.

e 'color' — Set the AlphaData property to be the same as CData.

® 'rand' — Set the AlphaData property to a matrix of random values
equal in size to CData.

FaceVertexAlphaData (Patch Objects)

alpha(alpha_data) sets the FaceVertexAlphaData property of all
patch objects in the current axes. You can set alpha_data to

® A matrix the same size as FaceVertexCData — Set the

FaceVertexAlphaData property to the specified value.

® 'x' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,1).

e 'y' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,2).

e 'z' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,3).

2-156

alpha

See Also

e 'color' — Set the FaceVertexAlphaData property to be the same as
FaceVertexCData.
® 'rand' — Set the FaceVertexAlphaData property to random values.

See Mapping Data to Transparency for more information.

AlphaDataMapping

alpha(alpha_data_mapping) sets the AlphaDataMapping property of
all image, patch, and surface objects in the current axes. You can set
alpha_data_mapping to

e 'scaled' — Set the AlphaDataMapping property to scaled.

e 'direct' — Set the AlphaDataMapping property to direct.

® 'none' — Set the AlphaDataMapping property to none.

alpha(object_handle,value) sets the transparency property only on
the object identified by object_handle.

alim, alphamap

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping
Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

“Transparency” in 3-D Visualization for examples

2-157

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/image_props.html%23AlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/image_props.html%23AlphaDataMapping
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceAlpha
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceVertexAlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23AlphaDataMapping
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23FaceAlpha
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AlphaDataMapping

alphamap

Purpose

Syntax

Description

2-158

Specify figure alphamap (transparency)

alphamap

alphamap(alpha_map)
alphamap('parameter')
alphamap('parameter',length)
alphamap('parameter',delta)
alphamap(figure_handle,...)
alpha_map = alphamap

alpha_map = alphamap(figure_handle)
alpha_map alphamap('parameter')

alphamap enables you to set or modify a figure’s Alphamap property.
Unless you specify a figure handle as the first argument, alphamap
operates on the current figure.

alphamap(alpha_map) sets the AlphaMap of the current figure to the
specified m-by-1 array of alpha values.

alphamap('parameter') creates a new alphamap or modifies the
current alphamap. You can specify the following parameters:

e default — Set the AlphaMap property to the figure’s default
alphamap.

® rampup — Create a linear alphamap with increasing opacity (default
length equals the current alphamap length).

* rampdown — Create a linear alphamap with decreasing opacity
(default 1length equals the current alphamap length).

e vup — Create an alphamap that is opaque in the center and becomes
more transparent linearly towards the beginning and end (default
length equals the current alphamap length).

® vdown — Create an alphamap that is transparent in the center
and becomes more opaque linearly towards the beginning and end
(default length equals the current alphamap length).

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/figure_props.html%23Alphamap

alphamap

See Also

® increase — Modify the alphamap making it more opaque (default
deltais .1, which is added to the current values).

® decrease — Modify the alphamap making it more transparent
(default deltais .1, which is subtracted from the current values).

® spin — Rotate the current alphamap (default delta is 1; note that
delta must be an integer).

alphamap('parameter',length) creates a new alphamap with the
length specified by length (used with parameters rampup, rampdown,
vup, vdown).

alphamap('parameter',delta) modifies the existing alphamap
using the value specified by delta (used with parameters increase,
decrease, spin).

alphamap(figure_handle,...) performs the operation on the
alphamap of the figure identified by figure_handle.

alpha_map = alphamap returns the current alphamap.

alpha_map = alphamap(figure _handle) returns the current
alphamap from the figure identified by figure handle.

alpha_map = alphamap('parameter') returns the alphamap modified
by the parameter, but does not set the AlphaMap property.

alim, alpha

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping
Surface: FaceAlpha, AlphaData, AlphaDataMapping
Transparency for related functions

“Transparency” in 3-D Visualization for examples

2-159

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/image_props.html%23AlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/image_props.html%23AlphaDataMapping
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceAlpha
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceVertexAlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23AlphaDataMapping
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23FaceAlpha
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AlphaData
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AlphaDataMapping

amd

Purpose Approximate minimum degree permutation
Syntax P = amd(A)
P = amd(A,opts)

Description P = amd(A) returns the approximate minimum degree permutation
vector for the sparse matrix C = A + A'. The Cholesky factorization
of C(P,P) or A(P,P) tends to be sparser than that of C or A. The amd
function tends to be faster than symamd, and also tends to return better
orderings than symamd. Matrix A must be square. If A is a full matrix,
then amd (A) i1s equivalent to amd (sparse(A)).

P = amd(A,opts) allows additional options for the reordering. The
opts input is a structure with the two fields shown below. You only
need to set the fields of interest:

* dense — A nonnegative scalar value that indicates what is
considered to be dense. If A is n-by-n, then rows and columns
with more than max (16, (dense*sqgrt(n))) entriesin A + A' are
considered to be "dense" and are ignored during the ordering.
MATLAB software places these rows and columns last in the output
permutation. The default value for this field is 10.0 if this option
1s not present.

® aggressive — A scalar value controlling aggressive absorption. If
this field is set to a nonzero value, then aggressive absorption is
performed. This is the default if this option is not present.

MATLAB software performs an assembly tree post-ordering, which

1s typically the same as an elimination tree post-ordering. It is not
always identical because of the approximate degree update used, and
because “dense” rows and columns do not take part in the post-order. It
well-suited for a subsequent chol operation, however, If you require a
precise elimination tree post-ordering, you can use the following code:

P = amd(S);
C = spones(S)+spones(S'); % Skip this line if S is already symmetric
[ignore, Q] = etree(C(P,P))

2-160

amd

P = P(Q);

Examples This example constructs a sparse matrix and computes a two Cholesky
factors: one of the original matrix and one of the original matrix
preordered by amd. Note how much sparser the Cholesky factor of the
preordered matrix is compared to the factor of the matrix in its natural
ordering:

A
p
L

gallery('wathen',50,50);
amd (A) ;

chol(A, 'lower');

Lp = chol(A(p,p), ' lower');

figure;
subplot(2,2,1); spy (A);
title('Sparsity structure of A');

subplot(2,2,2); spy(A(p,p));
title('Sparsity structure of AMD ordered A');

subplot(2,2,3); spy(L);
title('Sparsity structure of Cholesky factor of A');

subplot(2,2,4); spy(Lp);
title('Sparsity structure of Cholesky factor of AMD ordered A');

set(gcf, 'Position',[100 100 800 700]);
See Also colamd, colperm, symamd, symrcm, /

References AMD Version 1.2 is written and copyrighted by Timothy A.
Davis, Patrick R. Amestoy, and Iain S. Duff. It is available at
http://www.cise.ufl.edu/research/sparse/amd.

The authors of the code for symamd are Stefan I. Larimore and
Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,

2-161

http://www.cise.ufl.edu/research/sparse/amd

amd

Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

2-162

http://www.cise.ufl.edu/research/sparse/

ancestor

Purpose

Syntax

Description

Examples

Ancestor of graphics object

p = ancestor(h,type)
ancestor(h,type, 'toplevel')

el
I}

p = ancestor(h,type) returns the handle of the closest ancestor of
h, if the ancestor is one of the types of graphics objects specified by
type. type can be:

® a string that is the name of a single type of object. For example,
‘figure'

¢ a cell array containing the names of multiple objects. For example,
{'hgtransform', "hggroup', 'axes'}

If the MATLAB software cannot find an ancestor of h that is one of the

specified types, then ancestor returns p as empty.

Note that ancestor returns p as empty but does not issue an error if h
is not the handle of a Handle Graphics object.

p = ancestor(h,type, 'toplevel') returns the highest-level ancestor
of h, if this type appears in the type argument.

Create some line objects and parent them to an hggroup object.

hgg = hggroup;
hgl line(randn(5),randn(5), 'Parent',hgg);

Now get the ancestor of the lines.

p = ancestor(hgg,{'figure', 'axes', 'hggroup'});
get(p, 'Type')
ans =

hggroup

Now get the top-level ancestor

2-163

ancestor

p=ancestor(hgg, {'figure', 'axes', "hggroup'}, 'toplevel');
get(p, 'type’)
ans =

figure

See Also findobj

2-164

and

Purpose

Syntax

Description

Examples

Find logical AND of array or scalar inputs

A&B&...
and(A, B)

A & B & ... performs a logical AND of all input arrays A, B, etc., and
returns an array containing elements set to either logical 1 (true)

or logical 0 (false). An element of the output array is set to 1 if all
input arrays contain a nonzero element at that same array location.
Otherwise, that element is set to O.

Each input of the expression can be an array or can be a scalar value.
All nonscalar input arrays must have equal dimensions. If one or more
inputs are an array, then the output is an array of the same dimensions.
If all inputs are scalar, then the output is scalar.

If the expression contains both scalar and nonscalar inputs, then
each scalar input is treated as if it were an array having the same
dimensions as the other input arrays. In other words, if input A is a
3-by-5 matrix and input B is the number 1, then B is treated as if it
were a 3-by-5 matrix of ones.

and (A, B) is called for the syntax A & B when either A or B is an object.

Note The symbols & and && perform different operations in the
MATLAB software. The element-wise AND operator described here is
&. The short-circuit AND operator is &&.

If matrix A is

0.4235 0.5798 0 0.7942 0
0.5155 0 0.7833 0.0592 0.8744
0.3340 0 0 0 0.0150
0.4329 0.6405 0.6808 0.0503 0

and matrix B is

2-165

and

0 1 0 1 0
1 1 1 0 1
0 1 1 1 0
0 1 0 0 1
then
A &B
ans =
0 1 0 1 0
1 0 1 0 1
0 0 0 0 0
0 1 0 0 0
See Also bitand, or, xor, not, any, all, logical operators, logical types, bitwise
functions

2-166

angle

Purpose
Syntax

Description

Examples

Algorithm

See Also

Phase angle

U
I}

angle(Z)

P angle(Z) returns the phase angles, in radians, for each element of
complex array Z. The angles lie between *.

For complex Z, the magnitude R and phase angle theta are given by

R = abs(2)
theta = angle(Z)

and the statement

Z = R.*exp(i*theta)

converts back to the original complex Z.

Z=11-11i 2 + 11 3 - 11 4 + 11
1+ 21 2 - 21 3 + 21 4 - 2i
1 - 31 2 + 31 3 - 3i 4 + 3i
1 + 41 2 - 41 3 + 4i 4 - 41]
P = angle(Z)
P =

-0.7854 0.4636 -0.3218 0.2450
1.1071 -0.7854 0.5880 -0.4636
-1.2490 0.9828 -0.7854 0.6435
1.3258 -1.1071 0.9273 -0.7854

The angle function can be expressed as angle(z) = imag(log(z)) =
atan2(imag(z),real(z)).

abs, atan2, unwrap

2-167

annotation

Purpose

GUI
Alternatives

Syntax

Description

2-168

Create annotation objects

Create several types of annotations with the Figure Palette and modify
annotations with the Property Editor, components of the plotting tools.
Directly manipulate annotations in plot edit mode. For details, see
“How to Annotate Graphs” and “Working in Plot Edit Mode” in the
MATLAB Graphics documentation.

annotation(annotation_type)
annotation('line',x,y)
annotation('arrow',x,y)
annotation('doublearrow',x,y)
annotation('textarrow',x,y)
annotation('textbox',[x y w h])
annotation('ellipse',[x y w h])
annotation('rectangle’',[x y w h])
annotation(figure_handle,...)
annotation(..., 'PropertyName',PropertyValue,...)
anno_obj_handle = annotation(...)

annotation(annotation type) creates the specified annotation type
using default values for all properties. annotation_type can be one of
the following strings:

e 'line'

® 'arrow'

e 'doublearrow' (two-headed arrow),

e 'textarrow' (arrow with attached text box),

e 'textbox'

‘ellipse’

® 'rectangle’

annotation

annotation('line',x,y) creates a line annotation object that extends
from the point defined by x(1),y(1) to the point defined by x(2),y(2),
specified in normalized figure units.

annotation('arrow',x,y) creates an arrow annotation object that
extends from the point defined by x(1),y (1) to the point defined by
x(2),y(2), specified in normalized figure units.

annotation('doublearrow',x,y) creates a two-headed annotation
object that extends from the point defined by x(1),y (1) to the point
defined by x(2),y(2), specified in normalized figure units.

annotation('textarrow',x,y) creates a textarrow annotation object
that extends from the point defined by x(1),y(1) to the point defined
by x(2),y(2), specified in normalized figure units. The tail end of the
arrow 1s attached to an editable text box.

annotation('textbox',[x y w h]) creates an editable text box
annotation with its lower left corner at the point x,y, a width w, and a
height h, specified in normalized figure units. Specify x, y, w, and h in
a single vector.

To type in the text box, enable plot edit mode (plotedit) and
double-click within the box.

annotation('ellipse',[x y w h]) creates an ellipse annotation with
the lower left corner of the bounding rectangle at the point x,y, a width
w, and a height h, specified in normalized figure units. Specify x, vy,

w, and h in a single vector.

annotation('rectangle',[x y w h]) creates a rectangle annotation
with the lower left corner of the rectangle at the point x,y, a width w,
and a height h, specified in normalized figure units. Specify x, y, w, and
h in a single vector.

annotation(figure handle,...) creates the annotation in the
specified figure.

annotation(..., 'PropertyName',PropertyValue,...) creates the
annotation and sets the specified properties to the specified values.

2-169

annotation

Annotation
Layer

2-170

anno_obj_handle = annotation(...) returns the handle to the
annotation object that is created.

All annotation objects are displayed in an overlay axes that covers the
figure. This layer is designed to display only annotation objects. You
should not parent objects to this axes nor set any properties of this axes.
See the See Also section for information on the properties of annotation
objects that you can set.

Obijects in the Plotting Axes

You can create lines, text, rectangles, and ellipses in data coordinates
in the axes of a graph using the line, text, and rectangle functions.
These objects are not placed in the annotation axes and must be located
inside their parent axes.

Deleting Annotations

Existing annotations persist on a plot when you replace its data. This
might not be what you want to do. If it is not, or if you want to remove
annotation objects for any reason, you can do so manually, or sometimes
programmatically, in several ways:

® To manually delete, click the Edit Plot tool or invoke plottools,
select the annotation(s) you want to remove, and do one of the
following:

= Press the Delete key.
= Press the Backspace key.

Select Clear from the Edit menu.

Select Delete from the context menu (one annotation at a time).

¢ If you obtained a handle for the annotation when you created it, use
the delete function:

delete(anno_obj_handle)

There is no reliable way to obtain handles for annotations from a
figure’s property set; you must keep track of them yourself.

annotation

See Also

® To delete all annotations at once (as well as all plot contents), type

clf

Normalized Coordinates

By default, annotation objects use normalized coordinates to specify
locations within the figure. In normalized coordinates, the point 0,0
is always the lower left corner and the point 1,1 is always the upper
right corner of the figure window, regardless of the figure size and
proportions. Set the Units property of annotation objects to change
their coordinates from normalized to inches, centimeters, points,
pixels, or characters.

When their Units property is other than normalized, annotation
objects have absolute positions with respect to the figure’s origin, and
fixed sizes. Therefore, they will shift position with respect to axes when
you resize figures. When units are normalized, annotations shrink and
grow when you resize figures; this can cause lines of text in textbox
annotations to wrap. However, if you set the FontUnits property of an
annotation textbox object to normalized, the text changes size rather
than wraps if the textbox size changes.

You can use either the set command or the Inspector to change a
selected annotation object’s Units property:

set(gco, 'Units', 'inches') % or
inspect(gco)

For more information see “Positioning Annotations in Data Space” in
the MATLAB Graphics documentation.

Properties for the annotation objects Annotation Arrow Properties,
Annotation Doublearrow Properties, Annotation Ellipse
Properties, Annotation Line Properties, Annotation Rectangle
Properties, Annotation Textarrow Properties, Annotation
Textbox Properties

See “Annotating Graphs” and “Annotation Objects” for more
information.

2-171

Annotation Arrow Properties

Purpose

Modifying
Properties

Annotation
Arrow
Property
Descriptions

2-172

Define annotation arrow properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Properties You Can Modify

This section lists the properties you can modify on an annotation arrow
object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

HeadLength
scalar value in points

Length of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadWidth.
HeadStyle

select string from list

Style of the arrowhead. Specify this property as one of the strings
from the following table.

Annotation Arrow Properties

Head Style Head Style
String Head String Head
none star4
—+

plain rectangle

—»> -
ellipse diamond

@ -+
vback1 rose

—> —
vback2 hypocycloid
(Default) —- —
vback3 astroid
chacki deltoid

—» —
cback2

_).
cback3

>

HeadWidth

scalar value in points

Width of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadLength.

LineStyle

30—

| none

2-173

Annotation Arrow Properties

2-174

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

LineWidth

Specifier
String Line Style
- Solid line (default)
= Dashed line
Dotted line

- Dash-dot line
none No line

scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = '/, inch). The default LineWidth is 0.5
points.

Position

four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
X, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units

{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the

Annotation Arrow Properties

size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

vector [X X

begin end]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

vector [Y, Y

begin end]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-175

Annotation Doublearrow Properties

Purpose

Modifying
Properties

Annotation
Doublearrow
Property
Descriptions

2-176

Define annotation doublearrow properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Properties You Can Modify

This section lists the properties you can modify on an annotation
doublearrow object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

HeadiLength
scalar value in points

Length of the first arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Width.

The first arrowhead is located at the end defined by the point
x(1), y(1). See also the X and Y properties.

Head2Length
scalar value in points

Length of the second arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Width.

Annotation Doublearrow Properties

The first arrowhead is located at the end defined by the point
x(end), y(end). See also the X and Y properties.

Head1Style
select string from list

Style of the first arrowhead. Specify this property as one of the
strings from the following table

Head2Style
select string from list

Style of the second arrowhead. Specify this property as one of the
strings from the following table.

Head Style Head Style
String Head String Head
none star4
—+

plain rectangle

—» i
ellipse diamond

@ -
vback1 rose

—> —=
vback2 hypocycloid
(Default) — —
vback3 astroid
cbacki deltoid

—» —>

2-177

Annotation Doublearrow Properties

Head Style Head Style
String Head String Head
cback2
—»
cback3
—
Head1Width

scalar value in points

Width of the first arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1lLength.

Head2Width
scalar value in points

Width of the second arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head2Length.

LineStyle
£y 1 -1+ |- | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier

String Line Style
Solid line (default)
Dashed line
Dotted line
Dash-dot line

none No line

2-178

Annotation Doublearrow Properties

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = '/, inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
X, ¥ in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

vector [X X

begin end]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

vector [Y, Y

begin end]

2-179

Annotation Doublearrow Properties

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to

the figure.

2-180

Annotation Ellipse Properties

Purpose

Modifying
Properties

Annotation
Ellipse
Property
Descriptions

Define annotation ellipse properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Properties You Can Modify

This section lists the properties you can modify on an annotation ellipse
object.

EdgeColor
ColorSpec {[0 0 0]} | none |

Color of the object’s edges. A three-element RGB vector or one of
the MATLAB predefined names, specifying the edge color.

See the ColorSpec reference page for more information on
specifying color.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

® ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

® none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

e flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

2-181

Annotation Ellipse Properties

See the ColorSpec reference page for more information on
specifying color.

LineStyle
£y =1+ [- | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style
- Solid line (default)
= Dashed line
Dotted line
- Dash-dot line
none No line
LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = '/, inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
X, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

2-182

Annotation Ellipse Properties

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the

size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-183

Annotation Line Properties

Purpose

Modifying
Properties

Annotation
Line
Property
Descriptions

2-184

Define annotation line properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Properties You Can Modify
This section lists the properties you can modify on an annotation line

object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.
LineStyle

{-}]-17¢: | -- | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

= Solid line (default)
-- Dashed line
Dotted line

Annotation Line Properties

Specifier
String Line Style
-. Dash-dot line
none No line
LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = /., inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
X, ¥ in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

vector [X .., Xenal

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify

2-185

Annotation Line Properties

the beginning and ending points of the line, units normalized to
the figure.

vector [Y, Y

begin end]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-186

Annotation Rectangle Properties

Purpose

Modifying
Properties

Annotation
Rectangle
Property
Descriptions

Define annotation rectangle properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Properties You Can Modify

This section lists the properties you can modify on an annotation
rectangle object.

EdgeColor
ColorSpec {[0 0 0]} | none |

Color of the object’s edges. A three-element RGB vector or one of
the MATLAB predefined names, specifying the edge color.

See the ColorSpec reference page for more information on
specifying color.

FaceAlpha
Scalar alpha value in range [0 1]

Transparency of object background. This property defines the
degree to which the object’s background color is transparent. A
value of 1 (the default) makes to color opaque, a value of 0 makes
the background completely transparent (i.e., invisible). The
default FaceAlpha is 1.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

2-187

Annotation Rectangle Properties

e ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

® none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

e flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

LineStyle
£} —-17: | - | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style
- Solid line (default)
= Dashed line
Dotted line
- Dash-dot line
none No line
LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point =/, inch). The default LineWidth is 0.5
points.

2-188

Annotation Rectangle Properties

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
X, ¥ in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-189

Annotation Textarrow Properties

Purpose

Modifying
Properties

Annotation
Textarrow
Property
Descriptions

2-190

Define annotation textarrow properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Properties You Can Modify

This section lists the properties you can modify on an annotation
textarrow object.

Color
ColorSpec Default: [0 0 0]

Color of the arrow, text and text border. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
color of the arrow, the color of the text (TextColor property), and
the rectangle enclosing the text (TextEdgeColor property).

Setting the Color property also sets the TextColor and
TextEdgeColor properties to the same color. However, if the
value of the TextEdgeColor is none, it remains none and the text
box is not displayed. You can set TextColor or TextEdgeColor
independently without affecting other properties.

For example, if you want to create a textarrow with a red arrow
and black text in a black box, you must

1 Set the Color property to red — set(h, 'Color','r")

2 Set the TextColor to black — set(h, 'TextColor', 'k')

3 Set the TextEdgeColor to black .—
set(h, 'TextEdgeColor','k")

Annotation Textarrow Properties

If you do not want display the text box, set the TextEdgeColor
to none.

See the ColorSpec reference page for more information on
specifying color.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
A name, such as Helvetica

Font family. A string specifying the name of the font to use for the
text. To display and print properly, this font must be supported
on your system. The default font is Helvetica.

FontSize
size in points

Approximate size of text characters. A value specifying the font
size to use in points. The default size is 10 (1 point = 1/72 inch).

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

2-191

Annotation Textarrow Properties

Weight of text characters. MATLAB uses this property to select a
font from those available on your system. Generally, setting this
property to bold or demi causes MATLAB to use a bold font.

HeadLength
scalar value in points
Length of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadWidth.

HeadStyle

select string from list

Style of the arrowhead. Specify this property as one of the strings
from the following table.

Head Style Head Style
String Head String Head
none star4
—+

plain rectangle

—» -
ellipse diamond

@ -
vback1 rose

> —
vback?2 hypocycloid
(Default) — —
vback3 astroid
cback1 deltoid

—» —

2-192

Annotation Textarrow Properties

Head Style Head Style
String Head String Head
cback2
—»
cback3
—
HeadwWidth

scalar value in points

Width of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadLength.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. This property specifies the
horizontal justification of the text string. It determines where
MATLAB places the string with regard to the point specified
by the Position property. The following picture illustrates the
alignment options.

HorizontalAlignment viewed with the verticalAlignment set to middle
(the default).

‘nﬂ' C

|
‘I_UII.

K By
i i

g H

See the Extent property for related information.

Interpreter
latex | {tex} | none

2-193

Annotation Textarrow Properties

Interpret TpX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TpX instructions (default) or displays all characters literally.
The options are:

® latex — Supports the full L, T;X markup language.

® tex — Supports a subset of plain T;X markup language. See
the String property for a list of supported TX instructions.

® none — Displays literal characters.
LineStyle
r1 =1+ [- | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style
- Solid line (default)
= Dashed line
Dotted line
- Dash-dot line
none No line
LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this

value in points (1 point =/, inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

2-194

Annotation Textarrow Properties

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
X, ¥ in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s

dx and dy, respectively, in units normalized to the figure.

String
string

The text string. Specify this property as a quoted string for

single-line strings, or as a cell array of strings, or a padded string
matrix for multiline strings. MATLAB displays this string at the
specified location. Vertical slash characters are not interpreted
as line breaks in text strings, and are drawn as part of the text

string. See Mathematical Symbols, Greek Letters, and TeX
Characters for an example.

When the text Interpreter property is set to Tex (the default),

you can use a subset of TeX commands embedded in the

string to produce special characters such as Greek letters and
mathematical symbols. The following table lists these characters
and the character sequences used to define them.

Character
Sequence

\alpha
\beta
\gamma
\delta
\epsilon

\zeta

\eta

Symbol

a

B
Y
)

Character
Sequence

\upsilon
\phi
\chi
\psi
\omega

\Gamma

\Delta

Symbol

H B g X g o

>

Character
Sequence

\sim

\leq

\infty
\clubsuit
\diamondsuit

\heartsuit

\spadesuit

Symbol

IN

€ & ¥ 8

2-195

Annotation Textarrow Properties

Character
Sequence

\theta

\vartheta

\iota
\kappa
\lambda
\mu

\nu

\xi

\pi
\rho
\sigma
\varsigma
\tau
\equiv
\Im
\otimes
\cap
\supset
\int
\rfloor

\1lfloor

\perp

2-196

Symbol

A » g o H ™M < = > = <

— U D ® @

O

O

Character
Sequence

\Theta

\Lambda

\X1i

\Pi
\Sigma
\Upsilon
\Phi
\Psi
\Omega
\forall
\exists
\ni
\cong
\approx
\Re
\oplus
\cup
\subseteq
\in
\lceil
\cdot

\neg

Symbol

>

M d @

W< © g 6

w

[l

u

n C & =

Character
Sequence

\leftrightarrow

\leftarrow

\uparrow
\rightarrow
\downarrow
\circ

\pm

\geq
\propto
\partial
\bullet
\div

\neq
\aleph

\wp
\oslash
\supseteq
\subset

\o

\nabla
\ldots

\prime

Symbol

Tl 71

H

v

U Q e

n

o

Annotation Textarrow Properties

Character
Sequence

\wedge
\rceil
\vee
\langle

Symbol

>

N < O

Character
Sequence

\times
\surd
\varpi

\rangle

Character

Symbol Sequence

N o9 =

\O
\mid

\copyright

Symbol

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,

you can use \fontname in combination with one of the other
modifiers:

TextBackgroundColor

ColorSpec Default: none

Color of text background rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color.

TextColor

ColorSpec Default: [0 0 0]

Color of text. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

TextEdgeColor
ColorSpec or none Default: none

2-197

Annotation Textarrow Properties

2-198

Color of edge of text rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the color of the
rectangle that encloses the text.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

TextLineWidth

width in points

The width of the text rectangle edge. Specify this value in points (1
point = !/, inch). The default TextLineWidth is 0.5 points.

TextMargin

dimension in pixels default: 5

Space around text. Specify a value in pixels that defines the space
around the text string, but within the rectangle.

TextRotation

rotation angle in degrees (default = 0)

Text orientation. This property determines the orientation of the
text string. Specify values of rotation in degrees (positive angles
cause counterclockwise rotation). Angles are absolute and not
relative to previous rotations; a rotation of O degrees is always
horizontal.

Units

{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

Annotation Textarrow Properties

VerticalAlignment

top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical
justification of the text string. It determines where MATLAB
places the string with regard to the value of the Position
property. The possible values mean

e top — Place the top of the string’ s Extent rectangle at the
specified y-position.

e cap — Place the string so that the top of a capital letter is at
the specified y-position.

e middle — Place the middle of the string at the specified
y-position.

® baseline — Place font baseline at the specified y-position.

® bottom — Place the bottom of the string’s Extent rectangle at
the specified y-position.

The following picture illustrates the alignment options.

Text VerticalAlignment property viewed with the HorizontalAlignment
property set to 1left (the default).

—Middle

—

Base

Ine

Top Cap

Bottom

2-199

Annotation Textarrow Properties

2-200

vector [X X

begin end]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

vector [Y, Y

begin end]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

Annotation Textbox Properties

Purpose

Modifying
Properties

Annotation
Textbox
Property
Descriptions

Define annotation textbox properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations
in Data Space” in the MATLAB Graphics documentation.

Properties You Can Modify
This section lists the properties you can modify on an annotation

textbox object.

BackgroundColor
ColorSpec Default: none

Color of text background rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color.

Color
ColorSpec Default: [0 0 0]

Color of text. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

EdgeColor
ColorSpec or none Default: none

2-201

Annotation Textbox Properties

2-202

Color of edge of text rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the color of the
rectangle that encloses the text.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this
property.

FaceAlpha

Scalar alpha value in range [0 1]

Transparency of object background. This property defines the
degree to which the object’s background color is transparent. A
value of 1 (the default) makes to color opaque, a value of 0 makes
the background completely transparent (i.e., invisible). The
default FaceAlpha is 1.

FitBoxToText

on | off

Automatically adjust text box width and height to fit text. When
this property is on (the default), MATLAB automatically resizes
textboxes to fit the x-extents and y-extents of the text strings they
contain. When it is of f, text strings are wrapped to fit the width
of their textboxes, which can cause them to extend below the
bottom of the box.

If you resize a textbox in plot edit mode or change the width or
height of its position property directly, MATLAB sets the object’s
FitBoxToText property to 'off'. You can toggle this property
with set, with the Property Inspector, or in plot edit mode via
the object’s context menu.

FitHeightToText

on | off

Automatically adjust text box width and height to fit text.
MATLAB automatically wraps text strings to fit the width of the

Annotation Textbox Properties

text box. However, if the text string is long enough, it can extend
beyond the bottom of the text box.

Note The FitHeightToText property is obsolete. To control line
wrapping behavior in textboxes, use fitBoxToText instead.

10 T T T
q
al This is a
long
string for
T this
texthox
B

When you set this mode to on, MATLAB automatically adjusts
the height of the text box to accommodate the string, doing so
as you create or edit the string.

10 T T

O

al This is a
long
string for

Tr this
texthox

G-

The fit-size-to-text behavior turns off if you resize the text box
programmatically or manually in plot edit mode.

2-203

Annotation Textbox Properties

10 T T T
O
] = |
ar This is a long
string
7L .forthis N
texthaox, But if °7
you make it
6 even longer...
= = |

However, if you resize the text box from any other handles, the
position you set is honored without regard to how the text fits

the box.
10 T T T
al
]]
8- This is a long |
p String .
71 for this |
textbox. But if
Won mals Tt L
61 even longer...
FontAngle

{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
A name, such as Helvetica

Font family. A string specifying the name of the font to use for the
text. To display and print properly, this font must be supported
on your system. The default font is Helvetica.

2-204

Annotation Textbox Properties

FontSize
size in points

Approximate size of text characters. A value specifying the font
size to use in points. The default size is 10 (1 point = 1/72 inch).

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a
font from those available on your system. Generally, setting this
property to bold or demi causes MATLAB to use a bold font.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. This property specifies the
horizontal justification of the text string. It determines where
MATLAB places the string with regard to the point specified
by the Position property. The following picture illustrates the

alignment options.

HorizontalAlignment viewed with the verticalAlignment set to middle
(the default).

‘nﬂ' G

|
‘I_UII.

H B H
I I

g i

2-205

Annotation Textbox Properties

See the Extent property for related information.

Interpreter
latex | {tex} | none

Interpret Ty X instructions. This property controls whether
MATLAB interprets certain characters in the String property

as TpX instructions (default) or displays all characters literally.
The options are:

® latex — Supports the full L, T;X markup language.

® tex — Supports a subset of plain T;X markup language. See
the String property for a list of supported TX instructions.

® none — Displays literal characters.

LineStyle
r1 =1+ [- | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style
- Solid line (default)
= Dashed line
Dotted line
- Dash-dot line
none No line
LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this

value in points (1 point =/, inch). The default LineWidth is 0.5
points.

2-206

Annotation Textbox Properties

Margin
dimension in pixels default: 5

Space around text. Specify a value in pixels that defines the space
around the text string, but within the rectangle.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
X, ¥ in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

String
string

The text string. Specify this property as a quoted string for
single-line strings, or as a cell array of strings, or a padded string
matrix for multiline strings. MATLAB displays this string at the
specified location. Vertical slash characters are not interpreted
as line breaks in text strings, and are drawn as part of the text
string. See Mathematical Symbols, Greek Letters, and TeX
Characters for an example.

When the text Interpreter property is set to Tex (the default),
you can use a subset of TeX commands embedded in the

string to produce special characters such as Greek letters and
mathematical symbols. The following table lists these characters
and the character sequences used to define them.

Character Character Character

Sequence Symbol Sequence Symbol Sequence Symbol
\alpha a \upsilon u \sim =

\beta B \phi () \leq <

2-207

Annotation Textbox Properties

Character Character Character

Sequence Symbol Sequence Symbol Sequence Symbol
\'gamma Y \chi X \infty 00
\delta) \psi wy \clubsuit £)
\epsilon € \omega ® \diamondsuit ¢
\zeta ¢ \Gamma r \heartsuit v
\eta n \Delta A \spadesuit @
\theta (€] \Theta (¢ \leftrightarrow <«
\vartheta \Lambda A \leftarrow —
\iota 1 \ X1 H \uparrow 1
\kappa K \Pi II \rightarrow —
\lambda A \Sigma Z \downarrow !
\mu u \Upsilon \circ °
\nu v \Phi () \pm +
\xi 3 \Psi p \geq >
\pi o \Omega Q \propto oc
\rho P \forall \v \partial 0
\sigma o \exists 3 \bullet .
\varsigma g \ni 3 \div %
\tau T \cong = \neq #
\equiv = \approx ~ \aleph

\Im 3 \Re R \wp 5]
\otimes ® \oplus @ \oslash %]
\cap N \cup] \supseteq -

2-208

Annotation Textbox Properties

Character Character Character

Sequence Symbol Sequence Symbol Sequence Symbol
\supset) \subseteq c \subset c
\int | \in \o (o}
\rfloor 0 \lceil 0 \nabla \%
\1floor 0 \cdot \ldots

\perp L \neg - \prime

\wedge A \times X \O %)
\rceil 0 \surd ~ \mid |
\vee Y \varpi (0] \copyright ©
\langle 4 \rangle L

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,
you can use \fontname in combination with one of the other
modifiers:

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

VerticalAlignment
top | cap | {middle} | baseline |
bottom

2-209

Annotation Textbox Properties

Vertical alignment of text. This property specifies the vertical
justification of the text string. It determines where MATLAB
places the string with regard to the value of the Position
property. The possible values mean

e top — Place the top of the string’ s Extent rectangle at the
specified y-position.

e cap — Place the string so that the top of a capital letter is at
the specified y-position.

e middle — Place the middle of the string at the specified
y-position.

® baseline — Place font baseline at the specified y-position.
® bottom — Place the bottom of the string’s Extent rectangle at
the specified y-position.

The following picture illustrates the alignment options.

Text VerticalAlignment property viewed with the HorizontalAlignment
property set to 1left (the default).

2-210

Midéiel

—

Base

Ine

Top Cap

Bottom

ans

Purpose
Syntax

Description

Examples

See Also

Most recent answer

ans

The MATLAB software creates the ans variable automatically when
you specify no output argument.

The statement

2+2

is the same as

ans =

display

2+2

2-211

any

Purpose

Syntax

Description

Examples

2-212

Determine whether any array elements are nonzero

B = any(A)
B = any(A,dim)
B = any(A) tests whether any of the elements along various dimensions

of an array is a nonzero number or is logical 1 (true). any ignores
entries that are NaN (Not a Number).

If A is a vector, any (A) returns logical 1 (true) if any of the elements
of A is a nonzero number or is logical 1 (true), and returns logical 0
(false) if all the elements are zero.

If A is a matrix, any (A) treats the columns of A as vectors, returning a
row vector of logical 1’s and 0’s.

If A is a multidimensional array, any (A) treats the values along the
first nonsingleton dimension as vectors, returning a logical condition
for each vector.

B = any(A,dim) tests along the dimension of A specified by scalar dim.

Kl

A any(A 1) amy(A2)

Example 1 - Reducing a Logical Vector to a Scalar Condition
Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

thenB = (A < 0.5) returns logical 1 (true) only where A is less than
one half:

0 0 1 1 1 1 0

any

See Also

The any function reduces such a vector of logical conditions to a single
condition. In this case, any(B) yields logical 1.

This makes any particularly useful in if statements:

if any(A < 0.5)do something
end

where code is executed depending on a single condition, not a vector
of possibly conflicting conditions.

Example 2- Reducing a Logical Matrix to a Scalar Condition

Applying the any function twice to a matrix, as in any (any (A)), always
reduces it to a scalar condition.

any (any(eye(3)))
ans =
1

Example 3 - Testing Arrays of Any Dimension

You can use the following type of statement on an array of any
dimensions. This example tests a 3-D array to see if any of its elements
are greater than 3:

X = rand(3,7,5) * 5;
any(x(:) > 3)

ans =
1

or less than zero:
any(x(:) < 0)

ans =
0

all, logical operators (elementwise and short-circuit), relational
operators, colon

2-213

any

Other functions that collapse an array’s dimensions include max, mean,
median, min, prod, std, sum, and trapz.

2-214

area

Purpose

GUI
Alternatives

Syntax

Description

Filled area 2-D plot

AL/

To graph selected variables, use the Plot Selector " in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs

in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

area(Y)

area(X,Y)

area(...,basevalue)

area(..., 'PropertyName' ,PropertyValue,...)
area(axes_handle,...)

h = area(...)

hpatches = area('vé',...)

An area graph displays elements in Y as one or more curves and fills the
area beneath each curve. When Y is a matrix, the curves are stacked
showing the relative contribution of each row element to the total height
of the curve at each x interval.

area(Y) plots the vector Y or the sum of each column in matrix Y. The
x-axis automatically scales to 1:size(Y,1).

area(X,Y) For vectors X and Y, area(X,Y) is the same as plot(X,Y)
except that the area between 0 and Y is filled. When Y is a matrix,
area(X,Y) plots the columns of Y as filled areas. For each X, the net
result is the sum of corresponding values from the columns of Y.

If X is a vector, length(X) must equal length(Y). If X is a matrix,
size(X) must equal size(Y).

2-215

area

Areaseries
Objects

Examples

2-216

area(...,basevalue) specifies the base value for the area fill.
The default basevalue is 0. See the BaseValue property for more
information.

area(..., 'PropertyName' ,PropertyValue,...) specifies property
name and property value pairs for the patch graphics object created
by area.

area(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = area(...) returns handles of areaseries graphics objects.

Backward-Compatible Version

hpatches = area('v6',...) returns the handles of patch objects
instead of areaseries objects for compatibility with MATLAB 6.5 and
earlier.

Note The v6 option enables users of MATLAB Version 7.x of to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Creating an area graph of an m-by-n matrix creates n areaseries objects
(i.e., one per column), whereas a 1-by-n vector creates one area object.

Some areaseries object properties that you set on an individual
areaseries object set the values for all areaseries objects in the graph.
See the property descriptions for information on specific properties.

Stacked Area Graph

This example plots the data in the variable Y as an area graph. Each
subsequent column of Y is stacked on top of the previous data. The figure
colormap controls the coloring of the individual areas. You can explicitly
set the color of an area using the EdgeColor and FaceColor properties.

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/areaseriesproperties.html

area

Y =1
3, 2, 7
1, 5, 8
2, 6, 1
area(Y)
grid on
colormap summer

set(gca, 'Layer', 'top')
title 'Stacked Area Plot'

15

Slacked Area Plod

Adjusting the Base Value

The area function uses a y-axis value of 0 as the base of the filled areas.
You can change this value by setting the area BaseValue property.
For example, negate one of the values of Y from the previous example
and replot the data.

2-217

area

2-218

Y(3,1) = -1; % Was 1
h = area(Y);

set(gca, 'Layer', 'top')
grid on

colormap summer

The area graph now looks like this:

12 T

Adjusting the BaseValue property improves the appearance of the
graph:

set(h, 'Basevalue', -2)

Setting the BaseValue property on one areaseries object sets the values
of all objects.

area

15 2 25 3 a5 4

Specifying Colors and Line Styles

You can specify the colors of the filled areas and the type of lines used to
separate them.

h = area(Y,-2); % Set BaseValue via argument
set(h(1), 'FaceColor',[.5 0 0])

set(h(2), 'FaceColor',[.7 0 0])

set(h(3), 'FaceColor',[1 0 0])

set(h, 'LineStyle',':"','LineWidth',2) % Set
all to same value

2-219

area

See Also bar, plot, sort
“Area, Bar, and Pie Plots” on page 1-92 for related functions

“Area Graphs” for more examples

Areaseries Properties for property descriptions

2-220

Areaseries Properties

Purpose

Modifying
Properties

Areaseries
Property
Descriptions

Define areaseries properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See “Plot Objects” for more information on areaseries objects.

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of areaseries objects in legends. The
Annotation property enables you to specify whether this
areaseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the areaseries
object is displayed in a figure legend:

IconDispIayStyIé Purpose

Value

on Include the areaseries object in a legend as
one entry, but not its children objects

off Do not include the areaseries or its children
in a legend (default)

children Include only the children of the areaseries as
separate entries in the legend

2-221

Areaseries Properties

2-222

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj, 'Annotation');

hLegendEntry = get(hAnnotation, 'LegendInformation');
set (hLegendEntry, 'IconDisplayStyle', 'children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BaseValue

double: y-axis value

Value where filled area base is drawn. Specify the value along the
y-axis at which the MATLAB software draws the baseline of the
bottommost filled area.

BeingDeleted

on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in

the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction

cancel | {queue}

Areaseries Properties

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs

at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

e cancel — Discard the event that attempted to execute a second
callback routine.

® queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn

string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be
® A string that is a valid MATLAB expression
¢ The name of an M-file

e A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

2-223

Areaseries Properties

2-224

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children

array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles

property to on:

set (0, 'ShowHiddenHandles', 'on')

Clipping

{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn

string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y, 'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

Areaseries Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use

function handles to define the callback function.

See the BeingDeleted property for related information.
DisplayName

string (default is empty string)

String used by legend for this areaseries object. The legend
function uses the string defined by the DisplayName property to
label this areaseries object in the legend.

2-225

Areaseries Properties

2-226

¢ If you specify string arguments with the legend function,
DisplayName is set to this areaseries object’s corresponding
string and that string is used for the legend.

e If DisplayName is empty, legend creates a string of the form,
['data' n], where n 1s the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

¢ Ifyou edit the string directly in an existing legend, DisplayName
is set to the edited string.

¢ If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

¢ To add programmatically a legend that uses the DisplayName
string, call 1legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeColor

{[0 0 0]} | none | ColorSpec

Color of line that separates filled areas. You can set the color of
the edges of filled areas to a three-element RGB vector or one of
the MATLAB predefined names, including the string none. The
default edge color is black. See ColorSpec for more information
on specifying color.

EraseMode

{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

Areaseries Properties

¢ normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

®* none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

e xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

® packground — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

2-227

Areaseries Properties

2-228

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

FaceColor

{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

e ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

® none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

e flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

HandleVisibility

{on} | callback | off

Contirol access to object’s handle by command-line users and GUISs.
This property determines when an object’s handle is visible in

its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

® on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions

Areaseries Properties

invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

e off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, cl1f, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

2-229

Areaseries Properties

2-230

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest

{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest

is of f, clicking this object selects the object below it (which 1s
usually the axes containing it).

HitTestArea

on | {off}

Select areaseries object on filled area or extent of graph. This
property enables you to select areaseries objects in two ways:
e Select by clicking bars (default).

e Select by clicking anywhere in the extent of the area plot.

When HitTestArea is off, you must click the bars to select the
bar object. When HitTestArea is on, you can select the bar
object by clicking anywhere within the extent of the bar graph
(i.e., anywhere within a rectangle that encloses all the bars).

Interruptible

{on} | off

Areaseries Properties

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
¥ | -17: | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier

String Line Style

- Solid line (default)

= Dashed line
Dotted line

- Dash-dot line

none No line

LineWidth
scalar

2-231

Areaseries Properties

2-232

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = '/, inch). The default LineWidth is 0.5
points.

Parent

handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected

on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object

1s selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight

Tag

{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is

Areaseries Properties

Type

particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag', 'areal’)

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is areaft.

set(findobj('Tag', 'areal'), 'FaceColor', 'red')

string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For areaseries objects,
Type is ’hggroup’.

The following statement finds all the hggroup objects in the
current axes.

t = findobj(gca, 'Type', "hggroup');

UIContextMenu

handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData

array

2-233

Areaseries Properties

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to of f prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
vector or matrix

The x-axis values for a graph. The x-axis values for graphs
are specified by the X input argument. If XData is a vector,
length(XData) must equal length(YData) and must be
monotonic. If XData is a matrix, size(XData) must equal
size(YData) and each column must be monotonic.

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped. See for
more information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the

2-234

Areaseries Properties

column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector or matrix

Area plot data. YData contains the data plotted as filled areas (the
Y input argument). If YData is a vector, area creates a single filled
area whose upper boundary is defined by the elements of YData.
If YData is a matrix, area creates one filled area per column,
stacking each on the previous plot.

2-235

Areaseries Properties

2-236

The input argument Y in the area function calling syntax assigns
values to YData.

YDataSource

string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

arrayfun

Purpose

Syntax

Description

Apply function to each element of array

A = arrayfun(fun, S)

A = arrayfun(fun, S, T, ...)

[A, B, ...] = arrayfun(fun, S, ...)

[A, ...] = arrayfun(fun, S, ..., 'parami', valuel, ...)

A = arrayfun(fun, S) applies the function specified by fun to each
element of array S, and returns the results in array A. The value A
returned by arrayfun is the same size as S, and the (I,J,...)th
element of A is equal to fun(S(I,J,...)). The first input argument
fun is a function handle to a function that takes one input argument
and returns a scalar value. fun must return values of the same class
each time it is called.

If fun is bound to more than one built-in or M-file (that is, if it
represents a set of overloaded functions), then the class of the values
that arrayfun actually provides as input arguments to fun determines
which functions are executed.

The order in which arrayfun computes elements of A is not specified
and should not be relied upon.

A = arrayfun(fun, S, T, ...) evaluates fun using elements of the
arrays S, T, ... as input arguments. The (I,J,...)th element of A is
equal to fun(S(I,d,...), T(I,J,...), ...). All input arguments
must be of the same size.

[A, B, ...] = arrayfun(fun, S, ...) evaluates fun, which is a
function handle to a function that returns multiple outputs, and returns
arrays A, B, ..., each corresponding to one of the output arguments

of fun. arrayfun calls fun each time with as many outputs as there
are in the call to arrayfun. fun can return output arguments having
different classes, but the class of each output must be the same each
time fun is called.

[A, ...] = arrayfun(fun, S, ..., 'parami', valuel, ...)
enables you to specify optional parameter name and value pairs.

2-237

arrayfun

Parameters recognized by arrayfun are shown below. Enclose each
parameter name with single quotes.

Parameter Name

Parameter Value

UniformOutput

A logical 1 (true) or O (false), indicating
whether or not the outputs of fun can be
returned without encapsulation in a cell
array.

If true (the default), fun must return
scalar values that can be concatenated
into an array. These values can also be a
cell array. If false, arrayfun returns a
cell array (or multiple cell arrays), where
the (I,J,...)th cell contains the value
FUN(S(I,J,...), ...).

ErrorHandler

A function handle, specifying the
function that arrayfun is to call if the
call to fun fails. If an error handler is not
specified, arrayfun rethrows the error
from the call to fun.

Remarks The MATLAB software provides two functions that are similar to
arrayfun; these are structfun and cellfun. With structfun, you
can apply a given function to all fields of one or more structures. With
cellfun, you apply the function to all cells of one or more cell arrays.

Examples Example 1 — Operating on a Single Input.

Create a 1-by-15 structure array with fields f1 and f2, each field
containing an array of a different size. Make each f1 field be unequal to
the f2 field at that same array index:

for k=1:15
s(k).f1
s(k).f2

2-238

rand(k+3,k+7) * 10;
rand(k+3,k+7) * 10;

arrayfun

end

Set three f1 fields to be equal to the f2 field at that array index:

s(3).f2 = s(8).f1;
s(9).f2 = s(9).f1;
(12).f2 = s(12).f1;

(2]

Use arrayfun to compare the fields at each array index. This compares
the array of s(1).f1 with that of s(1).f2, the array of s(2).f1 with
that of s(2).f2, and so on through the entire structure array.

The first argument in the call to arrayfun is an anonymous function.
Anonymous functions return a function handle, which is the required
first input to arrayfun:

z = arrayfun(@(x)isequal(x.f1, x.f2), s)
Z:
0o 01 0 0 O0OOO0OT1TO0O0T1TO0 00O

Example 2 — Operating on Multiple Inputs.

This example performs the same array comparison as in the previous
example, except that it compares the same field of more than one
structure array rather than different fields of the same structure array.
This shows how you can use more than one array input with arrayfun.

Make copies of array s, created in the last example, to arrays t and u.
t = s; u = s;

Make one element of structure array t unequal to the same element of
s. Do the same with structure array u:

t(4).f1(12)=0;
u(14).f1(6)=0;

Compare field f1 of the three arrays s, t, and u:

z = arrayfun(@(a,b,c)isequal(a.f1, b.f1, c.f1), s, t, u)
Z:

2-239

arrayfun

Tt 1101 1 11111110 1
Example 3 — Generating Nonuniform Output.

Generate a 1-by-3 structure array s having random matrices in field f1:

rand('state', 0);

s(1).f1 = rand(7,4) * 10;
s(2).f1 rand(3,7) * 10;
s(3).f1 rand(5,5) * 10;

Find the maximum for each f1 vector. Because the output is nonscalar,
specify the UniformOutput option as false:

sMax = arrayfun(@(x) max(x.f1), s, 'UniformOutput', false)

sMax =
[1x4 double] [1x7 double] [1x5 double]

sMax{:}
ans =

9.5013 9.2181 9.3547 8.1317
ans =

2.7219 9.3181 8.4622 6.7214 8.3812 8.318 7.0947
ans =

6.8222 8.6001 8.9977 8.1797 8.385

Find the mean for each f1 vector:

sMean = arrayfun(@(x) mean(x.f1), s,
'UniformOutput', false)

sMean
[1x4 double] [1x7 double] [1x5 double]

sMean{:}
ans =
6.2628 6.2171 5.4231 3.3144
ans =
1.6209 7.079 5.7696 4.6665 5.1301 5.7136 4.8099
ans =

2-240

arrayfun

3.8195 5.8816 6.9128 4.9022 5.9541

Example 4 — Assigning to More Than One Output Variable.

The next example uses the 1u function on the same structure array,

returning three outputs from arrayfun:

[1 up] =
1

[7x4 double]

[4x4 double]

[7x7 double]

1{3}
ans =
1
0.44379
0.79398
0.27799
0.28353

u{3}
ans =
6.8222
0

0
0
0

p{3}
ans =

o+~ 00O

0

- O O OO

0
1
0.79936
.066014
0.85338

3.7837
6.9209
0

oo oo =

[3x3 double]
[3x7 double]

[3x3 double]

0
0
1

-0.77517
0.29223

8.9977
4.2232
-4.0708

[eNeNeR o]

0
0

arrayfun(@(x)lu(x.f1), s,

oo —~0o

- O O O

0.67036

3.4197
1.3796
-0.40607
6.8232
0

‘UniformOutput', false)
[5x5 double]
[5x5 double]

[5x5 double]

- O O OO

3.0929
7.0124
-2.3804
2.1729
-0.35098

2-241

arrayfun

See Also structfun, cellfun, spfun, function_handle, cell2mat

2-242

ascii

Purpose Set FTP transfer type to ASCII
Syntax ascii(f)
Description ascii(f) sets the download and upload FTP mode to ASCII, which

converts new lines, where f was created using ftp. Use this function for
text files only, including HTML pages and Rich Text Format (RTF) files.

Examples Connect to the MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /
mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp
function to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /
mode: ascii

Note that the FTP object is now set to ASCII mode.

See Also ftp, binary

2-243

asec

Purpose Inverse secant; result in radians

Syntax Y = asec(X)

Description Y = asec(X) returns the inverse secant (arcsecant) for each element
of X.

The asec function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse secant over the domains 1 € x < Hand -5 <x < -1.

x1 = -5:0.01:-1;
x2 = 1:0.01:5;
plot(x1,asec(x1),x2,asec(x2)), grid on

[
n

2-244

asec

Definition The inverse secant can be defined as

sec‘l(z} = cos‘l(éj

Algorithm asec uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also asecd, asech, sec

2-245

http://www.netlib.org

asecd

Purpose Inverse secant; result in degrees
Syntax Y = asecd(X)
Description Y = asecd(X) is the inverse secant, expressed in degrees, of the

elements of X.

See Also secd, asec

2-246

asech

Purpose Inverse hyperbolic secant

Syntax Y = asech(X)

Description Y = asech(X) returns the inverse hyperbolic secant for each element
of X.

The asech function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic secant over the domain0.01 < x < 1.

X = 0.01:0.001:1;
plot(x,asech(x)), grid on

Definition The hyperbolic inverse secant can be defined as

2-247

asech

sech™1(z) = ccsh‘l[% j

Algorithm asech uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also asec, sech

2-248

http://www.netlib.org

asin

Purpose
Syntax

Description

Examples

Inverse sine; result in radians

Y

asin(X)

Y = asin(X) returns the inverse sine (arcsine) for each element of X.
For real elements of X in the domain [—1,]-], asin(X) is in the range
[-7/2, /2] For real elements of x outside the range [-1, 1],
asin(X) is complex.

The asin function operates element-wise on arrays. The function’s

domains and ranges include complex values. All angles are in radians.

Graph the inverse sine function over the domain—1<x = 1.

X = -1:.01:1;
plot(x,asin(x)), grid on

2 ' ! !

15

a5

2-249

asin

Definition

Algorithm

See Also

2-250

The inverse sine can be defined as
1

sin_l{z] = —ilog z'z+(1—zz)

asin uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

asind, asinh, sin, sind, sinh

http://www.netlib.org

asind

Purpose Inverse sine; result in degrees

Syntax Y = asind(X)

Description Y = asind(X) is the inverse sine, expressed in degrees, of the elements
of X.

See Also asin, asinh, sin, sind, sinh

2-251

asinh

Purpose
Syntax

Description

Examples

Definition

2-252

Inverse hyperbolic sine
Y = asinh(X)

Y = asinh(X) returns the inverse hyperbolic sine for each element of X.
The asinh function operates element-wise on arrays. The function’s

domains and ranges include complex values. All angles are in radians.

Graph the inverse hyperbolic sine function over the domain -4 < x < 5.

X = -5:.01:5;
plot(x,asinh(x)), grid on

25 :
) ;
15
]

05

_25 i
Z5] 3

The hyperbolic inverse sine can be defined as

asinh

1
| 9
gsinh (z) = log z+(32+1)
Algorithm asinh uses FDLIBM, which was developed at SunSoft, a Sun

Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also asin, asind, sin, sinh, sind

2-253

http://www.netlib.org

assert

Purpose

Syntax

Description

2-254

Generate error when condition is violated

assert(expression)

assert(expression, 'errmsg')

assert(expression, 'errmsg', valuel, value2, ...)
assert(expression, 'msg_id', 'errmsg', valuel, value2, ...)

assert(expression) evaluates expression and, if it is false, displays
the error message: Assertion Failed.

assert(expression, 'errmsg') evaluates expression and, if it is
false, displays the string contained in errmsg. This string must be
enclosed in single quotation marks. When errmsg is the last input to
assert, the MATLAB software displays it literally, without performing
any substitutions on the characters in errmsg.

assert(expression, 'errmsg', valuel, value2, ...) evaluates
expression and, if it is false, displays the formatted string contained
in errmsg. The errmsg string can include escape sequences such as \t
or \n, as well as any of the C language conversion operators supported
by the sprintf function (e.g., %s or %d). Additional arguments
valuel, value2, etc. provide values that correspond to and replace
the conversion operators.

See “Formatting Strings” in the MATLAB Programming Fundamentals
documentation for more detailed information on using string formatting
commands.

MATLAB makes substitutions for escape sequences and conversion
operators in errmsg in the same way that it does for the sprintf
function.

assert(expression, 'msg_id', 'errmsg', valuel, value2, ...)
evaluates expression and, if it is false, displays the formatted string
errmsg, also tagging the error with the message identifier msg_id. See
“Message Identifiers” in the MATLAB Programming Fundamentals
documentation for information.

assert

Examples This function tests input arguments using assert:

function write2file(varargin)

min_inputs = 3;

assert(nargin >= min_inputs,
'You must call function %s with at least %d inputs',
mfilename, min_inputs)

infile = varargin{1};
assert(ischar(infile),

‘First argument must be a filename.')
assert(exist(infile)~=0, 'File %s not found.', infile)

fid = fopen(infile, 'w');
assert(fid > 0, 'Cannot open file %s for writing', infile)

fwrite(fid, varargin{2}, varargin{3});

See Also error, eval, sprintf

2-255

assignin

Purpose
Syntax

Description

Remarks

Examples

2-256

Assign value to variable in specified workspace
assignin(ws, 'var', val)

assignin(ws, 'var', val) assigns the value val to the variable var
in the workspace ws. var is created if it doesn’t exist. ws can have a
value of 'base' or 'caller' to denote the MATLAB base workspace or
the workspace of the caller function.

The assignin function is particularly useful for these tasks:

¢ Exporting data from a function to the MATLAB workspace

¢ Within a function, changing the value of a variable that is defined
in the workspace of the caller function (such as a variable in the
function argument list)

The MATLAB base workspace 1s the workspace that is seen from

the MATLAB command line (when not in the debugger). The caller
workspace 1s the workspace of the function that called the M-file. Note
that the base and caller workspaces are equivalent in the context of an
M-file that is invoked from the MATLAB command line.

This example creates a dialog box for the image display function,
prompting a user for an image name and a colormap name. The
assignin function is used to export the user-entered values to the
MATLAB workspace variables imfile and cmap.

prompt = {'Enter image name:', 'Enter colormap name:'};
title = 'Image display - assignin example';
lines = 1;

def = {'my_image', 'hsv'};

answer = inputdlg(prompt,title,lines,def);
assignin('base','imfile',answer{1});
assignin(‘'base', ‘cmap',answer{2});

assignin

[Image dizplay - assignin example

Enter image hame:

I my_image

Enter colarmap narne:
I hsy

Cancel | (]9 |

See Also evalin

2-257

atan

Purpose
Syntax

Description

Examples

Definition

2-258

Inverse tangent; result in radians
Y = atan(X)

Y = atan(X) returns the inverse tangent (arctangent) for each element
of X. For real elements of X, atan(X) is in the range [-7/2, n/2]
The atan function operates element-wise on arrays. The function’s

domains and ranges include complex values. All angles are in radians.

Graph the inverse tangent function over the domain —20 < x < 20.

X = -20:0.01:20;
plot(x,atan(x)), grid on

2 ! ! ! ! ! ! !

1.5

The inverse tangent can be defined as

atan

ey - L [H_f?j
tan=—(z2) 2lntzug iz

Algorithm atan uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also atan2, tan, atand, atanh

2-259

http://www.netlib.org

atan2

Purpose
Syntax

Description

Examples

2-260

Four-quadrant inverse tangent

U
I}

atan2(Y,X)

P atan2(Y,X) returns an array P the same size as X and Y containing
the element-by-element, four-quadrant inverse tangent (arctangent) of
the real parts of Y and X. Any imaginary parts of the inputs are ignored.

Elements of P lie in the closed interval [-pi,pi], where pi is the
MATLAB floating-point representation of . atan uses sign(Y) and
sign(X) to determine the specific quadrant.

n2
eah
— 0

/2
|

atan2(Y,X) contrasts with atan(Y/X), whose results are limited to the
interval [-/2, ®/2 1, or the right side of this diagram.

Any complex number £ = X+ LV is converted to polar coordinates with

r = abs(z)
theta = atan2(imag(z),real(z))

For example,
z = 4 + 3i;

r abs(z)
theta = atan2(imag(z),real(z))

atan2

Algorithm

See Also

theta =
0.6435

This is a common operation, so MATLAB software provides a function,
angle(z), that computes theta = atan2(imag(z),real(z)).

To convert back to the original complex number

z
Z:

r *exp(i *theta)

4.0000 + 3.0000i

atan2 uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

angle, atan, atanh

2-261

http://www.netlib.org

atand

Purpose Inverse tangent; result in degrees
Syntax Y = atand(X)
Description Y = atand(X) is the inverse tangent, expressed in degrees, of the

elements of X.

See Also tand, atan

2-262

atanh

Purpose
Syntax

Description

Examples

Definition

Inverse hyperbolic tangent
Y = atanh(X)

The atanh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = atanh(X) returns the inverse hyperbolic tangent for each element
of X.

Graph the inverse hyperbolic tangent function over the domain
—l<x<1.

X = -0.99:0.01:0.99;
plot(x,atanh(x)), grid on

3 T T T

The hyperbolic inverse tangent can be defined as

2-263

atanh

tanh1(z) = ‘:1) lng[1+2 j

1-2

Algorithm atanh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems business, by Kwok C. Ng, and others. For information
about FDLIBM, see http://www.netlib.org.

See Also atan2, atan, tanh

2-264

http://www.netlib.org

audioplayer

Purpose

Syntax

Description

Create audio player object

player = audioplayer(Y, Fs)

player = audioplayer(Y, Fs, nBits)
player = audioplayer(Y, Fs, nBits, ID)
player = audioplayer(R)

player = audioplayer(R, ID)

Note To use all of the features of the audio player object, your system
needs a properly installed and configured sound card with 8- and 16-bit
I/0, two channels, and support for sampling rates of up to 48 kHz.

player = audioplayer(Y, Fs) creates an audio player object for
signal Y, using sample rate Fs. The function returns player, a handle
to the audio player object. The audio player object supports methods
and properties that you can use to control how the audio data is played.

The input signal Y can be a vector or two-dimensional array containing
single, double, int8, uint8, or int16 MATLAB data types. Fs is the
sampling rate in Hz to use for playback. Valid values for Fs depend on
the specific audio hardware installed. Typical values supported by most
sound cards are 8000, 11025, 22050, and 44100 Hz.

player = audioplayer(Y, Fs, nBits) creates an audio player object
and uses nBits bits per sample for floating point signal Y. Valid values
for nBits are 8, 16, and 24 on Windows operating systems, 8 and 16 on
UNIX operating systems. The default number of bits per sample for
floating point signals is 16.

player = audioplayer(Y, Fs, nBits, ID) creates an audio player
object using audio device identifier ID for output. If ID equals -1, the
default output device will be used. This option is only available on
Windows operating systems.

player = audioplayer(R) creates an audio player object using audio
recorder object R.

2-265

audioplayer

Example

Methods

2-266

player = audioplayer(R, ID) creates an audio player object from
audio recorder object R using audio device identifier ID for output. This
option is only available on Windows operating systems.

Remarks

The value range of the input sample depends on the MATLAB data
type. The following table lists these ranges.

Data Type Input Sample Value Range
int8 -128 to 127

uints 0 to 255

int16 -32768 to 32767

single -1to1l

double -1to 1l

Load a sample audio file of Handel’s Hallelujah Chorus, create an audio
player object, and play back only the first three seconds. y contains
the audio samples and Fs is the sampling rate. You can use any of the
audioplayer functions listed above on the player:

load handel;
player = audioplayer(y, Fs);
play(player,[1 (get(player, 'SampleRate')*3)1);

To stop the playback, use this command:

stop(player); % Equivalent to player.stop

After you create an audio player object, you can use the methods listed
below on that object. player represents a handle to the audio player
object.

audioplayer

Method

Description

play(player)
play(player, start)
play(player, [start stop])

(

Starts playback from the beginning
and plays to the end of audio player
object player.

Play audio from the sample
indicated by start to the end, or

1 1 . .

play(player, range) from the sample indicated by start
up to the sample indicated by stop.
The values of start and stop can
also be specified in a two-element
vector range.

playblocking(player) Same as play, but does not return

playblocking(player, control until playback completes.

start)

playblocking(player,

[start stop])

playblocking(player,

range)

stop(player) Stops playback.

pause (player) Pauses playback.

resume (player) Restarts playback from where
playback was paused.

isplaying(player) Indicates whether playback is in
progress. If 0, playback is not
in progress. If 1, playback is in
progress.

display(player) Displays all property information

disp(player) about audio player player.

get(player)

2-267

audioplayer

Properties Audio player objects have the properties listed below. To set a
user-settable property, use this syntax:

set(player, 'propertyi', value, 'property2',value,...)

To view a read-only property,

get(player, 'property') % Displays 'property' setting.

Property Description Type

Type Name of the object’s class. Read-only
SampleRate Sampling frequency in Hz. User-settable
BitsPerSample Number of bits per sample. Read-only
NumberOfChannels Number of channels. Read-only
TotalSamples Total length, in samples, of the | Read-only

audio data.
Running Status of the audio player Read-only

(‘on' or 'off').

CurrentSample Current sample being played | Read-only
by the audio output device (f it
1s not playing, CurrentSample
1s the next sample to be played
with play or resume).

UserData User data of any type. User-settable
Tag User-specified object label User-settable
string.

For information on using the following four properties, see “Creating
and Executing Callback Functions” in the MATLAB documentation.
Note that for audio player object callbacks, eventStruct (event) is
currently empty ([]).

2-268

audioplayer

Property

Description

Type

TimerFcn

Handle to a user-specified
callback function that is
executed repeatedly (at
TimerPeriod intervals) during
playback.

User-settable

TimerPeriod

Time, in seconds, between
TimerFcn callbacks.

User-settable

StartFcn

Handle to a user-specified
callback function that is
executed once when playback
starts.

User-settable

StopFcn

Handle to a user-specified
callback function that is
executed once when playback
stops.

User-settable

See Also audiorecorder, sound, wavplay, wavwrite, wavread, get, set, methods

2-269

audiorecorder

Purpose Create audio recorder object

Syntax y = audiorecorder
= audiorecorder(Fs, nbits, nchans)
audiorecorder(Fs, nbits, channels, id)

< <
I

Description
Note To use all of the features of the audiorecorder object, your system
must have a properly installed and configured sound card with 8- and
16-bit I/O and support for sampling rates of up to 48 kHz.

y = audiorecorder creates an 8000 Hz, 8-bit, 1 channel audiorecorder
object. y is a handle to the object. The audiorecorder object supports
methods and properties that you can use to record audio data.

y = audiorecorder(Fs, nbits, nchans) creates an audiorecorder
object using the sampling rate Fs (in Hz), the sample size nbits, and
the number of channelsnchans. Fs can be any sampling rate supported
by the audio hardware. Common sampling rates are 8000, 11025,
22050, and 44100 (only 44100 on Macintosh® operating systems). The
value of nbits must be 8, 16, or 24, on Microsoft Windows operating
systems, and 8 or 16 on UNIX operating systems. The number of
channels, nchans must be 1 (mono) or 2 (stereo).

y = audiorecorder(Fs, nbits, channels, id) creates an
audiorecorder object using the audio device specified by its id for input.
If id equals -1, the default input device will be used. This option is only
available on Windows operating systems.

Examples Using a microphone, record your voice, using a sample rate of 44100 Hz,
16 bits per sample, and one channel. Speak into the microphone, then
pause the recording. Play back what you have recorded so far. Record
some more, then stop the recording. Finally, return the recorded data
to the MATLAB workspace as an int16 array.

r = audiorecorder (44100, 16, 1);
record(r); % speak into microphone...

2-270

audiorecorder

Remarks

Methods

pause(r);

p = play(r); % listen

resume(r); % speak again

stop(r);

p = play(r); % listen to complete recording

mySpeech = getaudiodata(r, 'int16'); % get data as int16 array

The current implementation of audiorecorder is not intended for long,
high-sample-rate recording because it uses system memory for storage
and does not use disk buffering. When large recordings are attempted,
MATLAB performance may degrade.

After you create an audiorecorder object, you can use the methods
listed below on that object. y represents the name of the returned

audiorecorder object

Method

Description

record(y)

record(y,length)

Starts recording.

Records for 1ength number of seconds.

recordblocking(y,length)

Same as record, but does not return
control until recording completes.

stop(y) Stops recording.

pause(y) Pauses recording.

resume(y) Restarts recording from where
recording was paused.

isrecording(y) Indicates the status of recording. If
0, recording is not in progress. If 1,
recording is in progress.

play(y) Creates an audioplayer, plays the

recorded audio data, and returns a
handle to the created audioplayer.

2-271

audiorecorder

Method

Description

getplayer(y)

Creates an audioplayer and returns a
handle to the created audioplayer.

getaudiodata(y)
getaudiodata(y, 'type')

Returns the recorded audio data to
the MATLAB workspace. type is a
string containing the desired data
type. Supported data types are double,
single, int16, int8, or uint8. If type
1s omitted, it defaults to 'double"’.
For double and single, the array
contains values between -1 and 1. For
int8, values are between -128 to 127.
For uint8, values are from 0 to 255.
For int16, values are from -32768 to
32767. If the recording is in mono, the
returned array has one column. If it is
in stereo, the array has two columns,
one for each channel.

display(y) Displays all property information
. about audio recorder y.
disp(y)
get(y)
Properties Audio recorder objects have the properties listed below. To set a

user-settable property, use this syntax:

set(y, 'propertyl', value, 'property2',value,...)

To view a read-only property,

get(y, 'property")

%sdisplays 'property' setting.

Property

Description

Type

Type

Name of the object’s class.

Read-only

2-272

audiorecorder

Property

Description

Type

SampleRate

Sampling frequency in Hz.

Read-only

BitsPerSample

Number of bits per recorded
sample.

Read-only

NumberOfChannels

Number of channels of
recorded audio.

Read-only

TotalSamples

Total length, in samples, of
the recording.

Read-only

Running

Status of the audio recorder
(‘on' or 'off").

Read-only

CurrentSample

Current sample being
recorded by the audio
output device (if it is not
recording, currentsample
1s the next sample to be
recorded with record or
resume).

Read-only

UserData

User data of any type.

User-settable

For information on using the following four properties, see “Creating
and Executing Callback Functions” in the MATLAB documentation.
Note that for audio object callbacks, eventStruct (event) is currently

empty ([]).
TimerFcn Handle to a user-specified User-settable
callback function that is
executed repeatedly (at
TimerPeriod intervals)
during recording.
TimerPeriod Time, in seconds, between User-settable

TimerFcn callbacks.

2-273

audiorecorder

Property Description Type

StartFcn Handle to a user-specified User-settable
callback function that
is executed once when
recording starts.

StopFcn Handle to a user-specified | User-settable
callback function that
1s executed once when
recording stops.

NumberOfBuffers Number of buffers used User-settable
for recording (you should
adjust this only if you have
skips, dropouts, etc., in your
recording).

BufferLength Length in seconds of buffer | User-settable
(you should adjust this only
if you have skips, dropouts,
etc., in your recording).

Tag User-specified object label User-settable
string.
See Also audioplayer, wavread, wavrecord, wavwrite, get, set, methods

2-274

aufinfo

Purpose
Syntax

Description

See Also

Information about NeXT/SUN (. au) sound file

[m d] = aufinfo(aufile)

[m d] aufinfo(aufile) returns information about the contents of
the AU sound file specified by the string aufile.

m is the string 'Sound (AU) file', if filename is an AU file.
Otherwise, it contains an empty string (' "').

d is a string that reports the number of samples in the file and the
number of channels of audio data. If filename is not an AU file, it
contains the string 'Not an AU file'.

auread

2-275

auread

Purpose Read NeXT/SUN (. au) sound file

Graphical As an alternative to auread, use the Import Wizard. To activate the
Interface Import Wizard, select Import data from the File menu.

Syntax y = auread('aufile')

[y,Fs,bits] = auread('aufile')
[...] = auread('aufile',N)

[...] = auread('aufile',[N1 N2])
siz = auread('aufile','size')

Description y = auread('aufile') loads a sound file specified by the string
aufile, returning the sampled data in y. The .au extension is appended
if no extension is given. Amplitude values are in the range [-1,+1].
auread supports multichannel data in the following formats:

¢ 8-bit mu-law

e 8- 16-, and 32-bit linear

¢ Floating-point

[y,Fs,bits] = auread('aufile') returns the sample rate (Fs) in

Hertz and the number of bits per sample (bits) used to encode the
data in the file.

[...]1 = auread('aufile',N) returns only the first N samples from
each channel in the file.

[...] = auread('aufile',[N1 N2]) returns only samples N1
through N2 from each channel in the file.

siz = auread('aufile', 'size') returns the size of the audio data
contained in the file in place of the actual audio data, returning the
vector siz = [samples channels].

See Also auwrite, wavread

2-276

auwrite

Purpose

Syntax

Description

See Also

Write NeXT/SUN (. au) sound file

auwrite(y, 'aufile')

auwrite(y,Fs, 'aufile')
auwrite(y,Fs,N, 'aufile')
auwrite(y,Fs,N, 'method', 'aufile')

auwrite(y, 'aufile') writes a sound file specified by the string
aufile. The data should be arranged with one channel per column.
Amplitude values outside the range [-1,+1] are clipped prior to
writing. auwrite supports multichannel data for 8-bit mu-law and 8-
and 16-bit linear formats.

auwrite(y,Fs, 'aufile') specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N, 'aufile') selects the number of bits in the encoder.
Allowable settings are N = 8 and N = 16.

auwrite(y,Fs,N, 'method', 'aufile') allows selection of the encoding
method, which can be either mu or 1inear. Note that mu-law files must
be 8-bit. By default, method = 'mu’.

auread, wavwrite

2-2717

avifile

Purpose

Syntax

Description

Create new Audio/Video Interleaved (AVI) file

aviobj = avifile(filename)
aviobj avifile(filename, 'Parami', Vali, 'Param2', Val2,

.)

aviobj = avifile(filename) creates an avifile object, giving it

the name specified in filename, using default values for all avifile
object properties. AVI is a file format for storing audio and video data.
If filename does not include an extension, avifile appends .avi to the
file name. To close all open AVI files, use the clear mex command.

avifile returns a handle to an AVI file object aviobj. Use this object
to refer to the AVI file in other functions. An AVI file object supports
properties and methods that control aspects of the AVI file created.

aviobj = avifile(filename, 'Parami', Valil, 'Param2',
Val2,...) creates an avifile object with the property values specified
by parameter/value pairs. This table lists available parameters.

Parameter

Value Default

‘colormap’

An m-by-3 matrix defining the colormap to be used There is no

for indexed AVI movies, where m must be no greater | default colormap.
than 256 (236 if using Indeo compression). You
must set this parameter before calling addframe,
unless you are using addframe with the MATLAB
movie syntax.

This parameter can be specified only when the
‘compression' parameter is set to 'MSVC', 'RLE",
or 'None'

2-278

avifile

Parameter Value Default
‘compression’ | A text string specifying the compression codec to use. | 'Indeo5'’
. . . on Windows
On Microsoft Windows operating systems: W
systems.
e 'Indeo3' '"None' on UNIX
e 'Indeos’ systems.
® 'Cinepak’
e 'MSVC'
e 'RLE'
® 'None’
® To use a custom compression codec on Windows
systems, specify the four-character code that
identifies the codec (typically included in the
codec documentation). The addframe function
reports an error if it cannot find the specified
custom compressor.
On UNIX operating systems:
® 'None’
'fps' A scalar value specifying the speed of the AVI movie | 15 fps
in frames per second (fps).
'keyframe' For compressors that support temporal compression, | 2.1429 key
this is the number of key frames per second. frames per
second.

2-279

avifile

Parameter Value Default
'quality' A number between 0 and 100. This parameter has 75
no effect on uncompressed movies. Higher quality
numbers result in higher video quality and larger
file sizes. Lower quality numbers result in lower
video quality and smaller file sizes. You must
set this parameter before calling addframe. This
parameter has no effect on uncompressed movies.
'videoname' A descriptive name for the video stream. This The default is the
parameter must be no greater than 64 characters filename.
long and must be set before using addframe.
You can also use structure syntax (also called dot notation) to set
avifile object properties. The property name must be typed in full,
however, it 1s not case sensitive. For example, to set the quality
property to 100, use the following syntax:
aviobj = avifile('myavifile');
aviobj.quality = 100;
All the field names of an avifile object are the same as the parameter
names listed in the table, except for the keyframe parameter. To set
this property using dot notation, specify the KeyFramePerSec property.
For example, to change the value of keyframe to 2.5, type
aviobj.KeyFramePerSec = 2.5;
Example This example uses the avifile function to create the AVI file

2-280

example.avi.

t = linspace(0,2.5*pi,40);
fact = 10*sin(t);
fig=figure;
aviobj = avifile('example.avi')
[X,y¥;z] = peaks;
for k=1:length(fact)
h = surf(x,y,fact(k)*z);

avifile

axis([-3 3 -3 3 -80 80])
axis off
caxis([-90 90])
F = getframe(fig);
aviobj = addframe(aviobj,F);
end
close(fig)
aviobj = close(aviobj);

See Also addframe, close, movie2avi

2-281

aviinfo

Purpose
Syntax

Description

2-282

Information about Audio/Video Interleaved (AVI) file

fileinfo = aviinfo(filename)

fileinfo = aviinfo(filename) returns a structure whose fields
contain information about the AVI file specified in the string filename.
If filename does not include an extension, then .avi is used. The

file must be in the current working directory or in a directory on the

MATLAB path.

The set of fields in the fileinfo structure is shown below.

Field Name

AudioFormat

AudioRate

Filename

FileModDate

FileSize

FramesPerSecond

Height

ImageType

Description

String containing the name of the format
used to store the audio data, if audio data
is present

Integer indicating the sample rate in
Hertz of the audio stream, if audio data
is present

String specifying the name of the file

String containing the modification date of
the file

Integer indicating the size of the file in
bytes

Integer indicating the desired frames per
second

Integer indicating the height of the AVI
movie in pixels

String indicating the type of image. Either
‘truecolor' for a truecolor (RGB) image,
or 'indexed' for an indexed image.

aviinfo

Field Name

NumAudioChannels

NumFrames

NumColormapEntries

Quality

VideoCompression

Width

Description

Integer indicating the number of channels
in the audio stream, if audio data is
present

Integer indicating the total number of
frames in the movie

Integer specifying the number of colormap
entries. For a truecolor image, this value
is 0 (zero).

Number between 0 and 100 indicating
the video quality in the AVI file. Higher
quality numbers indicate higher video
quality; lower quality numbers indicate
lower video quality. This value is not
always set in AVI files and therefore can
be inaccurate.

String containing the compressor used to
compress the AVI file. If the compressor
1s not Microsoft Video 1, Run Length
Encoding (RLE), Cinepak, or Intel® Indeo,
aviinfo returns the four-character code
that identifies the compressor.

Integer indicating the width of the AVI
movie in pixels

See also avifile, aviread

2-283

aviread

Purpose

Syntax

Description

See also

2-284

Read Audio/Video Interleaved (AVI) file

mov = aviread(filename)
mov aviread(filename, index)

mov = aviread(filename) reads the AVI movie filename into the
MATLAB movie structure mov. If filename does not include an
extension, then .avi is used. Use the movie function to view the movie
mov. On UNIX platforms, filename must be an uncompressed AVI file.

mov has two fields, cdata and colormap. The content of these fields
varies depending on the type of image.

Image Type cdata Field colormap Field
Truecolor Height-by-width-by-3 Empty
array of uint8 values

Indexed Height-by-width m-by-3 array of
array of uint8 values double values

aviread supports 8-bit frames, for indexed and grayscale images, 16-bit
grayscale images, or 24-bit truecolor images. Note, however, that movie
only accepts 8-bit image frames; it does not accept 16-bit grayscale
image frames.

mov = aviread(filename, index) reads only the frames specified by
index. index can be a single index or an array of indices into the video
stream. In AVI files, the first frame has the index value 1, the second
frame has the index value 2, and so on.

Note If you are using MATLAB on a Windows platform, consider using
the new mmreader function, which adds support for more video formats
and codecs.

avifile, aviinfo, mmreader, movie

axes

Purpose

GUI
Alternatives

Syntax

Description

Create axes graphics object

1

045

To create a figure select New > Figure from the MATLAB Desktop

or a figure’s File menu. To add an axes to a figure, click one of the
New Subplots icons in the Figure Palette, and slide right to select an
arrangement of new axes. For details, see “Plotting Tools — Interactive
Plotting” in the MATLAB Graphics documentation.

axes
axes('PropertyName' ,propertyvalue,...)
axes (h)

h = axes(...)

axes is the low-level function for creating axes graphics objects.

axes creates an axes graphics object in the current figure using default
property values.

axes('PropertyName' ,propertyvalue,...) creates an axes object
having the specified property values. MATLAB uses default values for
any properties that you do not explicitly define as arguments.

axes (h) makes existing axes h the current axes and brings the figure
containing it into focus. It also makes h the first axes listed in the
figure’s Children property and sets the figure’s CurrentAxes property
to h. The current axes is the target for functions that draw image, line,
patch, rectangle, surface, and text graphics objects.

If you want to make an axes the current axes without changing the
state of the parent figure, set the CurrentAxes property of the figure
containing the axes:

set(figure_handle, 'CurrentAxes',axes_handle)

2-285

axes

Remarks

2-286

This is useful if you want a figure to remain minimized or stacked below
other figures, but want to specify the current axes.

h = axes(...) returns the handle of the created axes object.

MATLAB automatically creates an axes, if one does not already exist,
when you issue a command that creates a graph.

The axes function accepts property name/property value pairs,
structure arrays, and cell arrays as input arguments (see the set
and get commands for examples of how to specify these data types).
These properties, which control various aspects of the axes object, are
described in the Axes Properties section.

Use the set function to modify the properties of an existing axes or the
get function to query the current values of axes properties. Use the gca
command to obtain the handle of the current axes.

The axis (not axes) function provides simplified access to commonly
used properties that control the scaling and appearance of axes.

While the basic purpose of an axes object is to provide a coordinate
system for plotted data, axes properties provide considerable control
over the way MATLAB displays data.

Stretch-to-Fill

By default, MATLAB stretches the axes to fill the axes position
rectangle (the rectangle defined by the last two elements in the
Position property). This results in graphs that use the available space
in the rectangle. However, some 3-D graphs (such as a sphere) appear
distorted because of this stretching, and are better viewed with a
specific three-dimensional aspect ratio.

Stretch-to-fill is active when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all

auto (the default). However, stretch-to-fill is turned off when the
DataAspectRatio, PlotBoxAspectRatio, or CameraViewAngle is
user-specified, or when one or more of the corresponding modes is set to
manual (which happens automatically when you set the corresponding
property value).

axes

Examples

This picture shows the same sphere displayed both with and without
the stretch-to-fill. The dotted lines show the axes rectangle.

1= : ; - - e - - P e it [y oy
&b PR T USRS o o NS S b . RPN
0.6F R 11 RN N e PR

0afy ™,

oaf-

)
Y B

-o.8f

i i i i i
-1 08 -0 -04 =02 a oz 0.4 0B o8 1 =05 a 0.5 1

Stretch-to-fill active Stretch-to-fill disabled

When stretch-to-fill is disabled, MATLAB sets the size of the axes to be
as large as possible within the constraints imposed by the Position
rectangle without introducing distortion. In the picture above, the
height of the rectangle constrains the axes size.

-1

Zooming

Zoom in using aspect ratio and limits:

sphere
set(gca, 'DataAspectRatio',[1 1 1],...
'PlotBoxAspectRatio',[1 1 1],'ZLim',[-0.6 0.6])

Zoom in and out using the CameraViewAngle:
sphere

set(gca, 'CameraViewAngle',get(gca, 'CameraViewAngle')-5)
set(gca, 'CameraViewAngle',get(gca, 'CameraViewAngle')+5)

Note that both examples disable the MATLAB stretch-to-fill behavior.

2-287

axes

2-288

Positioning the Axes

The axes Position property enables you to define the location of the
axes within the figure window. For example,

h = axes('Position',position_rectangle)

creates an axes object at the specified position within the current figure
and returns a handle to it. Specify the location and size of the axes with
a rectangle defined by a four-element vector,

position_rectangle = [left, bottom, width, height];

The left and bottom elements of this vector define the distance from
the lower left corner of the figure to the lower left corner of the rectangle.
The width and height elements define the dimensions of the rectangle.
You specify these values in units determined by the Units property. By
default, MATLAB uses normalized units where (0,0) is the lower left
corner and (1.0,1.0) is the upper right corner of the figure window.

You can define multiple axes in a single figure window:

axes('position',[.1 .1 .8 .6])
mesh(peaks(20));
axes('position',[.1 .7 .8 .2])

pcolor([1:10;1:10]1);

In this example, the first plot occupies the bottom two-thirds of the
figure, and the second occupies the top third.

axes

Setting
Default
Properties

See Also

Figurc Ne. 1 [-]-
File Edit Windows Help

You can set default axes properties on the figureand root objectlevels:

set (0, 'DefaultAxesPropertyName' ,PropertyValue,...)
set(gcf, 'DefaultAxesPropertyName',PropertyVvalue,...)

where PropertyName is the name of the axes property and
PropertyValue is the value you are specifying. Use set and get to
access axes properties.

axis, cla, c1f, figure, gca, grid, subplot, title, xlabel, ylabel,
zlabel, view
“Axes Operations” on page 1-100 for related functions

“Axes Properties” for more examples

2-289

axes

See “Types of Graphics Objects” for information on core, group, plot, and
annotation objects.

2-290

Axes Properties

Purpose

Modifying
Properties

Axes
Property
Descriptions

Modify axes properties

You can set and query graphics object properties in two ways:

¢ “The Property Editor” is an interactive tool that enables you to see
and change object property values.

® The set and get commands let you set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values” in the Handle Graphics Objects documentation.

This section lists property names along with the types of values each
accepts. Curly braces {} enclose default values.

ActivePositionProperty
{outerposition} | position

Use OuterPosition or Position property for resize.
ActivePositionProperty specifies which property MATLAB
uses to determine the size of the axes when you resize the figure
(interactively or during a printing or exporting operation).

See OuterPosition and Position for related properties.

See Automatic Axes Resize for a discussion of how to use axes
positioning properties.

ALim
[amin, amax]

Alpha axis limits. A two-element vector that determines how
MATLAB maps the AlphaData values of surface, patch, and
image objects to the figure’s alphamap. amin is the value of the
data mapped to the first alpha value in the alphamap, and amax
is the value of the data mapped to the last alpha value in the
alphamap. MATLAB linearly interpolates data values in between

2-291

Axes Properties

across the alphamap and clamps data values outside to either the
first or last alphamap value, whichever is closest.

If the axes contains multiple graphics objects, MATLAB
sets ALim to span the range of all objects’ AlphaData (or
FaceVertexAlphaData for patch objects).

See the alpha function reference page for additional information.

ALimMode
{auto} | manual

Alpha axis limits mode. In auto mode, MATLAB sets the ALim
property to span the AlphaData limits of the graphics objects
displayed in the axes. If ALimMode is manual, MATLAB does not
change the value of ALim when the AlphaData limits of axes
children change. Setting the ALim property sets ALimMode to
manual.

AmbientLightColor
ColorSpec

The background light in a scene. Ambient light is a directionless
light that shines uniformly on all objects in the axes. However, if
there are no visible light objects in the axes, MATLAB does not
use AmbientLightColor. If there are light objects in the axes, the
AmbientLightColor is added to the other light sources.

AspectRatio
(Obsolete)

This property produces a warning message when
queried or changed. The DataAspectRatio[Mode] and
PlotBoxAspectRatio[Mode] properties have superseded it.

BeingDeleted
on | {off}

2-292

Axes Properties

This object is being deleted. The BeingDeleted property provides
a mechanism to determine if objects are in the process of being
deleted. MATLAB sets the BeingDeleted property to on when
the object’s delete function callback is called (see the DeleteFcn
property). It remains set to on while the delete function executes,
after which the object no longer exists.

For example, an object’s delete function might call other
functions that act on a number of different objects. These
functions might not need to perform actions on objects if the
objects are going to be deleted, and therefore, can check the
object’s BeingDeleted property before acting.

See the close and delete function reference pages for related
information.

Box
on | {off}
Axes box mode. This property specifies whether to enclose the
axes extent in a box for 2-D views or a cube for 3-D views. The
default is to not display the box.

BusyAction

cancel | {queue}

Callback routine interruption. The BusyAction property lets you
control how MATLAB handles events that potentially interrupt
executing callbacks. If there is a callback executing, callbacks
invoked subsequently always attempt to interrupt it. If the
Interruptible property of the object whose callback is executing
1s set to on (the default), then interruption occurs at the next
point where the event queue is processed.

If the Interruptible property is of f, the BusyAction property

(of the object owning the executing callback) determines how
MATLAB handles the event. The choices are as follows:

2-293

Axes Properties

e cancel — Discard the event that attempted to execute a second
callback routine.

® queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
function handle, cell array containing function handle
and additional arguments, or string (not recommended)

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is within the axes, but
not over another graphics object parented to the axes. For 3-D
views, the active area is a rectangle that encloses the axes.

See the figure’s SelectionType property to determine whether
modifier keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of axes associated with the button down event and an event
structure, which is empty for this property).

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

Some Plotting Functions Reset the ButtonDownFcn

Most MATLAB plotting functions clear the axes and reset a
number of axes properties, including the ButtonDownFcn before
plotting data. To create an interface that lets users plot data
interactively, consider using a control device such as a push
button (uicontrol), which plotting functions do not affect. See
“Example — Using Function Handles in GUIs” for an example.

If you must use the axes ButtonDownFcn to plot data, then you
should use low-level functions such as 1line, patch, and surface

2-294

Axes Properties

and manage the process with the figure and axes NextPlot
properties.

See “High-Level Versus Low-Level Functions” for information on
how plotting functions behave.

See “Preparing Figures and Axes for Graphics” for more
information.

Camera Properties

See View Control with the Camera Toolbar for information related to
the Camera properties

CameraPosition
[Xx, y, z] axes coordinates

The location of the camera. This property defines the position
from which the camera views the scene. Specify the point in axes
coordinates.

If you fix CameraViewAngle, you can zoom in and out on the
scene by changing the CameraPosition, moving the camera
closer to the CameraTarget to zoom in and farther away

from the CameraTarget to zoom out. As you change the
CameraPosition, the amount of perspective also changes, if
Projection is perspective. You can also zoom by changing the
CameraViewAngle; however, this does not change the amount of
perspective in the scene.

CameraPositionMode
{auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB
automatically calculates the CameraPosition such that the
camera lies a fixed distance from the CameraTarget along the
azimuth and elevation specified by view. Setting a value for
CameraPosition sets this property to manual.

2-295

Axes Properties

2-296

CameraTarget

[x, y, z] axes coordinates

Camera aiming point. This property specifies the location in
the axes that the camera points to. The CameraTarget and the
CameraPosition define the vector (the view axis) along which
the camera looks.

CameraTargetMode

{auto} | manual

Auto or manual CameraTarget placement. When this property is
auto, MATLAB automatically positions the CameraTarget at the
centroid of the axes plot box. Specifying a value for CameraTarget
sets this property to manual.

CameraUpVector

[x, y, z] axes coordinates

Camera rotation. This property specifies the rotation of the
camera around the viewing axis defined by the CameraTarget
and the CameraPosition properties. Specify CameraUpVector
as a three-element array containing the x, y, and z components
of the vector. For example, [0 1 0] specifies the positive y-axis
as the up direction.

The default CameraUpVector is [0 O 1], which defines the
positive z-axis as the up direction.

CameraUpVectorMode

auto} | manual

Default or user-specified up vector. When CameraUpVectorMode
is auto, MATLAB uses a value of [0 0 1] (positive z-direction
is up) for 3-D views and [0 1 0] (positive y-direction is up) for
2-D views. Setting a value for CameraUpVector sets this property
to manual.

Axes Properties

CameraViewAngle

scalar greater than 0 and less than or equal to 180 (angle in
degrees)

The field of view. This property determines the camera field of
view. Changing this value affects the size of graphics objects
displayed in the axes, but does not affect the degree of perspective
distortion. The greater the angle, the larger the field of view, and
the smaller objects appear in the scene.

CameraViewAngleMode

{auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB
sets CameraViewAngle to the minimum angle that captures the
entire scene (up to 180°).

The following table summarizes MATLAB camera behavior
using various combinations of CameraViewAngleMode,
CameraTargetMode, and CameraPositionMode:

CameraViewAngleMod

CameraTargetMode

CameraPositionMode | Behavior

auto

CameraTarget is set
to plot box centroid,
CameraViewAngle
is set to capture
entire scene,
CameraPosition

is set along the view
axis.

auto auto

auto

CameraTarget is set
to plot box centroid,
CameraViewAngle is
set to capture entire
scene.

auto manual

2-297

Axes Properties

CameraViewAngleMod

CameraTargetMode | CameraPositionMode| Behavior

auto

CameraViewAngle
is set to capture
entire scene,
CameraPosition

1s set along the view
axis.

manual auto

auto

CameraViewAngle is
manual manual set to capture entire
scene.

manual

CameraTarget is set
to plot box centroid,
auto auto CameraPosition is
set along the view
axis.

manual

CameraTarget is set

auto manual .
! u to plot box centroid

manual

CameraPosition is
manual auto set along the view
axis.

manual

User specifies all

manual manual .
camera properties.

2-298

Children

vector of graphics object handles

A vector containing the handles of all graphics objects rendered
within the axes (whether visible or not). The graphics objects that
can be children of axes are image, 1ight, line, patch, rectangle,
surface, and text. Change the order of the handles to change the
stacking of the objects on the display.

The text objects used to label the x-, y-, and z-axes and the title are
also children of axes, but their HandleVisibility properties are

Axes Properties

CLim

set to off. This means their handles do not show up in the axes
Children property unless you set the Root ShowHiddenHandles
property to on.

When an object’s HandleVisibility property is set to off, its
parent’s Children property does not list it. See HandleVisibility
for more information.

[cmin, cmax]

Color axis limits. A two-element vector that determines how
MATLAB maps the CData values of surface and patch objects

to the figure’s colormap. cmin is the value of the data mapped

to the first color in the colormap, and cmax is the value of the
data mapped to the last color in the colormap. MATLAB linearly
interpolates data values in between across the colormapand
clamps data values outside to either the first or last alphamap
colormap color, whichever is closest.

When CLimMode is auto (the default), MATLAB assigns cmin the
minimum data value and cmax the maximum data value in the
graphics object’s CData. This maps CData elements with minimum
data value to the first colormap entry and with maximum data
value to the last colormap entry.

If the axes contains multiple graphics objects, MATLAB sets CLim
to span the range of all objects’ CData.

See the caxis function reference page for related information.

CLimMode

{auto} | manual
Color axis limits mode. In auto mode, MATLAB sets the CLim

property to span the CData limits of the graphics objects displayed
in the axes. If CLimMode is manual, MATLAB does not change

2-299

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23HandleVisibility

Axes Properties

the value of CLim when the CData limits of axes children change.
Setting the CLim property sets this property to manual.

Clipping
{on} | off

This property has no effect on axes.

Color
{none} | ColorSpec

Color of the axes back planes. Setting this property to none means
the axes is transparent and the figure color shows through. A
ColorSpec is a three-element RGB vector or one of the MATLAB
predefined names. Note that while the default value is none, the
matlabrc.m file may set the axes color to a specific color.

ColorOrder
m-by-3 matrix of RGB values

Colors to use for multiline plots. ColorOrder is an m-by-3 matrix
of RGB values that define the colors used by the plot and plot3
functions to color each line plotted. If you do not specify a line
color with plot and plot3, these functions cycle through the
ColorOrder to obtain the color for each line plotted. To obtain
the current ColorOrder, which may be set during startup, get
the property value:

get(gca, 'ColorOrder"')

Note that if the axes NextPlot property is set to replace (the
default), high-level functions like plot reset the ColorOrder
property before determining the colors to use. If you want
MATLAB to use a ColorOrder that is different from the default,
set NextPlot to replacechildren. You can also specify your own
default ColorOrder.

2-300

Axes Properties

CreateFcn
function handle, cell array containing function handle
and additional arguments, or string (not recommended)

Callback function executed during object creation. A callback

function that executes when MATLAB creates an axes object.
You must define this property as a default value for axes. For
example, the statement

set (0, 'DefaultAxesCreateFcn',@ax_create)

defines a default value on the Root level that sets axes properties
whenever you (or MATLAB) create an axes.

function ax_create(src,evnt)
set(src, 'Color','b',...

'XLim',[1 10],...
'YLim',[0 100])
end

MATLAB executes this function after setting all properties for the
axes. Setting the CreateFcn property on an existing axes object
has no effect.

MATLAB passes the handle of the object whose CreateFcn is
being executed as the first argument to the callback function and
1s also accessible through the Root CallbackObject property,
which can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

CurrentPoint
2-by-3 matrix

Location of last button click, in axes data units. A 2-by-3 matrix
containing the coordinates of two points defined by the location

2-301

Axes Properties

of the pointer at the last mouse click. MATLAB returns the
coordinates with respect to the requested axes.

Clicking Within the Axes — Orthogonal Projection

The two points lie on the line that is perpendicular to the plane of
the screen and passes through the pointer. This is true for both
2-D and 3-D views.

The 3-D coordinates are the points, in the axes coordinate system,
where this line intersects the front and back surfaces of the axes
volume (which is defined by the axes x, ¥, and z limits).

The returned matrix is of the form:

Xfront Yfront “front

“back Yback “hack

where front defines the point nearest to the camera position.
Therefore, if the CurrentPoint property returns the cp matrix ,
then the first row,

cp(1,:)

specifies the point nearest the viewer and the second row,
cp(2,:)

specifies the point furthest from the viewer.

Clicking Outside the Axes — Orthogonal Projection

When you click outside the axes volume, but within the figure,
the returned values are:

e Back point — a point in the plane of the camera target (which
is perpendicular to the viewing axis).

2-302

Axes Properties

¢ Front point — a point in the camera position plane (which is
perpendicular to the viewing axis).

These points lie on a line that passes through the pointer and is
perpendicular to the camera target and camera position planes.

Clicking Within the Axes — Perspective Projection

The values of the current point when using perspective project
can be different from the same point in orthographic projection
because the shape of the axes volume can be different.

Clicking Outside the Axes — Perspective Projection

Clicking outside of the axes volume returns the front point as the
current camera position at all times. Only the back point updates
with the coordinates of a point that lies on a line extending from
the camera position through the pointer and intersecting the
camera target at the point.

Related Information

See Defining Scenes with Camera Graphics for information on
the camera properties.

See View Projection Types for information on orthogonal and

perspective projections.

See the figure CurrentPoint property for more information.
DataAspectRatio

[dx dy dz]

Relative scaling of data units. A three-element vector controlling
the relative scaling of data units in the x, y, and z directions. For
example, setting this property to [1 2 1] causes the length of one

2-303

Axes Properties

unit of data in the x-direction to be the same length as two units
of data in the y-direction and one unit of data in the z-direction.

Note that the DataAspectRatio property interacts with the
PlotBoxAspectRatio, XLimMode, YLimMode, and ZLimMode
properties to control how MATLAB scales the x-, y-, and z-axis.
Setting the DataAspectRatio will disable the stretch-to-fill
behavior if DataAspectRatioMode, PlotBoxAspectRatioMode,
and CameraViewAngleMode are all auto. The following table
describes the interaction between properties when you disable
stretch-to-fill behavior.

X-, Y-,

Z-LimitModes DataAspeciRatio PlotBoxAspectRatio| Behavior

auto auto auto Limits chosen to
span data range in
all dimensions.

auto auto manual Limits chosen to

span data range

in all dimensions.
MATLAB modifies
DataAspectRatio

to achieve

the requested
PlotBoxAspectRatio
within the limits the
software selected.

2-304

Axes Properties

X-, Y-,
Z-LimitModes

DataAspectRatio

PlotBoxAspectRatio

Behavior

auto

manual

auto

Limits chosen to
span data range

in all dimensions.
MATLAB modifies
PlotBoxAspectRatio
to achieve

the requested
DataAspectRatio
within the limits the
software selected.

auto

manual

manual

Limits chosen to
completely fit and
center the plot
within the requested
PlotBoxAspectRatio
given the requested
DataAspectRatio
(this may produce
empty space
around 2 of the 3
dimensions).

manual

auto

auto

MATLAB honors
limits and

modifies the
DataAspectRatio
and
PlotBoxAspectRatio
as necessary.

2-305

Axes Properties

X-, Y-,
Z-LimitModes DataAspeciRatio | PlotBoxAspectRatio| Behavior

manual auto manual MATLAB honors
limits and
PlotBoxAspectRatio
and modifies
DataAspectRatio as
necessary.

manual manual auto MATLAB honors
limits and
DataAspectRatio
and modifies the
PlotBoxAspectRatio
as necessary.

1 manual manual manual MATLAB selects
the 2 automatic
limits to honor the
specified aspect
ratios and limit. See
"Examples."

2 auto

2 or 3 manual manual manual MATLAB honors

limits and

DataAspectRatio

while
ignoringPlotBoxAspectRatio.

See “Understanding Axes Aspect Ratio” for more information.

DataAspectRatioMode
{auto} | manual

User or MATLAB controlled data scaling. This property controls
whether the values of the DataAspectRatio property are
user-defined or selected automatically by MATLAB. Setting
values for the DataAspectRatio property automatically sets this

2-306

Axes Properties

property to manual. Changing DataAspectRatioMode to manual
disables the stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto.

DeleteFcn
function handle, cell array containing function handle
and additional arguments, or string (not recommended)

Delete axes callback function. A callback function that executes
when you delete the axes object (e.g., when you issue a delete or
clf command). MATLAB executes the routine before destroying
the object’s properties so the callback can query these values.

MATLAB passes the handle of the object whose DeleteFcn is
executing as the first argument to the callback function. The
handle is also accessible through the Root CallbackObject
property, which can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DrawMode
{normal} | fast

Rendering mode. This property controls the way MATLAB
renders graphics objects displayed in the axes when the figure
Renderer property is painters.

* normal mode draws objects in back to front ordering based on
the current view in order to handle hidden surface elimination
and object intersections.

® fast mode draws objects in the order in which you specify the
drawing commands, without considering the relationships of
the objects in three dimensions. This results in faster rendering
because it requires no sorting of objects according to location
in the view, but can produce undesirable results because it

2-307

Axes Properties

bypasses the hidden surface elimination and object intersection
handling provided by normal DrawMode.

When the figure Renderer is zbuffer, it ignores DrawMode
and always provides hidden surface elimination and object
intersection handling.

FontAngle

{normal} | italic | oblique

Select italic or normal font. This property selects the character
slant for axes text. normal specifies a nonitalic font. italic and
oblique specify italic font.

FontName

2-308

A name such as Courier or the string Fixedwidth

Font family name. The font family name specifying the font to use
for axes labels. To display and print properly, FontName must

be a font that your system supports. Note that MATLAB does
not display the x-, y-, and z-axis labels in a new font until you
manually reset them (by setting the XLabel, YLabel, and ZLabel
properties or by using the xlabel, ylabel, or z1label command).
Tick mark labels change immediately.

Specifying a Fixed-Width Font

If you want an axes to use a fixed-width font that looks good in
any locale, set FontName to the string Fixedwidth:

set(axes_handle, 'FontName', 'FixedWidth')

This eliminates the need to hardcode the name of a fixed-width
font, which might not display text properly on systems that do not
use ASCII character encoding (such as in Japan, where character
sets can be multibyte). A properly written MATLAB application
that needs to use a fixed-width font should set FontName to
FixedwWidth (note that this string is case sensitive) and rely

Axes Properties

on FixedWidthFontName to be set correctly in the end user’s
environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes
an immediate update of the display to use the new font.

FontSize
Font size specified in FontUnits

Font size. An integer specifying the font size to use for axes labels
and titles, in units determined by the FontUnits property. The
default point size is 12 and the maximum allowable font size
depends on your OS. MATLAB does not display x-, y-, and z-axis
text labels in a new font size until you manually reset them (by
setting the XLabel, YLabel, or ZLabel properties or by using the
xlabel, ylabel, or zlabel command). Tick mark labels change
immediately.

FontUnits
{points} | normalized | inches | centimeters | pixels

Units used to interpret the FontSize property. When set to
normalized, MATLAB interprets the value of FontSize as a
fraction of the height of the axes. For example, a normalized
FontSize of 0.1 sets the text characters to a font whose height
is one tenth of the axes’ height. The default units (points), are
equal to 1/72 of an inch.

Note that if you set both the FontSize and the FontUnits in one
function call, you must set the FontUnits property first so that
MATLAB can correctly interpret the specified FontSize.

FontWeight
{normal} | bold | light | demi

2-309

Axes Properties

Select bold or normal font. The character weight for axes text.
MATLAB does not display the x-, y-, and z-axis text labels in bold
until you manually reset them (by setting the XLabel, YLabel,
and ZLabel properties or by using the xlabel, ylabel, or z1abel
commands). Tick mark labels change immediately.

GridLineStyle
| --| {:} | -. | none

Line style used to draw grid lines. The line style is a string
consisting of a character, in quotes, specifying solid lines (-),
dashed lines (-), dotted lines(:), or dash-dot lines (-.). The default
grid line style is dotted. To turn on grid lines, use the grid
command.

HandleVisibility
{on} | callback | off

Contirol access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in

its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all

times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as

2-310

Axes Properties

evaluating a user-typed string) and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children,
functions that obtain handles by searching the object hierarchy or
querying handle properties cannot return it. This includes get,
findobj, gca, gcf, gco, newplot, cla, c1f, and close

When you restrict a handle’s visibility by using callback or
off, the object’s handle does not appear in its parent’s Children
property, figures do not appear in the Root’s CurrentFigure
property, objects do not appear in the Root’s CallbackObject
property or in the figure’s CurrentObject property, and axes do
not appear in their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the axes can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the axes. If HitTest i1s off, clicking the axes selects the object
below it (which is usually the figure containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible
property controls whether an axes callback routine can be

2-311

Axes Properties

interrupted by subsequently invoked callback routines. The
Interruptible property only affects callback routines defined
for the ButtonDownFcn . MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow,
figure, getframe, or pause command in the routine. See the
BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
routine to interrupt callback routines originating from an axes
property. Note that MATLAB does not save the state of variables
or the display (e.g., the handle returned by the gca or gcf
command) when an interruption occurs.

Layer
{bottom} | top

Draw axis lines below or above graphics objects. This property
determines whether to draw axis lines and tick marks on top or
below axes children objects for any 2-D view (i.e., when you are
looking along the x-, y-, or z-axis). This is useful for placing grid
lines and tick marks on top of images.

LineStyleOrder
LineSpec {a solid line '-'}

Order of line styles and markers used in a plot. This property
specifies which line styles and markers to use and in what order
when creating multiple-line plots. For example:

set(gca, 'LineStyleOrder', '-*|:|0"')

sets LineStyleOrder to solid line with asterisk marker, dotted
line, and hollow circle marker. The default is (-), which specifies a
solid line for all data plotted. Alternatively, you can create a cell
array of character strings to define the line styles:

set(gca, 'LineStyleOrder',{'-*',':"','0'})

2-312

Axes Properties

MATLAB supports four line styles, which you can specify any
number of times in any order. MATLAB cycles through the
line styles only after using all colors defined by the ColorOrder
property. For example, the first eight lines plotted use the
different colors defined by ColorOrder with the first line style.
MATLAB then cycles through the colors again, using the second
line style specified, and so on.

You can also specify line style and color directly with the plot
and plot3 functions or by altering the properties of the 1ine or
lineseries objects after creating the graph.

High-Level Functions and LineStyleOrder

Note that, if the axes NextPlot property is set to replace (the
default), high-level functions like plot reset the LineStyleOrder
property before determining the line style to use. If you want
MATLAB to use a LineStyleOrder that is different from the
default, set NextPlot to replacechildren

Specifying a Default LineStyleOrder

You can also specify your own default LineStyleOrder. For
example:

set (0, 'DefaultAxesLineStyleOrder',{'-*',':','0"'})

creates a default value for the axes LineStyleOrder that
high-level plotting functions will not reset.

LineWidth
line width in points

Width of axis lines. This property specifies the width, in points, of
the x-, y-, and z-axis lines. The default line width is 0.5 points (1
point = !/, inch).

2-313

Axes Properties

2-314

MinorGridLineStyle

| --| {:} | -. | none

Line style used to draw minor grid lines. The line style is a string
consisting of one or more characters, in quotes, specifying solid
lines (-), dashed lines (-), dotted lines (:), or dash-dot lines (-.).
The default minor grid line style is dotted. To turn on minor grid
lines, use the grid minor command.

NextPlot

add | {replace} | replacechildren

Where to draw the next plot. This property determines how
high-level plotting functions draw into an existing axes.

¢ add — Use the existing axes to draw graphics objects.

® replace — Reset all axes properties except Position to their
defaults and delete all axes children before displaying graphics
(equivalent to cla reset).

® replacechildren — Remove all child objects, but do not reset
axes properties (equivalent to cla).

The newplot function simplifies the use of the NextPlot property
and 1s useful for M-file functions that draw graphs using only
low-level object creation routines. See the M-file pcolor.m for an
example. Note that figure graphics objects also have a NextPlot
property.

OuterPosition

four-element vector

Position of axes including labels, title, and a margin. A
four-element vector specifying a rectangle that locates the outer
bounds of the axes, including axis labels, the title, and a margin.
The vector 1s as follows:

[left bottom width height]

Axes Properties

where left and bottom define the distance from the lower-left
corner of the figure window to the lower-left corner of the
rectangle. width and height are the dimensions of the rectangle

The following picture shows the region defined by the
OuterPosition enclosed in a yellow rectangle.

=10 %]

File Edit Wiew Insert Tools Web Deskbop Window Help

DEeEE h RO ® ¥ 0E &

Plot of a simple. The yellow rectangle
© mathamatical function shows the extent of
the OuterPosition.

a5
an
25

W2 \

=
15 “The green rectangle
10 shows the extent of

. the Position.

-4 -6 -4 -2 0 2 4 &6 4
X =-2nto2n

When ActivePositionProperty is set to OuterPosition (the
default), resizing the figure will not clip any of the text. The
default value of [0 0 1 1] (normalized units) includes the
interior of the figure.

The units property specifies all measurement units.

See the TightInset property for related information.

2-315

Axes Properties

See “Automatic Axes Resize” for a discussion of how to use axes
positioning properties.

Parent
figure or uipanel handle

Axes parent. The handle of the axes’ parent object. The parent of
an axes object 1s the figure which displays it or the uipanel object
that contains it. The utility function gcf returns the handle of
the current axes Parent. You can reparent axes to other figure
or uipanel objects.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

PlotBoxAspectRatio
[pX py pz]

Relative scaling of axes plot box. A three-element vector
controlling the relative scaling of the plot box in the x, y, and z
directions. The plot box is a box enclosing the axes data region
as defined by the x-, y-, and z-axis limits.

Note that the PlotBoxAspectRatio property interacts with the
DataAspectRatio, XLimMode, YLimMode, and ZLimMode properties
to control the way MATLAB displays graphics objects. Setting
the PlotBoxAspectRatio disables stretch-to-fill behavior,

if DataAspectRatioMode, PlotBoxAspectRatioMode, and
CameraViewAngleMode are all auto.

PlotBoxAspectRatioMode
{auto} | manual

User or MATLAB controlled axis scaling. This property controls
whether the values of the PlotBoxAspectRatio property are
user-defined or selected automatically by MATLAB. Setting values
for the PlotBoxAspectRatio property automatically sets this
property to manual. Changing the PlotBoxAspectRatioMode to

2-316

Axes Properties

manual disables stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto.

Position
four-element vector

Position of axes. A four-element vector specifying a rectangle that
locates the axes within its parent container (figure or uipanel).
The vector is of the form

[left bottom width height]

where left and bottom define the distance from the lower-left
corner of the container to the lower-left corner of the rectangle.
width and height are the dimensions of the rectangle. The Units
property specifies the units for all measurements.

When you enable axes stretch-to-fill behavior (when
DataAspectRatioMode, PlotBoxAspectRatioMode, and
CameraViewAngleMode are all auto), MATLAB stretches the axes
to fill the Position rectangle. When you disable stretch-to-fill,
MATLAB makes the axes as large as possible, while obeying

all other properties, without extending outside the Position
rectangle.

See the OuterPosition property for related information.
See “Automatic Axes Resize” for a discussion of how to use axes
positioning properties.

Projection
{orthographic} | perspective
Type of projection. This property selects between two projection
types:

® orthographic — This projection maintains the correct relative
dimensions of graphics objects with regard to the distance a

2-317

Axes Properties

2-318

given point is from the viewer and draws parallel lines in the
data parallel on the screen.

® perspective — This projection incorporates foreshortening,
which allows you to perceive depth in 2-D representations
of 3-D objects. Perspective projection does not preserve the
relative dimensions of objects; it displays a distant line segment
smaller than a nearer line segment of the same length. Parallel
lines in the data may not appear parallel on screen.

Selected

on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection “handles” at the corners and midpoints if the
SelectionHighlight property is also on (the default). You

can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that the axes has been selected.

SelectionHighlight

Tag

{on} | off

Highlights objects when selected. When the Selected property is
on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

string

User-specified object label. The Tag property provides a means
to 1dentify graphics objects with a user-specified label. This

is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines.

For example, suppose you want to direct all graphics output from
an M-file to a particular axes, regardless of user actions that may

Axes Properties

have changed the current axes. To do this, identify the axes with
a Tag:

axes('Tag', 'Special Axes')

Then make that axes the current axes before drawing by searching
for the Tag with findobj:

axes(findobj('Tag', 'Special Axes'))

TickDir
in | out

Direction of tick marks. For 2-D views, the default is to direct tick
marks inward from the axis lines; 3-D views direct tick marks
outward from the axis line.

TickDirMode
{auto} | manual

Automatic tick direction control. In auto mode, MATLAB directs
tick marks inward for 2-D views and outward for 3-D views. When
you specify a setting for TickDir, MATLAB sets TickDirMode to
manual. In manual mode, MATLAB does not change the specified
tick direction.

TickLength
[2DLength 3DLength]

Length of tick marks. A two-element vector specifying the length
of axes tick marks. The first element is the length of tick marks
used for 2-D views and the second element is the length of tick
marks used for 3-D views. Specify tick mark lengths in units
normalized relative to the longest of the visible x-, y-, or z-axis
annotation lines.

TightInset
[left bottom right top] Read only

2-319

Axes Properties

2-320

Margins added to Position to include text labels. The values of this
property are the distances between the bounds of the Position
property and the extent of the axes text labels and title. When
added to the Position width and height values, the TightInset
defines the tightest bounding box that encloses the axes and it’s
labels and title.

See “Automatic Axes Resize” for more information.

Title

Type

handle of text object

Axes title. The handle of the text object used for the axes title.
You can use this handle to change the properties of the title text
or you can set Title to the handle of an existing text object. For
example, the following statement changes the color of the current
title to red:

set(get(gca, 'Title'), 'Color','r')

To create a new title, set this property to the handle of the text
object you want to use:

set(gca, 'Title',text('String', '‘New Title', 'Color','r'))

However, it is generally simpler to use the title command to
create or replace an axes title:

title('New Title', 'Color','r') % Make text color red
title({'This title','has 2 lines'}) % Two line title

string (read only)
Type of graphics object. This property contains a string that

identifies the class of graphics object. For axes objects, Type is
always set to 'axes"'.

Axes Properties

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the axes. Assign this property the
handle of a uicontextmenu object created in the axes’ parent
figure. Use the uicontextmenu function to create the context
menu. MATLAB displays the context menu whenever you
right-click over the axes.

Units
inches | centimeters | {normalized} | points | pixels
| characters

Axes position units. The units used to interpret the Position
property. MATLAB measures all units from the lower left corner
of the figure window.

Note The Units property controls the positioning of the axes
within the figure. This property does not affect the data units
used for graphing. See the axes XLim, YLim, and ZLim properties
to set the limits of each axis data units.

® normalized units map the lower left corner of the figure
window to (0,0) and the upper right corner to (1.0, 1.0).

® inches, centimeters, and points are absolute units (one point
equals '/, of an inch).

® character uses characters from the default system font to
define units; the width of one character is the width of the letter
x, and the height of one character is the distance between the
baselines of two lines of text.

When specifying the units as property/value pairs during object

creation, you must set the Units property before specifying the
properties that you want to use these units.

2-321

Axes Properties

UserData
matrix

User-specified data. This property can be any data you want
to associate with the axes object. The axes does not use this
property, but you can access it using the set and get functions.

View
Obsolete

The axes camera properties now controls the functionality
provided by the View property — CameraPosition, CameraTarget,
CameraUpVector, and CameraViewAngle. See the view command

Visible
{on} | off

Visibility of axes. By default, axes are visible. Setting this
property to of f prevents axis lines, tick marks, and labels from
being displayed. The Visible property does not affect children
of axes.

XAxisLocation
top | {bottom}

Location of x-axis tick marks and labels. This property controls
where MATLAB displays the x-axis tick marks and labels. Setting
this property to top moves the x-axis to the top of the plot from
its default position at the bottom. This property applies to 2—-D
views only.

YAxisLocation
right | {left}

Location of y-axis tick marks and labels. This property controls
where MATLAB displays the y-axis tick marks and labels. Setting
this property to right moves the y-axis to the right side of the plot
from its default position on the left side. This property applies

2-322

Axes Properties

to 2-D views only. See the plotyy function for a simple way to
use two y-axes.

Properties That Control the X-, Y-, or Z-Axis

XColor

YColor

ZColor
ColorSpec

Color of axis lines. A three-element vector specifying an RGB
triple, or a predefined MATLAB color string. This property
determines the color of the axis lines, tick marks, tick mark
labels, and the axis grid lines of the respective x-, y-, and z-axis.
The default color axis color is black. SeeColorSpec for details on
specifying colors.

XDir

YDir

ZDir
{normal} | reverse

Direction of increasing values. A mode controlling the direction of
increasing axis values. Axes form a right-hand coordinate system.
By default,

e x-axis values increase from left to right. To reverse the
direction of increasing x values, set this property to reverse.

set(gca, 'XDir', 'reverse')
® y-axis values increase from bottom to top (2-D view) or front to

back (3-D view). To reverse the direction of increasing y values,
set this property to reverse.

set(gca, 'YDir', 'reverse')

2-323

Axes Properties

® z-axis values increase pointing out of the screen (2-D view)
or from bottom to top (3-D view). To reverse the direction of
increasing z values, set this property to reverse.

set(gca, 'zZDir', 'reverse’)

XGrid
YGrid
ZGrid
on | {off}

Axis gridline mode. When you set any of these properties to
on, MATLAB draws grid lines perpendicular to the respective
axis (i.e., along lines of constant x, y, or z values). Use the grid
command to set all three properties on or off at once.

set(gca, 'XGrid', 'on')

XLabel
YLabel
ZLabel
handle of text object

Axis labels. The handle of the text object used to label the x-, y-,

or z-axis, respectively. To assign values to any of these properties,
you must obtain the handle to the text string you want to use as a

label. This statement defines a text object and assigns its handle
to the XLabel property:

set(get(gca, 'XLabel'), 'String', 'axis label')

MATLAB places the string 'axis label' appropriately for an

x-axis label and moves any text object whose handle you specify as
an XLabel, YLabel, or ZLabel property to the appropriate location

for the respective label.

2-324

Axes Properties

XLim
YLim
ZLim

Alternatively, you can use the xlabel, ylabel, and zlabel
functions, which generally provide a simpler means to label axis
lines.

Note that using a bitmapped font (e.g., Courier is usually a
bitmapped font) might cause the labels to rotate improperly. As
a workaround, use a TrueType font (e.g., Courier New) for axis
labels. See your system documentation to determine the types of
fonts installed on your system.

[minimum maximum]

Axis limits. A two-element vector specifying the minimum and
maximum values of the respective axis. The data you plot
determines these values.

Changing these properties affects the scale of the x-, y-, or
z-dimension as well as the placement of labels and tick marks on
the axis. The default values for these properties are [0 1].

See the axis, datetick, x1im, ylim, and z1lim commands to set
these properties.

XLimMode
YLimMode
ZLimMode

{auto} | manual

MATLAB or user-controlled limits. The axis limits mode
determines whether MATLAB calculates axis limits based on
the data plotted (i.e., the XData, YData, or ZData of the axes
children) or uses the values explicitly set with the XLim, YLim, or
ZLim property, in which case, the respective limits mode is set
to manual.

2-325

Axes Properties

2-326

XMinorGrid
YMinorGrid
ZMinorGrid

on | {off}

Enable or disable minor gridlines. When set to on, MATLAB
draws gridlines aligned with the minor tick marks of the
respective axis. Note that you do not have to enable minor ticks
to display minor grids.

XMinorTick
YMinorTick
ZMinorTick

on | {off}

Enable or disable minor tick marks. When set to on, MATLAB
draws tick marks between the major tick marks of the respective
axis. MATLAB automatically determines the number of minor
ticks based on the space between the major ticks.

XScale
YScale
ZScale
{linear} | log

Axis scaling. Linear or logarithmic scaling for the respective axis.
See also 1loglog, semilogx, and semilogy.

XTick
YTick
ZTick
vector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine
the location of tick marks along the respective axis. If you do
not want tick marks displayed, set the respective property to
the empty vector, []. These vectors must contain monotonically
increasing values.

Axes Properties

XTickLabel
YTickLabel
ZTickLabel

string

Tick labels. A matrix of strings to use as labels for tick marks
along the respective axis. These labels replace the numeric labels
generated by MATLAB. If you do not specify enough text labels
for all the tick marks, MATLAB uses all of the labels specified,
then reuses the specified labels.

For example, the statement

set(gca, 'XTickLabel',{'One';'Two'; 'Three'; 'Four'})

labels the first four tick marks on the x-axis and then reuses the
labels for the remaining ticks.

Labels can be cell arrays of strings, padded string matrices,
string vectors separated by vertical slash characters, or numeric
vectors (where MATLAB implicitly converts each number to
the equivalent string using num2str). All of the following are
equivalent:

set(gca, 'XTickLabel',{'1';'10';'100'})

(
set(gca, 'XTickLabel','1[10[100")
set(gca, 'XTickLabel',[1;10;100])
set(gca, 'XTickLabel',['1 ';'10 ';'100'])

Note that tick labels do not interpret TeX character sequences
(however, the Title, XLabel, YLabel, and ZLabel properties do).

XTickMode
YTickMode
ZTickMode
{auto} | manual

2-327

Axes Properties

MATLAB or user-controlled tick spacing. The axis tick modes
determine whether MATLAB calculates the tick mark spacing
based on the range of data for the respective axis (auto mode) or
uses the values explicitly set for any of the XTick, YTick, and
ZTick properties (manual mode). Setting values for the XTick,
YTick, or ZTick properties sets the respective axis tick mode to
manual.

XTickLabelMode
YTickLabelMode
ZTickLabelMode

2-328

{auto} | manual

MATLAB or user-determined tick labels. The axis tick mark
labeling mode determines whether MATLAB uses numeric tick
mark labels that span the range of the plotted data (auto mode)
or uses the tick mark labels specified with the XTickLabel,
YTickLabel, or ZTickLabel property (manual mode). Setting
values for the XTickLabel, YTickLabel, or ZTickLabel property
sets the respective axis tick label mode to manual.

axis

Purpose

Syntax

Description

Axis scaling and appearance

axis([xmin xmax ymin ymax])

axis([xmin xmax ymin ymax zmin zmax cmin cmax])
vV = axis

axis auto

axis manual

axis tight

axis fill

axis ij

axis xy

axis equal

axis image

axis square

axis vis3d

axis normal

axis off

axis on

axis(axes_handles,...)
[mode,visibility,direction] = axis('state')

axis manipulates commonly used axes properties. (See Algorithm
section.)

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis
of the current axes.

axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-,
and z-axis limits and the color scaling limits (see caxis) of the current
axes.

v = axis returns a row vector containing scaling factors for the x-, y-,
and z-axis. v has four or six components depending on whether the
current axes is 2-D or 3-D, respectively. The returned values are the
current axes XLim, Y1im, and ZLim properties.

axis auto sets MATLAB default behavior to computie the current axes
limits automatically, based on the minimum and maximum values of
x, y, and z data. You can restrict this automatic behavior to a specific

2-329

axis

2-330

axis. For example, axis 'auto x' computes only the x-axis limits
automatically; axis 'auto yz' computes the y- and z-axis limits
automatically.

axis manual and axis(axis) freezes the scaling at the current limits, so
that if hold is on, subsequent plots use the same limits. This sets the
XLimMode, YLimMode, and ZLimMode properties to manual.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits and PlotBoxAspectRatio so that
the axes fill the position rectangle. This option has an effect only if
PlotBoxAspectRatioMode or DataAspectRatioMode is manual.

axis 1ij places the coordinate system origin in the upper left corner.
The i-axis is vertical, with values increasing from top to bottom. The
j-axis 1s horizontal with values increasing from left to right.

axis xy draws the graph in the default Cartesian axes format with
the coordinate system origin in the lower left corner. The x-axis is
horizontal with values increasing from left to right. The y-axis is
vertical with values increasing from bottom to top.

axis equal sets the aspect ratio so that the data units are the same
in every direction. The aspect ratio of the x-, y-, and z-axis is adjusted
automatically according to the range of data units in the x, y, and z
directions.

axis image is the same as axis equal except that the plot box fits
tightly around the data.

axis square makes the current axes region square (or cubed when
three-dimensional). This option adjusts the x-axis, y-axis, and z-axis so
that they have equal lengths and adjusts the increments between data
units accordingly.

axis vis3d freezes aspect ratio properties to enable rotation of 3-D
objects and overrides stretch-to-fill.

axis normal automatically adjusts the aspect ratio of the axes and the
relative scaling of the data units so that the plot fits the figure’s shape
as well as possible.

axis

Remarks

axis off turns off all axis lines, tick marks, and labels.
axis on turns on all axis lines, tick marks, and labels.

axis(axes_handles,...) applies the axis command to the specified
axes. For example, the following statements

h1 = subplot(221);
h2 subplot (222);
axis([h1 h2], 'square')

set both axes to square.

[mode,visibility,direction] = axis('state') returns three
strings indicating the current setting of axes properties:

Output

Argument | Strings Returned
mode 'auto' | 'manual'
visibility | 'on' | 'off'
direction 'xy' | 'ij"

mode is auto if XLimMode, YLimMode, and ZLimMode are all set to auto. If
XLimMode, YLimMode, or ZLimMode is manual, mode is manual

Keywords to axis can be combined, separated by a space (e.g., axis
tight equal). These are evaluated from left to right, so subsequent
keywords can overwrite properties set by prior ones.

You can create an axes (and a figure for it) if none exists with the axis
command. However, if you specify non-default limits or formatting for
the axes when doing this, such as [4 8 2 9], square, equal, or image,
the property is ignored because there are no axis limits to adjust in the
absence of plotted data. To use axis in this manner, you can set hold
on to keep preset axes limits from being overridden.

2-331

axis

Examples The statements

X = 0:.025:pi/2;
plot(x,tan(x),'-ro")

use the automatic scaling of the y-axis based on ymax = tan(1.57),
which is well over 1000:

1400 T T T T T T T

1200+~ -

1000 - -

BOO]

G600 - —

400 -

200 -

The right figure shows a more satisfactory plot after typing

axis([0 pi/2 0 5])

2-332

axis

g
a 05 1 1.5

Algorithm When you specify minimum and maximum values for the x-, y-, and
z-axes, axis sets the XLim, Y1im, and ZLim properties for the current
axes to the respective minimum and maximum values in the argument
list. Additionally, the XLimMode, YLimMode, and ZLimMode properties for
the current axes are set to manual.

axis auto sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'auto’.

axis manual sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'manual’.

The following table shows the values of the axes properties set by axis
equal, axis normal, axis square, and axis image.

2-333

axis

Axes Property or axis

Behavior axis equal | normal axis square | axis image
DataAspectRatio property | [1 1 1] not set not set [1 1 1]
DataAspectRatioMode manual auto auto manual
property

PlotBoxAspectRatio [3 4 4] not set [1 1 1] auto
property

PlotBoxAspectRatioMode | manual auto manual auto
property

Stretch-to-fill behavior; disabled active disabled disabled

See Also

axes, grid, subplot, x1im, ylim, z1im
Properties of axes graphics objects
“Axes Operations” on page 1-100 for related functions

For aspect ratio behavior, see Related Information in the axes properties
reference page.

2-334

balance

Purpose

Syntax

Description

Remarks

Diagonal scaling to improve eigenvalue accuracy

[T,B] = balance(A)
[S,P,B] = balance(A)

B balance(A)

B = balance(A, 'noperm')

[T,B] = balance(A) returns a similarity transformation T such that
B = T\A*T, and B has, as nearly as possible, approximately equal row
and column norms. T is a permutation of a diagonal matrix whose
elements are integer powers of two to prevent the introduction of
roundoff error. If A is symmetric, then B == A and T is the identity
matrix.

[S,P,B] = balance(A) returns the scaling vector S and the
permutation vector P separately. The transformation T and balanced
matrix B are obtained from A, S, and P by T(:,P) = diag(S) and
B(P,P) = diag(1./S)*A*diag(S).

B

balance (A) returns just the balanced matrix B.

B balance (A, 'noperm') scales A without permuting its rows and
columns.

Nonsymmetric matrices can have poorly conditioned eigenvalues.
Small perturbations in the matrix, such as roundoff errors, can lead to
large perturbations in the eigenvalues. The condition number of the
eigenvector matrix,

cond(V) = norm(V)*norm(inv(V))

where
[V,T] = eig(A)
relates the size of the matrix perturbation to the size of the eigenvalue

perturbation. Note that the condition number of A itself is irrelevant
to the eigenvalue problem.

2-335

balance

Examples

2-336

Balancing is an attempt to concentrate any ill conditioning of the
eigenvector matrix into a diagonal scaling. Balancing usually cannot
turn a nonsymmetric matrix into a symmetric matrix; it only attempts
to make the norm of each row equal to the norm of the corresponding
column.

Note The MATLAB eigenvalue function, eig(A), automatically
balances A before computing its eigenvalues. Turn off the balancing
with eig (A, 'nobalance').

This example shows the basic idea. The matrix A has large elements
in the upper right and small elements in the lower left. It is far from
being symmetric.

A =11 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 *

0.0001 0.0100 1.0000

0.0000 0.0001 0.0100

0.0000 0.0000 0.0001

Balancing produces a diagonal matrix T with elements that are powers
of two and a balanced matrix B that is closer to symmetric than A.

[T,B] = balance(A)

T =
1.0e+03 *
2.0480 0 0
0 0.0320 0
0 0 0.0003
B =

1.0000 1.5625 1.2207
0.6400 1.0000 0.7813
0.8192 1.2800 1.0000

balance

Algorithm

To see the effect on eigenvectors, first compute the eigenvectors of A,
shown here as the columns of V.

[V,E] = eig(A); V

V =
-1.0000 0.9999 0.9937
0.0050 0.0100 -0.1120
0.0000 0.0001 0.0010

Note that all three vectors have the first component the largest. This
indicates V is badly conditioned; in fact cond (V) 1is 8.7766e+003. Next,
look at the eigenvectors of B.

[V,E] = eig(B); V

V =
-0.8873 0.6933 0.0898
0.2839 0.4437 -0.6482
0.3634 0.5679 -0.7561

Now the eigenvectors are well behaved and cond (V) is 1.4421. The ill
conditioning is concentrated in the scaling matrix; cond(T) 1s 8192.

This example is small and not really badly scaled, so the computed
eigenvalues of A and B agree within roundoff error; balancing has little
effect on the computed results.

Inputs of Type Double

For inputs of type double, balance uses the linear algebra package
(LAPACK) routines DGEBAL (real) and ZGEBAL (complex). If you request
the output T, balance also uses the LAPACK routines DGEBAK (real)
and ZGEBAK (complex).

Inputs of Type Single

For inputs of type single, balance uses the LAPACK routines SGEBAL
(real) and CGEBAL (complex). If you request the output T, balance also
uses the LAPACK routines SGEBAK (real) and CGEBAK (complex).

2-337

balance

Limitations

See Also

References

2-338

Balancing can destroy the properties of certain matrices; use it with
some care. If a matrix contains small elements that are due to roundoff
error, balancing might scale them up to make them as significant as the
other elements of the original matrix.

eig

[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, STAM, Philadelphia, 1999.

http://www.netlib.org/lapack/lug/lapack_lug.html

bar, barh

Purpose

GUI
Alternatives

Syntax

Description

Plot bar graph (vertical and horizontal)

o I o

To graph selected variables, use the Plot Selector 7 1in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
graphs in plot edit mode with the Property Editor. For details, see
“Plotting Tools — Interactive Plotting” in the MATLAB Graphics
documentation and “Creating Plots from the Workspace Browser” in the
MATLAB Desktop Tools and Development Environment documentation.

bar(Y)

bar(x,Y)

bar(...,width)
bar(...,'style")
bar(...,'bar_color')
bar(..., 'PropertyName',PropertyValue,...)
bar(axes_handle,...)
barh(axes_handle,...)

h = bar(...)

barh(...)

h = barh(...)

hpatches = bar('vé',...)
hpatches = barh('ve',...)

A bar graph displays the values in a vector or matrix as horizontal
or vertical bars.

bar(Y) draws one bar for each element in Y. If Y is a matrix, bar groups
the bars produced by the elements in each row. The x-axis scale ranges
from 1 up to length(Y) when Y is a vector, and 1 to size(Y,1), which
is the number of rows, when Y is a matrix. The default is to scale the
x-axis to the highest x-tick on the plot, (a multiple of 10, 100, etc.). If

2-339

bar, barh

2-340

you want the x-axis scale to end exactly at the last bar, you can use the
default, and then, for example, type

set(gca, 'xlim',[1 length(Y)])

at the MATLAB prompt.

bar(x,Y) draws a bar for each element in Y at locations specified in
X, where x 1s a vector defining the x-axis intervals for the vertical
bars. The x-values can be nonmonotonic, but cannot contain duplicate
values. If Y is a matrix, bar groups the elements of each row in Y at
corresponding locations in x.

bar(...,width) sets the relative bar width and controls the separation
of bars within a group. The default width is 0.8, so if you do not specify
X, the bars within a group have a slight separation. If width is 1, the
bars within a group touch one another.

bar(...,'style") specifies the style of the bars. 'style' is 'grouped’
or 'stacked'. 'group' is the default mode of display.

® 'grouped' displays m groups of n vertical bars, where m is the
number of rows and n is the number of columns in Y. The group
contains one bar per column in Y.

® 'stacked' displays one bar for each row in Y. The bar height is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

® 'histc' displays the graph in histogram format, in which bars touch
one another.

® 'hist' also displays the graph in histogram format, but centers each
bar over the x-ticks, rather than making bars span x-ticks as the
histc option does.

bar, barh

Note When you use either the hist or histc option, you cannot also
use parameter/value syntax. These two options create graphic objects
that are patches rather than barseries. See “Backward-Compatible
Versions” on page 2-341 for details.

bar(...,'bar_color') displays all bars using the color specified by
the single-letter abbreviation 'r', 'g', 'b', 'c', 'm', 'y', 'k',or 'w'.
bar(...,'PropertyName',PropertyValue,...) set the named

property or properties to the specified values. Properties cannot be
specified when the hist or histc options are used. See the barseries
property descriptions for information on what properties you can set.

bar(axes_handle,...) and barh(axes_handle,...) plot into the
axes with the handle axes_handle instead of into the current axes (gca).

h = bar(...) returns a vector of handles to barseries graphics objects,
one for each created. When Y is a matrix, bar creates one barseries
graphics object per column in Y.

barh(...) and h = barh(...) create horizontal bars. Y determines
the bar length. The vector x is a vector defining the y-axis intervals for
horizontal bars. The x-values can be nonmonotonic, but cannot contain
duplicate values.

Backward-Compatible Versions

hpatches = bar('v6',...) and hpatches = barh('v6',...) return

the handles of patch objects instead of barseries objects for compatibility
with MATLAB 6.5 and earlier. Patch objects are also created when the

hist and histc options are used, even if the V6 option is not. See patch
object properties for a discussion of the properties you can set to control
the appearance of these bar graphs.

2-341

bar, barh

Barseries
Obijects

Examples

2-342

Note The v6 option enables users of MATLAB Version 7.x of to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See

Plot Objects and Backward Compatibility for more information.

Creating a bar graph of an m-by-n matrix creates m groups of n barseries
objects. Each barseries object contains the data for corresponding x
values of each bar group (as indicated by the coloring of the bars).

Note that some barseries object properties set on an individual barseries
object set the values for all barseries objects in the graph. See the
barseries property descriptions for information on specific properties.

Single Series of Data

This example plots a bell-shaped curve as a bar graph and sets the
colors of the bars to red.

X = -2.9:0.2:2.9;
bar(x,exp(-x.*x),'r")

bar, barh

as9

as

arF

4]]

as

a4

03

oz

ad

a
|

-2 -1 a 1

Bar Graph Options

This example illustrates some bar graph options.

Y = round(rand(5,3)*10);
subplot(2,2,1)
bar(Y, 'group')
title 'Group'
subplot(2,2,2)
bar(Y, 'stack"')
title 'Stack'
subplot(2,2,3)
barh(Y, 'stack')
title 'Stack'
subplot(2,2,4)
bar(Y,1.5)

title 'Width = 1.5

2-343

bar, barh

2-344

Group Stack

Width= 1.5

a 5 10 15 20 25 1 2 3 4 5

Setting Properties with Multiobject Graphs

This example creates a graph that displays three groups of bars and
contains five barseries objects. Since all barseries objects in a graph
share the same baseline, you can set values using any barseries object’s
BaseLine property. This example uses the first handle returned in h.

Y = randn(3,5);
h = bar(Y);
set(get(h(1), 'BaseLine'), 'LineWidth',2, 'LineStyle',"':")

colormap summer % Change the color scheme

bar, barh

15 T T T

05]

—-05F -
=1F — —
-15 1 1 1
1 2 3
See Also bar3, ColorSpec, patch, stairs, hist

“Area, Bar, and Pie Plots” on page 1-92 for related functions
Barseries Properties

“Bar and Area Graphs” for more examples

2-345

bar3, bar3h

Purpose

GUI
Alternatives

Syntax

Description

2-346

Plot 3-D bar chart

To graph selected variables, use the Plot Selector " in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs

in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools and Development Environment documentation.

bar3(Y)

bar3(x,Y)
bar3(...,width)
bar3(...,'style")
bar3(...,LineSpec)
bar3(axes_handle,...)
h = bar3(...)
bar3h(...)

h = bar3h(...)

bar3 and bar3h draw three-dimensional vertical and horizontal bar
charts.

bar3(Y) draws a three-dimensional bar chart, where each element in Y
corresponds to one bar. When Y is a vector, the x-axis scale ranges from
1 to length(Y). When Y is a matrix, the x-axis scale ranges from 1 to
size(Y,2), which is the number of columns, and the elements in each
row are grouped together.

bar3(x,Y) draws a bar chart of the elements in Y at the locations
specified in x, where x is a vector defining the y-axis intervals for
vertical bars. The x-values can be nonmonotonic, but cannot contain
duplicate values. If Y is a matrix, bar3 clusters elements from the

bar3, bar3h

same row in Y at locations corresponding to an element in x. Values of
elements in each row are grouped together.

bar3(...,width) sets the width of the bars and controls the separation
of bars within a group. The default width is 0.8, so if you do not specify
X, bars within a group have a slight separation. If width is 1, the bars
within a group touch one another.

bar3(...,'style") specifies the style of the bars. 'style' is
'detached’', 'grouped', or 'stacked'. 'detached' is the default
mode of display.

e 'detached' displays the elements of each row in Y as separate blocks
behind one another in the x direction.

® 'grouped' displays n groups of m vertical bars, where n is the
number of rows and m i1s the number of columns in Y. The group
contains one bar per column in Y.

® 'stacked' displays one bar for each row in Y. The bar height is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

bar3(...,LineSpec) displays all bars using the color specified by
LineSpec.

bar3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = bar3(...) returns a vector of handles to patch graphics objects,
one for each created. bar3 creates one patch object per column in Y.
When Y is a matrix, bar3 creates one patch graphics object per column
Y.

bar3h(...) and h = bar3h(...) create horizontal bars. Y determines
the bar length. The vector x is a vector defining the y-axis intervals
for horizontal bars.

2-347

bar3, bar3h

Examples This example creates six subplots showing the effects of different
arguments for bar3. The data Y is a 7-by-3 matrix generated using
the cool colormap:

Y = co0l(7);
subplot(3,2,1)

bar3(Y, 'detached’)
title('Detached')
subplot(3,2,2)
bar3(Y,0.25, 'detached')
title('Width = 0.25")
subplot(3,2,3)

bar3(Y, 'grouped"')
title('Grouped')
subplot(3,2,4)
bar3(Y,0.5, 'grouped')
title('Width = 0.5")
subplot(3,2,5)

bar3(Y, 'stacked')
title('Stacked')
subplot(3,2,6)
bar3(Y,0.3, 'stacked')
title('Width = 0.3")
colormap([1 0 0;0 1 0;0 0 1])

2-348

bar3, bar3h

Detached Width = 0.25

Width=0.5

Stacked 0 Width= 0.3

2-349

bar3, bar3h

See Also bar, LineSpec, patch
“Area, Bar, and Pie Plots” on page 1-92 for related functions

“Bar and Area Graphs” for more examples

2-350

Barseries Properties

Purpose

Modifying
Properties

Barseries
Property
Descriptions

Define barseries properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for barseries objects.

See “Plot Objects” for more information on barseries objects.

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of barseries objects in legends. The Annotation
property enables you to specify whether this barseries object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the barseries
object is displayed in a figure legend:

IconDispIayStyIé Purpose

Value

on Include the barseries object in a legend as
one entry, but not its children objects

off Do not include the barseries or its children
in a legend (default)

children Include only the children of the barseries as
separate entries in the legend

2-351

Barseries Properties

2-352

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj, 'Annotation');

hLegendEntry = get(hAnnotation, 'LegendInformation');
set (hLegendEntry, 'IconDisplayStyle', 'children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BarLayout

{grouped} | stacked

Specify grouped or stacked bars. Grouped bars display m groups
of n vertical bars, where m is the number of rows and »n is the
number of columns in the input argument Y. The group contains
one bar per column in Y.

Stacked bars display one bar for each row in the input argument
Y. The bar height is the sum of the elements in the row. Each bar
is multicolored, with colors corresponding to distinct elements
and showing the relative contribution each row element makes to
the total sum.

BarWidth

scalar in range [0 1]

Width of individual bars. BarWidth specifies the relative bar
width and controls the separation of bars within a group. The
default width is 0.8, so if you do not specify x, the bars within a
group have a slight separation. If width is 1, the bars within a
group touch one another.

BaselLine

handle of baseline

Barseries Properties

Handle of the baseline object. This property contains the handle of
the line object used as the baseline. You can set the properties of
this line using its handle. For example, the following statements
create a bar graph, obtain the handle of the baseline from the
barseries object, and then set line properties that make the
baseline a dashed, red line.

bar_handle = bar(randn(10,1));
baseline_handle = get(bar_handle, 'BaselLine');
set(baseline_handle, 'LineStyle','--",'Color', 'red")

BaseValue
double: y-axis value

Value where baseline is drawn. You can specify the value along
the y-axis (vertical bars) or x-axis (horizontal bars) at which the
MATLAB software draws the baseline.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in

the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

2-353

Barseries Properties

2-354

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs

at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

e cancel — Discard the event that attempted to execute a second
callback routine.

® queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn

string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

® A string that is a valid MATLAB expression

¢ The name of an M-file

¢ A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

Barseries Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles

property to on:

set (0, 'ShowHiddenHandles', 'on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y, 'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

2-355

Barseries Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use

function handles to define the callback function.

See the BeingDeleted property for related information.
DisplayName

string (default is empty string)

String used by legend for this barseries object. The legend
function uses the string defined by the DisplayName property to
label this barseries object in the legend.

2-356

Barseries Properties

¢ If you specify string arguments with the legend function,
DisplayName is set to this barseries object’s corresponding
string and that string is used for the legend.

e If DisplayName is empty, legend creates a string of the form,
['data' n], where n 1s the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

¢ Ifyou edit the string directly in an existing legend, DisplayName
is set to the edited string.

¢ If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

¢ To add programmatically a legend that uses the DisplayName
string, call 1legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeColor
{[0 0 0]} | none | ColorSpec

Color of line that separates filled areas. You can set the color of
the edges of filled areas to a three-element RGB vector or one of
the MATLAB predefined names, including the string none. The
default edge color is black. See ColorSpec for more information
on specifying color.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

2-357

Barseries Properties

2-358

* normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

®* none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

e xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

® packground — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Barseries Properties

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

e ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

® none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

e flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

HandleVisibility
{on} | callback | off

Contirol access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in

its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

¢ on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions

2-359

Barseries Properties

2-360

invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

e off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, c1f, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Barseries Properties

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest

is of f, clicking this object selects the object below it (which 1s
usually the axes containing it).

HitTestArea
on | {off}
Select barseries object on bars or area of extent. This property
enables you to select barseries objects in two ways:
e Select by clicking bars (default).
¢ Select by clicking anywhere in the extent of the bar graph.
When HitTestArea is off, you must click the bars to select the
barseries object. When HitTestArea is on, you can select the

barseries object by clicking anywhere within the extent of the bar
graph (i.e., anywhere within a rectangle that encloses all the bars).

Interruptible
{on} | off

2-361

Barseries Properties

2-362

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle

-} -17: | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

LineWidth

Specifier

String Line Style

- Solid line (default)

= Dashed line
Dotted line

- Dash-dot line

none No line

scalar

Barseries Properties

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = '/, inch). The default LineWidth is 0.5
points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object

1s selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

ShowBaselLine
{on} | off

2-363

Barseries Properties

Tag

Type

Turn baseline display on or off. This property determines whether
bar plots display a baseline from which the bars are drawn. By
default, the baseline is displayed.

string

User-specified object label. The Tag property provides a means

to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create a barseries object and set the Tag
property:

t = bar(Y,'Tag', 'bar1')

When you want to access the barseries object, you can use findobj
to find the barseries object’s handle. The following statement
changes the FaceColor property of the object whose Tag is bar1.

set(findobj('Tag', 'bart1'), 'FaceColor', 'red')

string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For barseries objects,
Type is hggroup.

The following statement finds all the hggroup objects in the
current axes.

t = findobj(gca, 'Type', "hggroup');

UIContextMenu

2-364

handle of a uicontextmenu object

Barseries Properties

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to of f prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
array

Location of bars. The x-axis intervals for the vertical bars or
y-axis intervals for horizontal bars (as specified by the x input
argument). If YData is a vector, XData must be the same size.
If YData is a matrix, the length of XData must be equal to the
number of rows in YData.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input

2-365

Barseries Properties

2-366

argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource

string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData

scalar, vector, or matrix

Barseries Properties

Bar plot data. YData contains the data plotted as bars (the Y input
argument). Each value in YData is represented by a bar in the bar
graph. If XYData is a matrix, the bar function creates a "group" or
a "stack" of bars for each column in the matrix. See “Bar Graph
Options” in the bar, barh reference page for examples of grouped
and stacked bar graphs.

The input argument Y in the bar function calling syntax assigns
values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-367

base2dec

Purpose
Syntax

Description

Examples

See Also

2-368

Convert base N number string to decimal number

o
I}

base2dec('strn', base)

d base2dec('strn', base) converts the string number strn of the
specified base into its decimal (base 10) equivalent. base must be an
integer between 2 and 36. If 'strn' is a character array, each row is
interpreted as a string in the specified base.

The expression base2dec('212',3) converts 212, to decimal, returning
23.

dec2base

beep

Purpose

Syntax

Description

Produce beep sound

beep

beep on

beep off

s = beep

beep produces your computer’s default beep sound.
beep on turns the beep on.

beep off turns the beep off.

s = beep returns the current beep mode (on or off).

2-369

bench

Purpose MATLAB Benchmark
Syntax bench
bench(N)
bench(0)
t = bench(N)
Description bench times six different MATLAB tasks and compares the execution
speed with the speed of several other computers. The six tasks are:
Test Description Performance Factors
LU Perform LU of a full matrix Floating-point, regular memory access
FFT Perform FFT of a full vector Floating-point, irregular memory access
ODE Solve van der Pol equation with | Data structures and M-files
ODE45
Sparse Solve a symmetric sparse linear | Mixed integer and floating-point
system
2-D Plot Bernstein polynomial graph | 2-D line drawing graphics
3-D Display animated L-shape 3-D animated OpenGL graphics
membrane logo

A final bar chart shows speed, which is inversely proportional to time.
The longer bars represent faster machines, and the shorter bars
represent the slower ones.

bench(N) runs each of the six tasks N times.
bench(0) just displays the results from other machines.

t = bench(N) returns an N-by-6 array with the execution times.

Remarks The comparison data for other computers is stored in the following text
file. Updated versions of this file are available from MATLAB Central:

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=1836&objectType;=Ffile#

2-370

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=1836&objectType;=file#

bench

This benchmark is intended to compare performance of one particular
version of MATLAB on different machines. It does not offer direct
comparisons between different versions of MATLAB. The tasks and
problem sizes change from version to version.

The LU and FFT tasks involve large matrices and long vectors.
Machines with less than 64 megabytes of physical memory or
without optimized Basic Linear Algebra Subprograms may show poor
performance.

The 2-D and 3-D tasks measure graphics performance, including
software or hardware support for OpenGL. The command

OpenGL info

describes the OpenGL support available on a particular machine.

Fluctuations of five or ten percent in the measured times of repeated
runs on a single machine are not uncommon. Your own mileage may
vary.

See Also profile, profsave, mlint, mlintrpt, memory, pack, tic, cputime,
rehash

2-371

besselh

Purpose

Syntax

Definitions

Description

2-372

Bessel function of third kind (Hankel function)

besselh(nu,K,Z)
besselh(nu,Z)
besselh(nu,K,Z,1)
H,ierr] = besselh(...)

— I I I
1]

The differential equation

2
zz—d;; +z%+
dz

where V is a nonnegative constant, is called Bessel’s equation, and its

(2" ~v*)y = 0

solutions are known as Bessel functions. J‘v(z) and ¥ —v (2) form a
fundamental set of solutions of Bessel’s equation for noninteger V.

v (2) is a second solution of Bessel’s equation — linearly independent
of J‘v(z} — defined by

J (z)cos(vr)-J_ (2)

sin(vm)

Ym- [.E } =
The relationship between the Hankel and Bessel functions is

HYz) = J (2)+ i Y (2)

HP(2) = J,(2)- i Y (2)

where J‘u(z) is besselj, and Y‘u(z]is bessely.

(K
H = besselh(nu,K,Z) computes the Hankel function H‘v [2‘], where
K =1 or 2, for each element of the complex array Z. If nu and Z are
arrays of the same size, the result is also that size. If either input is a
scalar, besselh expands it to the other input’s size. If one input is a row

besselh
|

vector and the other 1s a column vector, the result is a two-dimensional
table of function values.

H = besselh(nu,Z) uses K= 1.

(K)
H besselh(nu,K,z,1)saﬂesffv (2) by exp(-i*z) ifK = 1, and by
exp(+i*z) if K = 2.

[H,ierr] = besselh(...) also returns completion flags in an array
the same size as H.

ierr Description

0 besselh successfully computed the Hankel function for
this element.

—_

Illegal arguments.

2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.
Examples This example generates the contour plots of the modulus and phase of

oy
the Hankel function HD (2) shown on page 359 of [1] Abramowitz and
Stegun, Handbook of Mathematical Functions.

It first generates the modulus contour plot
[X,Y] = meshgrid(-4:0.025:2,-1.5:0.025:1.5);

H = besselh(0,1,X+i*Y);
contour(X,Y,abs(H),0:0.2:3.2), hold on

2-373

besselh

15

a5

S\
=S

15 I .
2y 3 i

4] 1 2
then adds the contour plot of the phase of the same function.

contour(X,Y,(180/pi)*angle(H),-180:10:180); hold off

2-374

besselh

15
i i
05f 4
0y 4
—05} .
At .
gl 3 2 A 0 1 2
See Also besselj, bessely, besseli, besselk
References [1] Abramowitz, M., and [.A. Stegun, Handbook of Mathematical

Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965.

2-375

besseli

Purpose

Syntax

Definitions

Description

2-376

Modified Bessel function of first kind

I besseli(nu,Z)
I besseli(nu,Z,1)
[I,ierr] = besseli(...)

The differential equation

2

dy dy
2 + = 2+'2':ﬂ
z_z_dz z (z=+v=)y

where V is a real constant, is called the modified Bessel’s equation, and
its solutions are known as modified Bessel functions.

I W (2) and I -V (2) form a fundamental set of solutions of the modified
Bessel’s equation for noninteger V. £ v (2) 1s defined by

L= (5) ;Ec.

where 1@} is the gamma function.

2.k

5)

ET(V+E+1)

K v (2) is a second solution, independent of I v (= } It can be computed
using besselk.

I = besseli(nu,Z) computes the modified Bessel function of the first

kind, v (z }, for each element of the array Z. The order nu need not be
an integer, but must be real. The argument Z can be complex. The
result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

besseli

I = besseli(nu,Z,1) computes
besseli(nu,Z).*exp(-abs(real(z))).

[I,ierr] = besseli(...) alsoreturns completion flags in an array
the same size as I.

ierr Description

0 besseli successfully computed the modified Bessel
function for this element.

—_

Illegal arguments.

Overflow. Returns Inf.

Some loss of accuracy in argument reduction.

Unacceptable loss of accuracy, Z or nu too large.

a |~ |O(IDN

No convergence. Returns NaN.

Examples Example 1

format long
z = (0:0.2:1)"';

besseli(1,z)

ans =
0
0.10050083402813
0.20402675573357
0.31370402560492
0.43286480262064
0.56515910399249

Example 2

besseli(3:9,(0:.2,10)',1) generates the entire table on page 423 of
[1] Abramowitz and Stegun, Handbook of Mathematical Functions

2-377

besseli

Algorithm

See Also

References

2-378

The besseli functions use a Fortran MEX-file to call a library
developed by D.E. Amos [3] [4].

airy, besselh, besselj, besselk, bessely

[1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

besselj

Purpose

Syntax

Definition

Description

Bessel function of first kind

J besselj(nu,Z)
J besselj(nu,Z,1)
[J,ierr] = besselj(nu,Z)

The differential equation

2
zd—‘; + zj—‘} + (zz—v
dz “

where V is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions.

2
)y =0

J‘u(’z) and J—‘u (2) form a fundamental set of solutions of Bessel’s
equation for noninteger ¥. ¥ v Z)is defined by

2.k

no- 3 5 5

ES0 BT T(vrk+ 1)

where 1(@) is the gamma function.
}Iw(z)i

s a second solution of Bessel’s equation that is linearly
independent of J‘u(z} It can be computed using bessely.

J = besselj(nu,Z) computes the Bessel function of the first kind,

J‘v(z), for each element of the array Z. The order nu need not be an
integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

2-379

besselj

Remarks

Examples

2-380

J = besselj(nu,Z,1) computes
besselj(nu,Z).*exp(-abs(imag(Z))).

[J,ierr] = besselj(nu,Z) also returns completion flags in an array
the same size as J.

ierr Description

0 besselj successfully computed the Bessel function
for this element.

—_

Illegal arguments.

Overflow. Returns Inf.

Some loss of accuracy in argument reduction.

Unacceptable loss of accuracy, Z or nu too large.

a |~ |O(IDN

No convergence. Returns NaN.

The Bessel functions are related to the Hankel functions, also called
Bessel functions of the third kind,

HVY) = J,2)+ i Y (2)

2 .
H,(z) =dJ,(2)-1 Y ,(2)
(K
where H‘u (z}is besselh, J‘u(z]is besselj, and Y‘u(z]is bessely.

The Hankel functions also form a fundamental set of solutions to
Bessel’s equation (see besselh).

Example 1

format long
z = (0:0.2:1)';

besselj(1,2z)

besselj

Algorithm

References

See Also

ans =
0
0.09950083263924
0.19602657795532
0.28670098806392
0.36884204609417
0.44005058574493

Example 2

besselj(3:9,(0:.2:10)"') generates the entire table on page 398 of [1]
Abramowitz and Stegun, Handbook of Mathematical Functions.

The besselj function uses a Fortran MEX-file to call a library
developed by D.E. Amos [3] [4].

[1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National

Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

besselh, besseli, besselk, bessely

2-381

besselk

Purpose

Syntax

Definitions

Description

2-382

Modified Bessel function of second kind

K besselk(nu,Z)
K besselk(nu,Z,1)
[K,ierr] = besselk(...)

The differential equation

2

dy dy
2 + = 2+'2':ﬂ
z_z_dz z (z=+v=)y

where V is a real constant, is called the modified Bessel’s equation, and
its solutions are known as modified Bessel functions.

A solution K‘v (2) of the second kind can be expressed as

ay L_,(2)-1I(2)
K@) = [‘:’ j sin(vm)

where I v (2) and I —‘v(z) form a fundamental set of solutions of the
modified Bessel’s equation for noninteger v

ro=(3) 8, (5)

=0 ErT(v+E+1)

and I'(@)is the gamma function. K‘u (z) is independent of I‘u (z }
I,(z)

can be computed using besseli.

K = besselk(nu,Z) computes the modified Bessel function of the

second kind, **v (E), for each element of the array Z. The order nu need
not be an integer, but must be real. The argument Z can be complex.
The result is real where Z is positive.

besselk
|

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

K = besselk(nu,Z,1) computes besselk(nu,Z).*exp(Z).

[K,ierr] = besselk(...) alsoreturns completion flags in an array
the same size as K.

ierr Description

0 besselk successfully computed the modified Bessel
function for this element.

—_

Illegal arguments.

2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.
Examples Example 1

format long
z = (0:0.2:1)"';

besselk(1,z)

ans =
Inf
4.77597254322047
2.18435442473269
1.30283493976350
0.86178163447218
0.60190723019723

2-383

besselk

Algorithm

References

See Also

2-384

Example 2

besselk(3:9,(0:.2:10)',1) generates part of the table on page 424 of
[1] Abramowitz and Stegun, Handbook of Mathematical Functions.

The besselk function uses a Fortran MEX-file to call a library
developed by D.E. Amos [3][4].

[1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National

Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

airy, besselh, besseli, besselj, bessely

bessely

Purpose

Syntax

Definition

Description

Bessel function of second kind

Y = bessely(nu,Z)
Y = bessely(nu,Z,1)
[Y,ierr] = bessely(nu,Z)

The differential equation

2
zd—‘; + zj—‘} + (zz—v
dz ?

where V is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions.

Y, (2)

2
)y =0

A solution of the second kind can be expressed as

J, (z)cos(vr) —dJ_ (2)

sin(vm)

Y\.- (3 } =
where J‘u(z) and J—‘u (2) form a fundamental set of solutions of
Bessel’s equation for noninteger ¥V

32 k
y s ()
7 k=0 EIT(v+Ek+ D)
Y, (2)

and I'(@) is the gamma function. is linearly independent of

J(2),
Jy(2)

can be computed using besselj.
Y = bessely(nu,Z) computes Bessel functions of the second kind,

Y‘v (2), for each element of the array Z. The order nu need not be an
integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

2-385

bessely

Remarks

2-386

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

Y = bessely(nu,Z,1) computes
bessely(nu,Z).*exp(-abs(imag(Z))).

[Y,ierr] = bessely(nu,Z) also returns completion flags in an array
the same size as Y.

ierr Description

0 bessely successfully computed the Bessel function
for this element.

—_

Illegal arguments.
Overflow. Returns Inf.
Some loss of accuracy in argument reduction.

Unacceptable loss of accuracy, Z or nu too large.

a »~» O DN

No convergence. Returns NaN.

The Bessel functions are related to the Hankel functions, also called
Bessel functions of the third kind,

HVY) = J,2)+ i Y (2)

2 .
H,(z) =dJ,(2)-1 Y ,(2)
(K
where H‘u (2) 1s besselh, J‘u(z]is besselj, and Y‘u (z) is bessely.
The Hankel functions also form a fundamental set of solutions to
Bessel’s equation (see besselh).

bessely

Examples

Algorithm

References

Example 1

format long
z = (0:0.2:1)"';

bessely(1,z)

ans =
-Inf
-3.32382498811185
-1.78087204427005
-1.26039134717739
-0.97814417668336
-0.78121282130029

Example 2

bessely(3:9,(0:.2:10) ') generates the entire table on page 399 of [1]
Abramowitz and Stegun, Handbook of Mathematical Functions.

The bessely function uses a Fortran MEX-file to call a library
developed by D. E Amos [3] [4].

[1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National

Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-387

bessely

See Also besselh, besseli, besselj, besselk

2-388

beta

Purpose
Syntax

Definition

Description

Examples

Beta function
B = beta(Z,W)

The beta function is

L(z)I'(w)

1
= 3—1 w—l =
B(z, w) -[0 tz2-1(1-1t) dt Tz +w)

where 1'(Z) is the gamma function.

B = beta(Z,W) computes the beta function for corresponding elements
of arrays Z and W. The arrays must be real and nonnegative. They must
be the same size, or either can be scalar.

In this example, which uses integer arguments,

beta(n,3)
= (n-1)1*21/(n+2)!
= 2/(n*(n+1)*(n+2))

is the ratio of fairly small integers, and the rational format is able to
recover the exact result.

format rat
beta((0:10)',3)

ans =

1/0
1/3
1/12
1/30
1/60
1/105
1/168
1/252

2-389

beta

1/360

1/495

1/660
Algorithm beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))
See Also betainc, betaln, gammaln

2-390

betainc

Purpose

Syntax

Definition

Description

Incomplete beta function

—
|

= betainc(X,Z,W)
betainc(X,Z,tail)

—
I

The incomplete beta function is

1 X
I (z,w)==——| $z-1p1_#w-1
_1;{) B(z,w)Lt (1-1) dt
where B(2, w), the beta function, is defined as

T(2)(w)

1
= 3—1 w—l =
B(z, w) -[0 t2-1(1-1) dt Tz +)

and I'(2) is the gamma function.

I = betainc(X,Z,W) computes the incomplete beta function for

corresponding elements of the arrays X, Z, and W. The elements of X must
be in the closed interval [0-1] The arrays Z and W must be nonnegative
and real. All arrays must be the same size, or any of them can be scalar.

I = betainc(X,Z,tail) specifies the tail of the incomplete beta
function. Choices are:

'lower' (the default) Computes the integral from 0 to x

"upper' Computes the integral from x to 1

These functions are related as follows:

1-betainc(X,Z,W) = betainc(X,Z,W, 'upper')

Note that especially when the upper tail value is close to 0, it is more
accurate to use the 'upper' option than to subtract the 'lower' value
from 1.

2-391

betainc

Examples format long
betainc(.5,(0:10)"',3)

ans =

.00000000000000
.87500000000000
.68750000000000
.50000000000000
.34375000000000
.22656250000000
.14453125000000
.08984375000000
.05468750000000
.03271484375000
.01928710937500

(el elNelNelNolNelNolNolNoRNoRHS

See Also beta, betaln

2-392

betaln

Purpose
Syntax

Description

Examples

Algorithm

See Also

Logarithm of beta function

-
I}

betaln(z,W)

L = betaln(Z,W) computes the natural logarithm of the beta function
log(beta(z,W)), for corresponding elements of arrays Z and W, without
computing beta(Z,W). Since the beta function can range over very large
or very small values, its logarithm is sometimes more useful.

Z and W must be real and nonnegative. They must be the same size, or
either can be scalar.

x = 510
betaln(x,Xx)

ans =
-708.8616

-708.8616 is slightly less than log(realmin). Computing beta(x,x)
directly would underflow (or be denormal).

betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)

beta, betainc, gammaln

2-393

bicg

Purpose

Syntax

Description

2-394

Biconjugate gradients method

X = bicg(A,b)

bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...
[x,flag,relres,iter] = bicg(A,
[x,flag,relres,iter,resvec] =

)
b,...)
bicg(A,b,...)

X = bicg(A,b) attempts to solve the system of linear equations A*x =
b for x. The n-by-n coefficient matrix A must be square and should be
large and sparse. The column vector b must have length n. A can be

a function handle afun such that afun(x, 'notransp') returns A*x
and afun(x, 'transp') returns A' *x. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parametrizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function afun, as well as the preconditioner function mfun described
below, if necessary.

If bicg converges, it displays a message to that effect. If bicg fails

to converge after the maximum number of iterations or halts for any
reason, it prints a warning message that includes the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

bicg(A,b,tol) specifies the tolerance of the method. If tolis [], then
bicg uses the default, 1e-6.

bicg(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then bicg uses the default, min(n,20).

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use
the preconditioner M or M = M1*M2 and effectively solve the system

bicg

inv(M)*A*x = inv(M)*b for x. If Mis [] then bicg applies
no preconditioner. M can be a function handle mfun such that
mfun(x, 'notransp') returns M\x and mfun(x, 'transp') returns M'\x.

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x01s [],
then bicg uses the default, an all-zero vector.

[x,flag] = bicg(A,b,...) also returns a convergence flag.
Flag Convergence
0 bicg converged to the desired tolerance tol within
maxit iterations.
1 bicg iterated maxit times but did not converge.
2 Preconditioner M was 1ill-conditioned.
3 bicg stagnated. (Two consecutive iterates were the
same.)
4 One of the scalar quantities calculated during bicg

became too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = bicg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flagis 0, relres <= tol.

[x,flag,relres,iter] = bicg(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,...) also returns a
vector of the residual norms at each iteration including norm(b-A*x0).

Examples Example 1
= 100;

n
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);

2-395

bicg

2-396

b = sum(A,2);

tol = 1e-8;

maxit = 15;

M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = bicg(A,b,tol,maxit,M1,M2);

displays this message:

bicg converged at iteration 9 to a solution with relative

residual 5.3e-009

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an

M-file run_bicg that

e (Calls bicg with the function handle @afun as its first argument.

® Contains afun as a nested function, so that all variables in run_bicg

are available to afun.

The following shows the code for run_bicg:

function x1 = run_bicg

n = 100;

on = ones(n,1);

A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);

tol = 1e-8;

maxit = 15;

M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = bicg(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag, 'transp')

y = A'*x

bicg

y =4 7% x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag, 'notransp') % y = A*x
y =4 7% x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end

end
end

When you enter
x1=run_bicg;
MATLAB software displays the message

bicg converged at iteration 9 to a solution with ...
relative residual
5.3e-009

Example 3

This example demonstrates the use of a preconditioner. Start with A
= west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);

You can accurately solve A*x = b using backslash since A is not so
large.

X = A\ b;
norm(b-A*x) / norm(b)

ans =
8.3154e-017

2-397

bicg

Now try to solve A*x = b with bicg.
[x,flag,relres,iter,resvec] = bicg(A,Db)
flag =
relres =

iter =

The value of flag indicates that bicg iterated the default 20 times
without converging. The value of iter shows that the method
behaved so badly that the initial all-zero guess was better than all the
subsequent iterates. The value of relres supports this: relres =
norm(b-A*x)/norm(b) = norm(b)/norm(b) = 1. You can confirm that
the unpreconditioned method oscillates rather wildly by plotting the
relative residuals at each iteration.

semilogy(0:20,resvec/norm(b),"'-0")
xlabel('Iteration Number')
ylabel('Relative Residual')

2-398

bicg

Relative Residual

1
i} 5 10 15 20
[teration Mumber

—_
=]

Now, try an incomplete LU factorization with a drop tolerance of 1e-5
for the preconditioner.

[L1,U1] = luinc(A,1e-5);

Warning: Incomplete upper triangular factor has 1 zero diagonal.
It cannot be used as a preconditioner for an iterative
method.

nnz(A), nnz(L1), nnz(U1)

ans =

1887
ans =

5562
ans =

4320

2-399

bicg

The zero on the main diagonal of the upper triangular U1 indicates that
U1 is singular. If you try to use it as a preconditioner,

[x,flag,relres,iter,resvec] = bicg(A,b,1e-6,20,L1,U1)

flag =

2
relres =

1
iter =

0
resvec =

7.0557e+005

the method fails in the very first iteration when it tries to solve a system
of equations involving the singular U1 using backslash. bicg is forced to
return the initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.
[L2,U2] = luinc(A,1e-6);

nnz(L2), nnz(U2)

ans
6231

ans
4559

This time U2 is nonsingular and may be an appropriate preconditioner.

[x,flag,relres,iter,resvec] = bicg(A,b,1e-15,10,L2,U2)

flag =

0
relres =

2.8664e-016
iter =

2-400

bicg

and bicg converges to within the desired tolerance at iteration number
8. Decreasing the value of the drop tolerance increases the fill-in of the
incomplete factors but also increases the accuracy of the approximation
to the original matrix. Thus, the preconditioned system becomes closer
to inv(U)*inv(L)*L*U*x = inv(U)*inv(L)*b, where L and U are the
true LU factors, and closer to being solved within a single iteration.

The next graph shows the progress of bicg using six different
incomplete LU factors as preconditioners. Each line in the graph is
labeled with the drop tolerance of the preconditioner used in bicg.

e lative residual

1e-10
1 114 1 1 1 1 1
o 1 2 E] 4 5 [7 B
ke ration number
References [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution

of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

2-401

bicg

See Also bicgstab, cgs, gmres, ilu, 1sqr, luinc, minres, pcg, gmr, symmlq,
function_handle (@), mldivide (\)

2-402

bicgstab

Purpose

Syntax

Description

Biconjugate gradients stabilized method

X = bicgstab(A,b)

bicgstab(A,b,tol)

bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)

[x,flag] = bicgstab(A,b,...)

[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

X = bicgstab(A,b) attempts to solve the system of linear equations
A*x=b for x. The n-by-n coefficient matrix A must be square and should
be large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x) returns A*x. See “Function
Handles” in the MATLAB Programming documentation for more
information.

, in the MATLAB Mathematics documentation, explains how to
provide additional parameters to the function afun, as well as the
preconditioner function mfun described below, if necessary.

If bicgstab converges, a message to that effect is displayed. If
bicgstab fails to converge after the maximum number of iterations
or halts for any reason, a warning message is printed displaying the
relative residual norm(b-A*x) /norm(b) and the iteration number at
which the method stopped or failed.

bicgstab(A,b,tol) specifies the tolerance of the method. If tolis [1],
then bicgstab uses the default, 1e-6.

bicgstab(A,b,tol,maxit) specifies the maximum number of
iterations. If maxit is [], then bicgstab uses the default, min(n,20).

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2)
use preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If Mis [] then bicgstab applies no

2-403

bicgstab

2-404

preconditioner. M can be a function handle mfun such that mfun(x)
returns M\ x.

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0
is [], then bicgstab uses the default, an all zero vector.

[x,flag] = bicgstab(A,b,...) also returns a convergence flag.

Flag Convergence

0 bicgstab converged to the desired tolerance tol
within maxit iterations.

1 bicgstab iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicgstab stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during
bicgstab became too small or too large to continue
computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = bicgstab(A,b,...) also returns the relative
residual norm(b-A*x) /norm(b). If flagis O, relres <= tol.

[x,flag,relres,iter] = bicgstab(A,b,...) also returns the
iteration number at which x was computed, where 0 <= iter <= maxit.
iter can be an integer + 0.5, indicating convergence halfway through
an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,...) also returns
a vector of the residual norms at each half iteration, including
norm(b-A*x0).

bicgstab

Example Example 1

This example first solves Ax = b by providing A and the preconditioner
M1 directly as arguments.

A = gallery('wilk',21);

b sum(A,2);

tol = 1e-12;

maxit = 15;

M1 = diag([10:-1:1 1 1:10]);

X = bicgstab(A,b,tol,maxit,M1);
displays the message

bicgstab converged at iteration 12.5 to a solution with relative
residual 6.7e-014

Example 2

This example replaces the matrix A in Example 1 with a handle to a

matrix-vector product function afun, and the preconditioner M1 with a

handle to a backsolve function mfun. The example is contained in an

M-file run_bicgstab that

e (Calls bicgstab with the function handle @afun as its first argument.

e Contains afun and mfun as nested functions, so that all variables in
run_bicgstab are available to afun and mfun.

The following shows the code for run_bicgstab:

function x1 = run_bicgstab

n = 21;

A = gallery('wilk',n);
b = sum(A,2);

tol = 1e-12;

maxit = 15;
M1 diag([10:-1:1 1 1:10]);
x1 bicgstab(@afun,b,tol,maxit,@mfun);

2-405

bicgstab

function y = afun(x)
y = [0; x(1:n-1)] + ...
[((n-1)/2:-1:0)"; (1:(n-1)/2)"'].*x + ...
[x(2:n); O];
end

function y = mfun(r)
y=r ./ [((n-1)/2:-1:1)"; 1; (1:(n-1)/2)"'];
end
end

When you enter

x1 = run_bicgstab;

MATLAB software displays the message

bicgstab converged at iteration 12.5 to a solution with relative
residual 6.7e-014

Example 3

This examples demonstrates the use of a preconditioner. Start with A
= west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = bicgstab(A,b)

flag is 1 because bicgstab does not converge to the default tolerance
1e-6 within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = bicgstab(A,b,1e-6,20,L1,U1)

2-406

bicgstab

flag1 is 2 because the upper triangular U1 has a zero on its diagonal.
This causes bicgstab to fail in the first iteration when it tries to solve
a system such as U1*y = r using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,1e-15,10,L2,U2)

flag2 is 0 because bicgstab converges to the tolerance of 3.1757e-016
(the value of relres?2) at the sixth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(13) = norm(b-A*x2).
You can follow the progress of bicgstab by plotting the relative
residuals at the halfway point and end of each iteration starting from
the initial estimate (iterate number 0).

semilogy(0:0.5:iter2,resvec2/norm(b),"'-0")
xlabel('iteration number')
ylabel('relative residual')

2-407

bicgstab

relaive residual
b

1o e 1 1 1 1 1
0 1 2 2 4 = &

iteration number

References [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] van der Vorst, H.A., "BI-CGSTAB: A fast and smoothly converging

variant of BI-CG for the solution of nonsymmetric linear systems,"
SIAM J. Sci. Stat. Comput., March 1992, Vol. 13, No. 2, pp. 631-644.

See Also bicg, cgs, gmres, 1lsqr, luinc, minres, pcg, qmr, symmlq,
function_handle (@), mldivide (\)

2-408

bin2dec

Purpose
Syntax

Description

Examples

See Also

Convert binary number string to decimal number
bin2dec (binarystr)

bin2dec(binarystr) interprets the binary string binarystr and
returns the equivalent decimal number.

bin2dec ignores any space (' ') characters in the input string.
Binary 010111 converts to decimal 23:

bin2dec('010111")
ans =
23

Because space characters are ignored, this string yields the same result:

bin2dec(' 010 111 ')
ans =
23

dec2bin

2-409

binary

Purpose Set FTP transfer type to binary
Syntax binary (f)
Description binary(f) sets the FTP download and upload mode to binary, which

does not convert new lines, where f was created using ftp. Use this
function when downloading or uploading any nontext file, such as an
executable or ZIP archive.

Examples Connect to the MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /
mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp
function to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /
mode: ascii

Note that the FTP object is now set to ASCII mode.

Use the binary function to set the FTP mode to binary, and use the
disp function to display the FTP object.

binary (tmw)

2-410

binary

disp(tmw)
FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /
mode: binary

Note that the FTP object’s mode is again set to binary.

See Also ftp, ascii

2-411

bitand

Purpose
Syntax

Description

Examples

See Also

2-412

Bitwise AND

o
I}

bitand(A, B)

C bitand(A, B) returns the bitwise AND of arguments A and B,
where A and B are unsigned integers or arrays of unsigned integers.

Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise AND on these numbers
yields 01001, or 9:

C = bitand(uint8(13), uint8(27))
C =
9
Example 2

Create a truth table for a logical AND operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);
TT = bitand(A, B)
T =

0 0

0 1

bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor

bitcmp

Purpose

Syntax

Description

Examples

Bitwise complement

C = bitcmp(A)
C = bitcmp(A, n)
C = bitcmp(A) returns the bitwise complement of A, where A is an

unsigned integer or an array of unsigned integers.

C = bitcmp(A, n) returns the bitwise complement of A as an n-bit
unsigned integer C. Input A may not have any bits set higher than n
(that is, A may not have a value greater than 2°n-1). The value of n can
be no greater than the number of bits in the unsigned integer class of
A. For example, if the class of A is uint32, then n must be a positive
integer less than 32.

Example 1

With eight-bit arithmetic, the one’s complement of 01100011 (decimal
99) 1s 10011100 (decimal 156):

C = bitcmp(uint8(99))
C:
156
Example 2

The complement of hexadecimal A5 (decimal 165) is 5A:

X
X:
165

hex2dec('A5")

dec2hex (bitcmp(x, 8))
ans =
5A

Next, find the complement of hexadecimal 000000A5:

dec2hex(bitcmp(x, 32))

2-413

bitcmp

ans =
FFFFFF5A

See Also bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor

2-414

bitget

Purpose
Syntax

Description

Examples

See Also

Bit at specified position

C

bitget (A, bit)

C bitget (A, bit) returns the value of the bit at position bit in

A. Operand A must be an unsigned integer or an array of unsigned
integers, and bit must be a number between 1 and the number of bits
in the unsigned integer class of A (e.g., 32 for the uint32 class).

Example 1

The dec2bin function converts decimal numbers to binary. However,
you can also use the bitget function to show the binary representation
of a decimal number. Just test successive bits from most to least
significant:

disp(dec2bin(13))
1101

C = bitget(uint8(13), 4:-1:1)
C:
1 1 0 1
Example 2

Prove that intmax sets all the bits to 1:
a = intmax('uint8');
if all(bitget(a, 1:8))
disp('All the bits have value 1.')
end

All the bits have value 1.

bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor

2-415

bitmax

Purpose Maximum double-precision floating-point integer
Syntax bitmax
Description bitmax returns the maximum unsigned double-precision floating-point

integer for your computer. It is the value when all bits are set, namely
53
the value2™ — 1.

Note Instead of integer-valued double-precision variables, use unsigned
integers for bit manipulations and replace bitmax with intmax.

Examples Display in different formats the largest floating point integer and the
largest 32 bit unsigned integer:

format long e

bitmax

ans =
9.007199254740991e+015

intmax('uint32')
ans =
4294967295

format hex

bitmax

ans =
433Fffffffffffff

intmax('uint32')

ans =
frffffff

In the second bitmax statement, the last 13 hex digits of bitmax
are T, corresponding to 52 1’s (all 1’s) in the mantissa of the binary

2-416

bitmax

representation. The first 3 hex digits correspond to the sign bit 0 and
the 11 bit biased exponent 10000110011 in binary (1075 in decimal),
and the actual exponent is (1075-1023) = 52. Thus the binary value of
bitmaxis1.111...111 x 2752 with 52 trailing 1’s, or 2°53-1.

See Also bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

2-417

bitor

Purpose
Syntax

Description

Examples

See Also

2-418

Bitwise OR

C = bitor(A, B)

C bitor (A, B) returns the bitwise OR of arguments A and B, where
A and B are unsigned integers or arrays of unsigned integers.

Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise OR on these numbers
yields 11111, or 31.

C = bitor(uint8(13), uint8(27))
C =
31
Example 2

Create a truth table for a logical OR operation:

A = uint8([0 1; O 1]);
B = uint8([0 0; 1 1]);
TT = bitor (A, B)
1T =

0 1

1 1

bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor

bitset

Purpose

Syntax

Description

Examples

See Also

Set bit at specified position

C = bitset(A, bit)
C = bitset(A, bit, v)
C = bitset(A, bit) sets bit position bit in A to 1 (on). A must be an

unsigned integer or an array of unsigned integers, and bit must be a
number between 1 and the number of bits in the unsigned integer class
of A (e.g., 32 for the uint32 class).

C = bitset(A, bit, v) sets the bit at position bit to the value v,
which must be either O or 1.
Example 1

Setting the fifth bit in the five-bit binary representation of the integer 9
(01001) yields 11001, or 25:

C = bitset(uint8(9), 5)
C:
25
Example 2

Repeatedly subtract powers of 2 from the largest uint32 value:
a = intmax('uint32')
for k = 1:32

a = bitset(a, 32-k+1, 0)
end

bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor

2-419

bitshift

Purpose

Syntax

Description

Examples

2-420

Shift bits specified number of places

C = bitshift(A, k)
C = bitshift(A, k, n)
C = bitshift(A, k) returns the value of A shifted by k bits. Input

argument A must be an unsigned integer or an array of unsigned
integers. Shifting by k is the same as multiplication by 2*k. Negative
values of k are allowed and this corresponds to shifting to the right, or
dividing by 2”abs(k) and truncating to an integer. If the shift causes C
to overflow the number of bits in the unsigned integer class of A, then
the overflowing bits are dropped.

C = bitshift(A, k, n) causes any bits that overflow n bits to be
dropped. The value of n must be less than or equal to the length in bits
of the unsigned integer class of A (e.g., n <= 32 for uint32).

Instead of using bitshift(A, k, 8) or another power of 2 for n,
consider using bitshift(uint8(A), k) or the appropriate unsigned
integer class for A.

Example 1

Shifting 1100 (12, decimal) to the left two bits yields 110000 (48,
decimal).

C = bitshift(12, 2)
C:
48
Example 2

Repeatedly shift the bits of an unsigned 16 bit value to the left until all
the nonzero bits overflow. Track the progress in binary:

a = intmax('uinti16');

disp(sprintf(
'Initial uint16 value %5d is %16s in binary',
a, dec2bin(a)))

bitshift
|

for k = 1:16
a = bitshift(a, 1);
disp(sprintf(
‘Shifted uint16 value %5d is %16s in binary',...
a, dec2bin(a)))
end

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, fix

2-421

bitxor

Purpose
Syntax

Description

Examples

See Also

2-422

Bitwise XOR

o
I}

bitxor (A, B)

C bitxor (A, B) returns the bitwise XOR of arguments A and B,
where A and B are unsigned integers or arrays of unsigned integers.

Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise XOR on these numbers
yields 10110, or 22.

C = bitxor(uint8(13), uint8(27))
C =
22
Example 2

Create a truth table for a logical XOR operation:

A
B

uint8([0 1; 0 11);
uint8([0 0; 1 1]);

TT = bitxor(A, B)
TT

0 1
1 0

bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift

blanks

Purpose
Syntax
Description

Examples

See Also

Create string of blank characters
blanks(n)
blanks(n) is a string of n blanks.

blanks is useful with the display function. For example,

disp(['xxx' blanks(20) 'yyy'l)

displays twenty blanks between the strings 'xxx' and 'yyy"'.

disp(blanks(n)') moves the cursor down n lines.

clc, format, home

2-423

blkdiag

Purpose Construct block diagonal matrix from input arguments
Syntax out = blkdiag(a,b,c,d,...)
Description out = blkdiag(a,b,c,d,...), wherea, b, c, d, ... are matrices,

outputs a block diagonal matrix of the form

a000 0
06000
00c0 0
000d 0
0000 ...

The input matrices do not have to be square, nor do they have to be of
equal size.

See Also diag, horzcat, vertcat

2-424

box

Purpose

Syntax

Description

Algorithm

See Also

Axes border

box on

box off

box
box(axes_handle,...)

box on displays the boundary of the current axes.
box off does not display the boundary of the current axes.
box toggles the visible state of the current axes boundary.

box (axes_handle,...) uses the axes specified by axes_handle instead
of the current axes.

The box function sets the axes Box property to on or off.

axes, grid

“Axes Operations” on page 1-100 for related functions

2-425

break

Purpose
Syntax

Description

Remarks

Examples

See Also

2-426

Terminate execution of for or while loop
break

break terminates the execution of a for or while loop. Statements in
the loop that appear after the break statement are not executed.

In nested loops, break exits only from the loop in which it occurs.
Control passes to the statement that follows the end of that loop.

break is not defined outside a for or while loop. Use return in this
context instead.

The example below shows a while loop that reads the contents of the
file fft.m into a MATLAB character array. A break statement is used
to exit the while loop when the first empty line is encountered. The
resulting character array contains the M-file help for the fft program.

fid = fopen('fft.m','r");
s =""
while ~feof(fid)
line = fgetl(fid);
if isempty(line), break, end
s = strvcat(s,line);
end
disp(s)

for, while, end, continue, return

brighten

Purpose

Syntax

Description

Examples

Algorithm

Brighten or darken colormap

brighten(beta)
brighten(h,beta)

newmap = brighten(beta)
newmap = brighten(cmap,beta)

brighten increases or decreases the color intensities in a colormap.
The modified colormap is brighter if 0 < beta < 1 and darker if 1
< beta < 0.

brighten(beta) replaces the current colormap with a brighter or
darker colormap of essentially the same colors. brighten(beta),
followed by brighten(-beta), where beta < 1, restores the original
map.

brighten(h,beta) brightens all objects that are children of the figure
having the handle h.

newmap = brighten(beta) returns a brighter or darker version of the
current colormap without changing the display.

newmap = brighten(cmap,beta) returns a brighter or darker version
of the colormap cmap without changing the display.

Brighten and then darken the current colormap:

beta = .5; brighten(beta);
beta -.5; brighten(beta);

The values in the colormap are raised to the power of gamma, where
gamma is

1-B, =0
Y= 1
[m, p<0

brighten has no effect on graphics objects defined with true color.

2-427

brighten

See Also colormap, rgbplot
“Color Operations” on page 1-102 for related functions

“Altering Colormaps” for more information

2-428

brush

Purpose

GUI
Alternatives

Syntax

Description

Interactively mark, delete, modify, and save observations in graphs

s |

To turn data brushing on or off, use the Data Brushing tool in
the figure toolbar, the right side of which drops down as a color palette
for changing the current brushing color. For details, see “Marking

Up Graphs with Data Brushing” in the MATLAB Data Analysis
documentation.

brush on

brush off

brush

brush color
brush(figure_handle,...)
brushobj = brush(figure_handle)

Data brushing is a mode for interacting with graphs in figure windows
in which you can click data points or drag a selection rectangle
around data points to highlight observations in a color of your choice.
Highlighting takes different forms for different types of graphs, and
brushing marks persist—even in other interactive modes—until
removed by deselecting them.

brush on turns on interactive data brushing mode.

brush off turns brushing mode off, leaving any brushed observations
still highlighted.

brush by itself toggles the state of the data brushing tool.

brush color sets the current color used for brushing graphics to the
specified ColorSpec. Changing brush color affects subsequent brushing,
but does not change the color of observations already brushed or the
brush tool’s state.

brush(figure_handle,...) applies the function to the specified figure
handle.

brushobj = brush(figure_handle) returns a brush mode object for
that figure, useful for controlling and customizing the figure’s brushing

2-429

brush

Remarks

state. The following properties of such objects can be modified using

get and set:
Enable 'on' | Specifies whether this figure mode is currently
{'off'} enabled on the figure.
FigureHandle The associated figure handle. This property
supports get only.
Color Specifies the color to be used for brushing.

brush cannot return a brush mode object at the same time you are
calling it to set a brushing option.

“Types of Plots You Can Brush” on page 2-430

e “Plot Types You Cannot Brush” on page 2-432

* “Mode Exclusivity and Persistence” on page 2-433

¢ “How Data Linking Affects Data Brushing” on page 2-434
* “Mouse Gestures for Data Brushing” on page 2-435

Types of Plots You Can Brush

Data brushing places lines and patches on plots to create highlighting,
marking different types of graphs as follows (brushing marks are shown
in red):

Graph Type

Brushing Annotation Overlays? | Example

lineseries

those in the lineseries with a marker
distinct from those on the lineseries
(filled circles if none) to identify
brushed vertices. Only those line
segments that connect brushed
vertices are highlighted

Colored lines slightly wider than Y /

2-430

brush

Graph Type | Brushing Annotation Overlays? | Example
scattergroup | Line with LineStyle 'none' and Y O o o
a marker with a color distinct from oo
and slightly larger than the base »]
k ® e o
scattergroup marker. o
i
OO
DO
stemseries The brushed stems and stem heads |Y k
are shaded in the brushing color. s
barseries The interior of selected bars is filled | N
in the brushing color. |I || |I ||
histogram The bars to which brushed N

observations contribute are
proportionately filled from the
bottom up with the brushing color.

2-431

brush

Graph Type | Brushing Annotation Overlays? | Example

areaseries Patches filling the region between N
selected points and the x-axis in the
brushing color.

surfaceplot Patches with edges slightly wider N
than the surfaceplot line width and
with a marker distinct from that of
the surfaceplot (X if none) to identify
brushed vertices. Patches are
plotted only when all four vertices
that define them are brushed. The
brushed observations are the set of
marked vertices, not the patches.

When using the linked plots feature, a graph can become brushed
when you brush another graph that displays some of the same data,
potentially brushing the same observations more than once. The
overlaid brushing marks (whether lines or markers) are slightly wider
than the brushing marks that they overlay; this makes multiply
brushed observations visually distinct. The wider brushing marks are
placed under the narrower ones, so that if they happen to have different
colors, you can see all the colors. See the subsection “How Data Linking
Affects Data Brushing” on page 2-434 for more information about
brushing linked figures.

As the above table indicates, only lineseries, scatterseries, and
stemseries brushing marks can be overlaid in this manner. Although
you can brush them, you cannot overlay brushing marks on areaseries,
barseries, histograms, or surfaceplots.

Plot Types You Cannot Brush

Currently, not all plot types enable data brushing. Graph functions
that do not support brushing are:

2-432

brush

¢ Line plots created with line

e Scatter plots created with spy

® Contour plots created with contour, contourf, or contour3

® Pie charts created with pie or pie3

e Radial graphs created with polar, compass, or rose

¢ Direction graphs created with feather, quiver, or comet

® Area and image plots created with fill, image, imagesc, or pcolor
® Bar graphs created with pareto or errorbar

® Functional plots created with ezcontour or ezcontourf

e 3.D plot types other than plot3, stem3, scatter3, mesh, meshc,

surf, surfl, and surfc

You can use some of these functions to display base data that do not
need to be brushable. For example, use 1line to plot mean y-values as
horizontal lines that you do not need or want to brush.

Mode Exclusivity and Persistence

Data brushing mode is exclusive, like zoom, pan, data cursor, or plot edit
mode. However, brush marks created in data brushing mode persist
through all changes in mode. Brush marks that appear in other graphs
while they are linked via 1inkdata also persist even when data linking
is subsequently turned off. That is, severing connections to a graph’s
data sources does not remove brushing marks from it. The only ways to
remove brushing marks are (in brushing mode):

® Brush an empty area in a brushed graph.

¢ Right-click and select Clear all brushing from the context menu.
Changing the brushing color for a figure does not recolor brushing marks
on it until you brush it again. If you hold down the Shift key, all existing

brush marks change to the new color. All brush marks that appear on
linked plots in the same or different figure also change to the new color

2-433

brush

2-434

if the brushing action affects them. The behavior is the same whether
you select a brushing color from the Brush Tool dropdown palette, set
it by calling brush(colorspec), or by setting the Color property of a
brush mode object (e.g., set(brushobj, 'Color',colorspec).

How Data Linking Affects Data Brushing

When you use the Data Linking tool or call the 1inkdata function,
brushing marks that you make on one plot appear on other plots that
depict the same variable you are brushing—if they are also linked. This
happens even if the affected plot is not in Brushing mode. That is,
brushing marks appear on a linked plot in any mode when you brush
another plot linked to it via a common variable or brush that variable in
the Variable Editor. Two limiting conditions apply, however:

¢ The graph type must support data brushing (see “Types of Plots
You Can Brush” on page 2-430 and “Plot Types You Cannot Brush”
on page 2-432)

¢ The graphed variable should not be complex; if you can plot a complex
variable you can brush it, but such graphs do not respond when you
brush the complex variable in another linked plot.

For more information about linking complex variables, see Example 3
in the linkdata reference page.

Brush marks on a an unlinked graph can change color when data
linking is turned on for that figure. They can, in fact, vanish and

be replaced by marks in the same or different color when the plot
enters a linked state. This happens because in the linked state, the
variables (data sources) are brushed, not just the graphics. If different
observations for the same variable on a linked figure are brushed, those
brushed variables override the brushed graphics on the newly linked
plot. In other words, the newly linked graph loses all its previous brush
marks when it “joins the club” of common data sources.

brush

Mouse Gestures for Data Brushing

You can brush graphs in several ways. The basic operation is to drag
the mouse to highlight all observations within the rectangle you define.
The following table lists data brushing gestures and their effects.

Action Gesture Result

Select data | ROI mouse Region of interest (ROI) rectangle

using a drag (or rectangular prism for 3-D axes)

region of appears during the gesture and

interest all brushable observations within
the rectangle are highlighted. All
other brushing marks in the axes
are removed. The ROI rectangle
disappears when the mouse button is
released.

Select a Single left-click | Produces an equivalent result to

single point

on a graphic
object that
supports data
brushing

ROI rectangle, brushing where the
rectangle encloses only the single
vertex on the graphical object closest
to the mouse. All other brushing
annotations in the figure are removed.

Add a
point to the
selection or

Single left-click
on a graphic
object that

Equivalent brushing by dragging
an ROI rectangle that encloses only
the single vertex on the graphic

remove a supports data | object closest to the mouse. All other
highlighted | brushing, with | brushed regions in the figure remain
one the Shift key | brushed.

down
Select Double All vertices for the graphic object are
all data left-click on brushed.
associated | a graphic object
with a that supports
graphic data brushing
object

2-435

brush

Examples

2-436

Action Gesture Result
Add to or Click or ROI Region of interest grows; all
subtract drag with the unbrushed vertices within the
from region | Shift or Ctrl rectangle become brushed and all
of interest | keys down brushed observations in it become
unbrushed. All brushed vertices
outside the ROI remain brushed.
Copy Drag brushed | Equivalent to copying brushed data
brushed data to another | and pasting into other window or an
data to window or to existing/new variable.
Editor, a program/icon
Command | on the system
Window, desktop
Variable
Editor, or
Workspace
Browser
Example 1

On a scatterplot, drag out a rectangle to brush the graph:

X
y

rand(20,1);
rand(20,1);

scatter(x,y,80,'s")

brush on

brush

0.9

O

0.8 =

a.y

O

06 =

O

0.5

0.4

0.3

] [O O
U2 % 0134to041 v 0212 tol0 536 O
O O

I:I-I 1 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.4 0.6 ar 0.5 0.4 1

Example 2

Brush observations from -.2 to .2 on a lineseries plot in dark red:

X = [-2*%pi:.1:2*pi];
y = sin(x);
plot(x,y);

h = brush;

set(h, 'Color',[.6 .2 .11, 'Enable','on');

2-437

brush

See Also

2-438

0.8

0.6

04

0.2r

linkaxes, linkdata, pan, rotate3d, zoom

bsxfun

Purpose

Syntax

Description

Apply element-by-element binary operation to two arrays with singleton
expansion enabled

C = bsxfun(fun,A,B)

C = bsxfun(fun,A,B) applies an element-by-element binary operation
to arrays A and B, with singleton expansion enabled. fun is a function
handle, and can either be an M-file function or one of the following
built-in functions:

@plus Plus

@minus Minus

@times Array multiply

@rdivide Right array divide

@ldivide Left array divide

@power Array power

@max Binary maximum

@min Binary minimum

@rem Remainder after division
@mod Modulus after division
@atan2 Four quadrant inverse tangent
@hypot Square root of sum of squares
@eq Equal

@ne Not equal

@lt Less than

@le Less than or equal to

@gt Greater than

@ge Greater than or equal to

2-439

bsxfun

Examples

See Also

2-440

@and Element-wise logical AND
@or Element-wise logical OR
@xor Logical exclusive OR

If an M-file function is specified, it must be able to accept either two
column vectors of the same size, or one column vector and one scalar,
and return as output a column vector of the size as the input values.

Each dimension of A and B must either be equal to each other, or equal
to 1. Whenever a dimension of A or B is singleton (equal to 1), the array
is virtually replicated along the dimension to match the other array.
The array may be diminished if the corresponding dimension of the
other array is 0.

The size of the output array C is equal to:
max(size(A),size(B)).*(size(A)>0 & size(B)>0).

In this example, bsxfun is used to subtract the column means from the
corresponding columns of matrix A.

A = magic(5);

A = bsxfun(@minus, A, mean(A))

A =
4 11 -12 -5 2
10 -8 -6 1 3
-9 -7 0 7 9
-3 -1 6 8 -10
-2 5 12 -11 -4

repmat, arrayfun

builddocsearchdb

Purpose
Syntax

Description

Examples

See Also

Build searchable documentation database
builddocsearchdb help_location

builddocsearchdb help_location builds a searchable database

of user-added HTML and related help files in the specified help
location. The help_location argument is the full path to the directory
containing the help files. The database enables the Help browser to
search for content within the help files.

builddocsearchdb creates a directory named helpsearch under
help location. The helpsearch directory contains the search
database files. Add the location of the helpsearch directory to your
info.xml file.

The helpsearch directory works only with the version of MATLAB
software used to create it.

For a full discussion of this process, refer to “Adding HTML Help Files
for Your Own Toolbox”.

Build a search database for the documentation files found at
D:\work\mytoolbox\help.

builddocsearchdb D:\work\mytoolbox\help

doc, help

2-441

builtin

Purpose

Syntax

Description

Remarks

See Also

2-442

Execute built-in function from overloaded method

builtin(function, x1, ..., Xn)
[yl, ..., yn] = builtin(function, x1, ..., Xn)

builtin is used in methods that overload built-in functions to execute
the original built-in function. If function is a string containing the
name of a built-in function, then

builtin(function, x1, ..., xn) evaluates the specified function
at the given arguments x1 through xn. The function argument must
be a string containing a valid function name. function cannot be a
function handle.

[yl, ..., yn] = builtin(function, x1, ..., Xn) returns

multiple output arguments.

builtin(...) is the same as feval(...) except that it calls the original
built-in version of the function even if an overloaded one exists. (For
this to work you must never overload builtin.)

feval

bvpac

Purpose

Syntax

Arguments

Solve boundary value problems for ordinary differential equations

sol = bvp4c(odefun,bcfun,solinit)

sol

solinit =

bvp4c(odefun,bcfun,solinit,options)
bvpinit(x, yinit, params)

odefun

A function handle that evaluates the differential
equations (x,y] It can have the form

dydx = odefun(x,y)
dydx odefun(x,y,parameters)

where x 1s a scalar corresponding to X, and y is a column
vector corresponding to Y. parameters is a vector of
unknown parameters. The output dydx is a column
vector.

bcfun

A function handle that computes the residual in the
boundary conditions. For two-point boundary value
conditions of the form de(y(a), y(b)), bcfun can have
the form

res = bcfun(ya,yb)
res bcfun(ya,yb,parameters)

where ya and yb are column vectors corresponding to

y(a)and ¥(b) parameters is a vector of unknown
parameters. The output res is a column vector.

See “Multipoint Boundary Value Problems” on page
2-446 for a description of bcfun for multipoint boundary
value problems.

solinit

A structure containing the initial guess for a solution.
You create solinit using the function bvpinit. solinit
has the following fields.

2-443

bvpac

X Ordered nodes of the initial mesh.
Boundary conditions are imposed at & =
solinit.x (1) andb=solinit.x(end).

y Initial guess for the solution such that
solinit.y(:,1i) is a guess for the
solution at the node solinit.x(1i).

parameters Optional. A vector that provides an
initial guess for unknown parameters.

The structure can have any name, but the fields must be
named X, y, and parameters. You can form solinit with
the helper function bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create
using the bvpset function. See bvpset for details.

Description sol = bvp4c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

¥ = flx,y)

on the interval [a,b] subject to two-point boundary value conditions

be(y(a), y(b)) =0

odefun and bcfun are function handles. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parametrizing Functions” in the MATLAB mathematics
documentation, explains how to provide additional parameters to the
function odefun, as well as the boundary condition function bcfun, if
necessary.

bvp4c can also solve multipoint boundary value problems. See
“Multipoint Boundary Value Problems” on page 2-446. You can use the
function bvpinit to specify the boundary points, which are stored in
the input argument solinit. See the reference page for bvpinit for
more information.

2-444

bvpac

The bvp4c solver can also find unknown parameters I for problems
of the form

¥ =[xy, p)
0 =be(y(a), y(b), p)

where P corresponds to parameters. You provide bvp4c an initial
guess for any unknown parameters in solinit.parameters. The
bvp4c solver returns the final values of these unknown parameters
in sol.parameters.

bvp4c produces a solution that is continuous on [a,b] and has a
continuous first derivative there. Use the function deval and the
output sol of bvp4c to evaluate the solution at specific points xint in
the interval [a,b].

sxint = deval(sol,xint)

The structure sol returned by bvp4c has the following fields:

sol.x Mesh selected by bvp4c

sol.y Approximation to ¥ (%) at the mesh points of
sol.x

IF .

sol.yp Approximation to ¥ (%) at the mesh points of
sol.x

sol.parameters Values returned by bvp4c for the unknown
parameters, if any

sol.solver ’bvp4c’

The structure sol can have any name, and bvp4c creates the fields x,
y, yp, parameters, and solver.

sol = bvp4c(odefun,bcfun,solinit,options) solves as above with
default integration properties replaced by the values in options, a
structure created with the bvpset function. See bvpset for details.

2-445

bvpac

solinit = bvpinit(x, yinit, params) forms the initial guess solinit
with the vector params of guesses for the unknown parameters.

Singular Boundary Value Problems

bvp4c solves a class of singular boundary value problems, including
problems with unknown parameters p, of the form

Yy =8y /x+f(x, p)
0 = be(y(0),y(b), p)

The interval is required to be [0, b] with b > 0. Often such problems
arise when computing a smooth solution of ODEs that result from
partial differential equations (PDEs) due to cylindrical or spherical
symmetry. For singular problems, you specify the (constant) matrix

S as the value of the 'SingularTerm' option of bvpset, and odefun
evaluates only f(x, y, p). The boundary conditions must be consistent
with the necessary condition * * ¥(0) = 0 and the initial guess should
satisfy this condition.

Multipoint Boundary Value Problems
bvp4c can solve multipoint boundary value problems where

@ =0ap<0y<dg<..<d,= b are boundary points in the interval

[a, b] The points A1 09 -0y represent interfaces that divide
[a, b1into regions. bvp4c enumerates the regions from left to right

(from a to b), with indices starting from 1. In region k&, [a!z - l’ak],
bvp4c evaluates the derivative as

yp = odefun(x, y, k)

In the boundary conditions function

bcfun(yleft, yright)

yleft(:, k) is the solution at the left boundary of [y, _ l*ak]. Similarly,
yright(:, k) is the solution at the right boundary of region k. In
particular,

2-446

bvpac

Examples

yleft(:, 1) = y(a)

and

yright(:, end) = y(b)

When you create an initial guess with

solinit = bvpinit(xinit, yinit),

use double entries in xinit for each interface point. See the reference
page for bvpinit for more information.

If yinit is a function, bvpinit callsy = yinit(x, k) to get an initial
guess for the solution at x in region k. In the solution structure sol
returned by bpv4c, sol.x has double entries for each interface point.
The corresponding columns of sol.y contain the left and right solution
at the interface, respectively.

For an example of solving a three-point boundary value problem, type
threebvp at the MATLAB command prompt to run a demonstration.

Note The bvp5c function is used exactly like bvp4c, with the exception
of the meaning of error tolerances between the two solvers. If S(x)
approximates the solution y(x), bvp4c controls the residual |S'(x) -
f(x,S(x))|. This controls indirectly the true error |y(x) - S(x)|. bvp5c
controls the true error directly. bvp5c is more efficient than bvp4c for
small error tolerances.

Example 1

Boundary value problems can have multiple solutions and one purpose
of the initial guess is to indicate which solution you want. The
second-order differential equation

v'+lyl =0

2-447

bvpac

has exactly two solutions that satisfy the boundary conditions
y(0)y=0
y(4) = -2

Prior to solving this problem with bvp4c, you must write the differential
equation as a system of two first-order ODEs

ilr = X
§2'=-ﬂ§1|

Here¥1 = Y and Y2 = . This system has the required form
¥y o= flxy)

be(y(a),y(b)) =0

The function r and the boundary conditions b€ are coded in MATLAB
software as functions twoode and twobc.

function dydx = twoode(x,y)
dydx = [y(2)
-abs(y(1))]1;
function res = twobc(ya,yb)
res = [ya(1)
yb(1) + 2];

Form a guess structure consisting of an initial mesh of five equally
spaced points in [0,4] and a guess of constant values yqlx)= and
Yolx)= 0 with the command

solinit = bvpinit(linspace(0,4,5),[1 0]);

Now solve the problem with

sol = bvp4c(@twoode,@twobc,solinit);

2-448

bvpac

Evaluate the numerical solution at 100 equally spaced points and plot
V(X) with

X linspace(0,4);
y deval(sol,x);
plot(x,y(1,:));

25 T T T T T T T

=1 -

1.5F .

0.5F .

0 0.5 1 1.5 2 25 3 a5 4

You can obtain the other solution of this problem with the initial guess

solinit = bvpinit(linspace(0,4,5),[-1 0]);

2-449

bvpac

2-450

25 T T T T T T T

-2 05 1 15 2 25 3 35 4
Example 2

This boundary value problem involves an unknown parameter. The task
is to compute the fourth (@ = 5) eigenvalue A of Mathieu’s equation

y'+(A-2qgcos2x)y =0

Because the unknown parameter A is present, this second-order
differential equation is subject to three boundary conditions

y'(0)=10
yi(m) =0
y0) =1

It is convenient to use subfunctions to place all the functions required
by bvp4c in a single M-file.

function mat4bvp

bvpac

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);
sol = bvp4c(@mat4ode,@matdbc,solinit);

fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
sol.parameters)

xint = linspace(0,pi);

Sxint = deval(sol,xint);

plot(xint,Sxint(1,:))

axis([0 pi -1 1.1])

title('Eigenfunction of Mathieu''s equation.')
xlabel('x")

ylabel('solution y')

function dydx = mat4ode(x,y,lambda)
q = 5;
dydx = [y(2)
-(lambda - 2*q*cos(2*x))*y(1) 1;

[»)
T T T e

function res = mat4bc(ya,yb,lambda)
res = [vya(2)

yb(2)

ya(1)-1 1;

[
T T e S

function yinit = mat4init(x)
yinit = [co0s(4*x)
-4*sin(4*x) 1;

The differential equation (converted to a first-order system) and the
boundary conditions are coded as subfunctions mat4ode and mat4bc,
respectively. Because unknown parameters are present, these functions
must accept three input arguments, even though some of the arguments
are not used.

The guess structure solinit is formed with bvpinit. An initial guess
for the solution is supplied in the form of a function mat4init. We chose

2-451

bvpac

¥ = €084X pecause it satisfies the boundary conditions and has the
correct qualitative behavior (the correct number of sign changes). In the
call to bvpinit, the third argument (lambda = 15) provides an initial
guess for the unknown parameter A.

After the problem is solved with bvp4c, the field sol.parameters
returns the value A = 17.097, and the plot shows the eigenfunction
associated with this eigenvalue.

Eigenfunction of Mathieu's equation.

solution y

0 0.5 1 1.5 2 2.5 3
b
Algorithms bvp4c is a finite difference code that implements the three-stage

Lobatto IIla formula. This is a collocation formula and the collocation
polynomial provides a C!-continuous solution that is fourth-order

2-452

bvpac
|

accurate uniformly in [a,b]. Mesh selection and error control are based
on the residual of the continuous solution.

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, “Solving Boundary
Value Problems for Ordinary Differential Equations in MATLAB with
bvp4c,” available at http://www.mathworks.com/bvp_tutorial

See Also function_handle (@), bvp5c,bvpget, bvpinit, bvpset, bvpxtend, deval

2-453

http://www.mathworks.com/bvp_tutorial

bvp5c

Purpose

Syntax

Arguments

2-454

Solve boundary value problems for ordinary differential equations

sol = bvp5c(odefun,bcfun,solinit)

sol
solinit =

bvp5c(odefun,bcfun,solinit,options)
bvpinit(x, yinit, params)

odefun

A function handle that evaluates the differential
equations (x,y] It can have the form

dydx = odefun(x,y)
dydx odefun(x,y,parameters)

where x 1s a scalar corresponding to X, and y is a column
vector corresponding to Y. parameters is a vector of
unknown parameters. The output dydx is a column
vector.

bcfun

A function handle that computes the residual in the
boundary conditions. For two-point boundary value
conditions of the form de(y(a), y(b)), bcfun can have
the form

res = bcfun(ya,yb)
res bcfun(ya,yb,parameters)

where ya and yb are column vectors corresponding to

y(a)and ¥(b) parameters is a vector of unknown
parameters. The output res is a column vector.

solinit

A structure containing the initial guess for a solution.
You create solinit using the function bvpinit. solinit
has the following fields.

X Ordered nodes of the initial mesh.
Boundary conditions are imposed at & =
solinit.x (1) andb=solinit.x(end).

bvp5c

Description

y Initial guess for the solution such that
solinit.y(:,1i) is a guess for the
solution at the node solinit.x(1i).

parameters Optional. A vector that provides an
initial guess for unknown parameters.

The structure can have any name, but the fields must be
named X, y, and parameters. You can form solinit with
the helper function bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create

using the bvpset function. See bvpset for details.

sol = bvp5c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

¥ = flx,y)

on the interval [a,b] subject to two-point boundary value conditions

be(y(a), y(b)) =0

odefun and bcfun are function handles. See “Function Handles” in the
MATLAB Programming documentation for more information.

in the MATLAB mathematics documentation, explains how to provide
additional parameters to the function odefun, as well as the boundary
condition function bcfun, if necessary. You can use the function bvpinit
to specify the boundary points, which are stored in the input argument
solinit. See the reference page for bvpinit for more information.

The bvp5c solver can also find unknown parameters £ for problems
of the form

¥ = flx,y,p)
0 =be(y(a), v(b), p)

2-455

bvp5c

2-456

where P corresponds to parameters. You provide bvp5c an initial
guess for any unknown parameters in solinit.parameters. The
bvp5c solver returns the final values of these unknown parameters
in sol.parameters.

bvp5c produces a solution that is continuous on [a,b] and has a
continuous first derivative there. Use the function deval and the
output sol of bvp5c to evaluate the solution at specific points xint in
the interval [a,b].

sxint = deval(sol,xint)

The structure sol returned by bvp5c has the following fields:

sol.x Mesh selected by bvp5c

sol.y Approximation to ¥ (%) at the mesh points of
sol.x

sol.parameters Values returned by bvp5c for the unknown

parameters, if any
sol.solver ’bvp5c’
The structure sol can have any name, and bvp5c creates the fields x, vy,
parameters, and solver.

sol = bvp5c(odefun,bcfun,solinit,options) solves as above with
default integration properties replaced by the values in options, a
structure created with the bvpset function. See bvpset for details.

solinit = bvpinit(x, yinit, params) forms the initial guess solinit
with the vector params of guesses for the unknown parameters.
Singular Boundary Value Problems

bvp5c solves a class of singular boundary value problems, including
problems with unknown parameters p, of the form

bvp5c

¥y =8-y/x+f(x,y p)

0 = be(y(0),y(b), p)
The interval is required to be [0, b] with b > 0. Often such problems
arise when computing a smooth solution of ODEs that result from
partial differential equations (PDEs) due to cylindrical or spherical
symmetry. For singular problems, you specify the (constant) matrix
S as the value of the 'SingularTerm' option of bvpset, and odefun
evaluates only f(x, y, p). The boundary conditions must be consistent

with the necessary condition S - ¥(0) = 0 and the initial guess should
satisfy this condition.

Multipoint Boundary Value Problems

bvp5c can solve multipoint boundary value problems where

@ =0ap<0)<dg<..<0,= b are boundary points in the interval
[a, b] The points ¥1: @9 --+» @y _ 7 yepresent interfaces that divide
[a, b]into regions. bvp5c enumerates the regions from left to right

(from a to b), with indices starting from 1. In region k, [a!z - 1-,'5!;2],
bvp5c evaluates the derivative as

yp = odefun(x, vy, k)
In the boundary conditions function

bcfun(yleft, yright)

yleft(:, k) is the solution at the left boundary of [k — 1¥&]. Similarly,
yright(:, k) is the solution at the right boundary of region k. In
particular,

yleft(:, 1) = y(a)
and
yright(:, end) = y(b)

When you create an initial guess with

2-457

bvp5c

Algorithms

References

See Also

2-458

solinit = bvpinit(xinit, yinit),

use double entries in xinit for each interface point. See the reference
page for bvpinit for more information.

If yinit is a function, bvpinit callsy = yinit(x, k) to get an initial
guess for the solution at x in region k. In the solution structure sol
returned by bvp5c, sol.x has double entries for each interface point.
The corresponding columns of sol.y contain the left and right solution
at the interface, respectively.

For an example of solving a three-point boundary value problem, type
threebvp at the MATLAB command prompt to run a demonstration.

bvp5c is a finite difference code that implements the four-stage
Lobatto IIIa formula. This is a collocation formula and the collocation
polynomial provides a C'-continuous solution that is fifth-order
accurate uniformly in [a,b]. The formula is implemented as an
implicit Runge-Kutta formula. bvp5c solves the algebraic equations
directly; bvp4c uses analytical condensation. bvp4c handles unknown
parameters directly; while bvp5c augments the system with trivial
differential equations for unknown parameters.

[1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka “Solving Boundary
Value Problems for Ordinary Differential Equations in MATLAB with
bvp4c” http://www.mathworks.com/bvp_tutorial. Note that this
tutorial uses the bvp4c function, however in most cases the solvers can
be used interchangeably.

function_handle (@), bvp4c, bvpget, bvpinit, bvpset, bvpxtend,
deval

http://www.mathworks.com/bvp_tutorial

bvpget

Purpose

Syntax

Description

See Also

Extract properties from options structure created with bvpset

val = bvpget(options, 'name')
val bvpget (options, 'name',default)

val = bvpget(options, 'name') extracts the value of the named
property from the structure options, returning an empty matrix if
the property value is not specified in options. It is sufficient to type
only the leading characters that uniquely identify the property. Case is
ignored for property names. [] is a valid options argument.

val = bvpget(options, 'name',default) extracts the named property
as above, but returns val = default if the named property is not
specified in options. For example,

val = bvpget(opts, 'RelTol',1e-4);
returns val = 1e-4 if the RelTol is not specified in opts.

bvp4c, bvp5c, bvpinit, bvpset, deval

2-459

bvpinit

Purpose

Syntax

Description

2-460

Form initial guess for bvp4c

solinit = bvpinit(x,yinit)

solinit bvpinit(x,yinit,parameters)
(
(

solinit = bvpinit(sol,[anew bnew])
solinit = bvpinit(sol,[anew bnew],parameters)

solinit = bvpinit(x,yinit) forms the initial guess for the boundary
value problem solver bvp4c.

X is a vector that specifies an initial mesh. If you want to solve the

boundary value problem (BVP) on [a, 'b], then specify x (1) as & and

x (end) as b. The function bvp4c adapts this mesh to the solution, so a
guess like xb=nlinspace(a,b,10) often suffices. However, in difficult
cases, you should place mesh points where the solution changes rapidly.
The entries of x must be in

e Increasing order ifa < b

¢ Decreasing order if @ = b

For two-point boundary value problems, the entries of x must be
distinct. That is, if @ < b, the entries must satisfy x (1) < x(2) < ... <
x(end). If @ > b, the entries must satisfy x (1) > x(2) > ... > x(end)

For multipoint boundary value problem, you can specify the points in

[a, B]at which the boundary conditions apply, other than the endpoints
a and b, by repeating their entries in x. For example, if you set

x = [0, 0.5, 1, 1, 1.5, 2];

the boundary conditions apply at three points: the endpoints 0 and

2, and the repeated entry 1. In general, repeated entries represent
boundary points between regions in [2, D] In the preceding example,
the repeated entry 1 divides the interval [0,2] into two regions: [0,1]
and [1,2].

yinit is a guess for the solution. It can be either a vector, or a function:

bvpinit

® Vector — For each component of the solution, bvpinit replicates
the corresponding element of the vector as a constant guess across
all mesh points. That 1s, yinit (i) is a constant guess for the ith
component yinit(i,:) of the solution at all the mesh points in x.

® Function — For a given mesh point, the guess function must return a
vector whose elements are guesses for the corresponding components
of the solution. The function must be of the form

y = guess(x)

where x 1s a mesh point and y is a vector whose length is the same as
the number of components in the solution. For example, if the guess
function is an M-file function, bvpinit calls

y(:,3) = guess(x(j))

at each mesh point.

For multipoint boundary value problems, the guess function must
be of the form

y = guess(x, k)

where y an initial guess for the solution at x in region k. The function
must accept the input argument k, which is provided for flexibility
in writing the guess function. However, the function is not required
to use k.

solinit = bvpinit(x,yinit,parameters) indicates that the
boundary value problem involves unknown parameters. Use the vector
parameters to provide a guess for all unknown parameters.

solinit is a structure with the following fields. The structure can have
any name, but the fields must be named x, y, and parameters.

2-461

bvpinit

See Also

2-462

X Ordered nodes of the initial mesh.

y Initial guess for the solution with solinit.y(:,1i)
a guess for the solution at the node solinit.x(i).

parameters Optional. A vector that provides an initial guess
for unknown parameters.

solinit = bvpinit(sol,[anew bnew]) forms an initial guess on

the interval [anew bnew] from a solution sol on an interval [a, Iir3].
The new interval must be larger than the previous one, so either
anew <= a <b <= bnewor anew >= @ > b >= bnew. The solution sol is
extrapolated to the new interval. If sol contains parameters, they are
copied to solinit.

solinit = bvpinit(sol,[anew bnew],parameters) forms solinit
as described above, but uses parameters as a guess for unknown
parameters in solinit.

@ (function_handle), bvp4c,bvp5c, bvpget, bvpset, bvpxtend, deval

bvpset

Purpose

Syntax

Description

BVP
Properties

Create or alter options structure of boundary value problem

options = bvpset('namel',valuel, 'name2',value2,...)

options = bvpset(oldopts, 'namel’',valuel,...)

options = bvpset(oldopts,newopts)

bvpset

options = bvpset('namel’',valuel, 'name2',value2,...) creates a

structure options that you can supply to the boundary value problem
solver bvp4c, in which the named properties have the specified
values. Any unspecified properties retain their default values. For

all properties, it is sufficient to type only the leading characters that
uniquely identify the property. bvpset ignores case for property names.

options = bvpset(oldopts, 'namel',valuel,...) alters an existing
options structure oldopts. This overwrites any values in oldopts that
are specified using name/value pairs and returns the modified structure
as the output argument.

options = bvpset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any values
set in newopts overwrite the corresponding values in oldopts.

bvpset with no input arguments displays all property names and their
possible values, indicating defaults with braces {}.

You can use the function bvpget to query the options structure for the

value of a specific property.

bvpset enables you to specify properties for the boundary value problem
solver bvp4c. There are several categories of properties that you can set:
® “Error Tolerance Properties” on page 2-464

® “Vectorization” on page 2-465

e “Analytical Partial Derivatives” on page 2-466

® “Singular BVPs” on page 2-469

2-463

bvpset

2-464

e “Mesh Size Property” on page 2-469
® “Solution Statistic Property” on page 2-470

Error Tolerance Properties

Because bvp4c uses a collocation formula, the numerical solution

is based on a mesh of points at which the collocation equations are

satisfied. Mesh selection and error control are based on the residual of

this solution, such that the computed solution S(x)is the exact solution
S'(x) = f(x,S(x))+res(x)

of a perturbed problem ! . On each

subinterval of the mesh, a norm of the residual in the ith component
of the solution, res (i), is estimated and is required to be less than or
equal to a tolerance. This tolerance is a function of the relative and
absolute tolerances, RelTol and AbsTol, defined by the user.

|[(res(i)/max(abs(f(i)),AbsTol(i)/RelTol))|| < RelTol

The following table describes the error tolerance properties.

bvpset

BVP Error Tolerance Properties

Property | Value Description

RelTol Positive A relative error tolerance that applies to all
scalar components of the residual vector. It is a
{1e-3} measure of the residual relative to the size

of F (%, 3] The default, 1e-3, corresponds
to 0.1% accuracy.

The computed solution S(x) is the exact
solution of S (x) = F(x, S(x))+ res(x),
On each subinterval of the mesh, the
residual T8 (X) satisfies

[|(res(1)/max (abs (F(1)), AbsT ol(1)/RelTol))| < RelTol

AbsTol Positive Absolute error tolerances that apply to the
scalar or | corresponding components of the residual
vector vector. AbsTol (i) is a threshold below
{1e-6} which the values of the corresponding

components are unimportant. If a
scalar value is specified, it applies to all
components.

Vectorization

The following table describes the BVP vectorization property.
Vectorization of the ODE function used by bvp4c differs from the
vectorization used by the ODE solvers:

® For bvp4c, the ODE function must be vectorized with respect to the
first argument as well as the second one, so that F([x1 x2 ...],[y1
y2 ...]) returns [F(x1,y1) F(x2,y2)...].

® bvp4c benefits from vectorization even when analytical Jacobians
are provided. For stiff ODE solvers, vectorization is ignored when
analytical Jacobians are used.

2-465

bvpset

2-466

Vectorization Properties

Property

Value

Description

Vectorized

on | {off}

Set on to inform bvp4c that you have
coded the ODE function F so that
F([x1 x2 ...]1,[y1l y2 ...]) returns
[F(x1,y1) F(x2,y2) ...]. That

1s, your ODE function can pass to

the solver a whole array of column
vectors at once. This enables the
solver to reduce the number of function
evaluations and may significantly
reduce solution time.

With the MATLAB array notation, it
1s typically an easy matter to vectorize
an ODE function. In the shockbvp
example shown previously, the
shockODE function has been vectorized
using colon notation into the subscripts
and by using the array multiplication
(.*) operator.

function dydx = shockODE(x,y,e)
pix = pi*x;

dydx = [y(2,:)...
-x/e.*y(2,:)-pi*2*cos(pix) -
pix/e.*sin(pix)];

Analytical Partial Derivatives

By default, the bvp4c solver approximates all partial derivatives with
finite differences. bvp4c can be more efficient if you provide analytical

partial derivatives af ! a:"' of the differential equations, and analytical
partial derivatives, aﬁﬂfaj'ﬂ and af}c‘faj'b’ of the boundary
conditions. If the problem involves unknown parameters, you must

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/colon.html
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/arithmeticoperators.html

bvpset

also provide partial derivatives, af 4 ap and dbe/ ap, with respect
to the parameters.

The following table describes the analytical partial derivatives
properties.

2-467

bvpset

2-468

BVP Analytical Partial Derivative Properties

Property

Value

Description

FJacobian

Function
handle

Handle to a function that computes
the analytical partial derivatives
Of.r f(x,¥). When solving

yio= filx,y :', set this property
to @fjac if dfdy = fjac(x,z))
evaluates the Jacobian af ! Al

If the problem involves unknown
parameters &, [dfdy,dfdp] =
fjac(x,y,p) must also return

the partial derivativeaf s ap. For
problems with constant partial
derivatives, set this property to
the value of dfdy or to a cell array
{dfdy,dfdp}.

See “Function Handles” in
the MATLAB Programming
documentation for more
information.

BCJacobian

Function
handle

Handle to a function that
computes the analytical partial
derivatives of De(ya, yb),

For boundary conditions

be(va, vb), set this property

to @bcjac if [dbcdya,dbcdyb]

= bcjac(ya,yb) evaluates the
partial derivatives bes a.}'ﬂ,
and abc-‘fa.}'b. If the problem
involves unknown parameters

P [dbcdya,dbcdyb,dbcdp] =
bcjac(ya,yb,p) must also return
the partial derivative dbe/dp.
For problems with constant partial
derivatives, set this property to

a cell array {dbcdya,dbcdyb} or
{dbcdya,dbcdyb,dbcdp}.

bvpset

Singular BVPs

bvp4c can solve singular problems of the form
] r — S ‘E L1l
Vi = 8T +f(x, p)

posed on the interval [0, b]where b > 0. For such problems, specify
the constant matrix S as the value of SingularTerm. For equations
of this form, odefun evaluates only the flx,v, p) term, where I
represents unknown parameters, if any.

Singular BVP Property

Property Value Description
SingularTerm Constant Singular term of singular BVPs.
matrix Set to the constant matrix & for

equations of the form
. _ gy .
vi = 8T+ (xy,p)

posed on the interval [0, b]
where b = 0.

Mesh Size Property

bvp4c solves a system of algebraic equations to determine the numerical
solution to a BVP at each of the mesh points. The size of the algebraic
system depends on the number of differential equations (n) and the
number of mesh points in the current mesh (N). When the allowed
number of mesh points is exhausted, the computation stops, bvp4c
displays a warning message and returns the solution it found so far.
This solution does not satisfy the error tolerance, but it may provide an
excellent initial guess for computations restarted with relaxed error
tolerances or an increased value of NMax.

The following table describes the mesh size property.

2-469

bvpset

BVP Mesh Size Property

Property

Value

Description

NMax

positive integer
{floor(1000/n)}

Maximum number of mesh
points allowed when solving
the BVP, where n is the number
of differential equations in the
problem. The default value

of NMax limits the size of the
algebraic system to about 1000
equations. For systems of a
few differential equations, the
default value of NMax should be
sufficient to obtain an accurate
solution.

Solution Statistic Property

The Stats property lets you view solution statistics.

The following table describes the solution statistics property.

2-470

bvpset

Example

See Also

BVP Solution Statistic Property

Property Value Description

Stats on | {off} Specifies whether statistics about
the computations are displayed.

If the stats property is on, after
solving the problem, bvp4c displays:

® The number of points in the mesh

¢ The maximum residual of the
solution

® The number of times it called
the differential equation function
odefun to evaluate f (X, ¥)

® The number of times it called
the boundary condition
function bcfun to evaluate

be(y(a),y(b))

To create an options structure that changes the relative error tolerance
of bvp4c from the default value of 1e-3 to 1e-4, enter

options = bvpset('RelTol', 1e-4);

To recover the value of 'RelTol' from options, enter
bvpget (options, 'RelTol')
ans =

1.0000e-004

@ (function_handle), bvp4c,bvp5c, bvpget, bvpinit, deval

2-471

bvpxtend

Purpose

Syntax

Description

See Also

2-472

Form guess structure for extending boundary value solutions

solinit = bvpxtend(sol,xnew,ynew)
solinit = bvpxtend(sol,xnew,extrap)
solinit = bvpxtend(sol,xnew)

solinit = bvpxtend(sol,xnew,ynew,pnew)
solinit = bvpxtend(sol,xnew,extrap,pnew)

solinit = bvpxtend(sol,xnew,ynew) uses solution sol computed on
[a,b] to form a solution guess for the interval extended to xnew. The

extension point xnew must be outside the interval [a,b], but on either
side. The vector ynew provides an initial guess for the solution at xnew.

solinit = bvpxtend(sol,xnew,extrap) forms the guess at xnew by
extrapolating the solution sol. extrap is a string that determines the
extrapolation method. extrap has three possible values:

e 'constant' — ynew is a value nearer to end point of solution in sol.

e 'linear' — ynew is a value at xnew of linear interpolant to the value
and slope at the nearer end point of solution in sol.

e 'solution' — ynew is the value of (cubic) solution in sol at xnew.

The value of extrap is case-insensitive and only the leading, unique
portion needs to be specified.

solinit = bvpxtend(sol,xnew) uses the extrapolating solution where
extrap is 'constant'. If there are unknown parameters, values
present in sol are used as the initial guess for parameters in solinit.

solinit = bvpxtend(sol,xnew,ynew,pnew) specifies a different guess
pnew. pnew can be used with extrapolation, using the syntax solinit

= bvpxtend(sol,xnew,extrap,pnew). To modify parameters without
changing the interval, use [] as place holder for xnew and ynew.

bvp4c, bvp5c, bvpinit

calendar

Purpose

Syntax

Description

Examples

See Also

Calendar for specified month

¢ = calendar
calendar(d)
¢ = calendar(y, m)

o
I}

¢ = calendar returns a 6-by-7 matrix containing a calendar for the
current month. The calendar runs Sunday (first column) to Saturday.

¢ = calendar(d), where d is a serial date number or a date string,
returns a calendar for the specified month.

¢ = calendar(y, m), where y and m are integers, returns a calendar
for the specified month of the specified year.

The command

calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

Oct 1957
S M Tu W Th F S
0 0 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 0 0
0 0 0 0 0 0 0
datenum

2-473

calllib

Purpose

Syntax

Description

2-474

Call function in shared library

[x1, ..., XN]
argN)

calllib('libname', 'funcname', argil, ...,

[x1, ..., XN] calllib('libname', 'funcname', argt, ...,
argN) calls the function funcname in library libname, passing input
arguments arg1 through argN. calllib returns output values obtained
from function funcname in x1 through XN.

If you used an alias when initially loading the library, then you must
use that alias for the 1ibname argument.

Ways to Call calllib

The following examples show ways calls to calllib. By using
libfunctionsview, you determined that the addStructByRef function
in the shared library shrlibsample requires a pointer to a ¢_struct
data type as its argument.

Load the library:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

Create a MATLAB structure:
struct.p1 = 4; struct.p2 = 7.3; struct.p3 = -290;
Use libstruct to create a C structure of the proper type (c_struct):

[res,st] = calllib('shrlibsample', 'addStructByRef',...
libstruct('c_struct',struct));

Let MATLAB convert struct to the proper type of C structure:
[res,st] = calllib('shrlibsample', 'addStructByRef',struct);

Pass an empty array to libstruct and assign the values from your
C function:

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/loadlibrary.html

calllib

Examples

See Also

[res,st] = calllib('shrlibsample', 'addStructByRef',...
libstruct('c_struct',[]1));

Let MATLAB create the proper type of structure and assign values
from your C function:

[res,st] = calllib('shrlibsample', 'addStructByRef',[]);

Remove the library from memory:

unloadlibrary shrlibsample

To call functions in the MATLAB libmx library, see “Invoking Library
Functions”.

loadlibrary, libfunctions, 1libfunctionsview, unloadlibrary

See Passing Arguments for information on defining the correct data
types for library function arguments.

2-475

callSoapService

Purpose Send SOAP message off to endpoint
Syntax callSoapService(endpoint, soapAction, message)
Description callSoapService(endpoint, soapAction, message) sends message,

a Sun Java document object model (DOM), to the soapAction service
at the endpoint.

See Also createClassFromWsdl, CreateSoapMessage, parseSoapResponse

2-476

camdolly

Purpose

Syntax

Description

Move camera position and target

camdolly(dx,dy,dz)

camdolly(dx,dy,dz, 'targetmode')
camdolly(dx,dy,dz, 'targetmode', 'coordsys"')
camdolly(axes_handle,...)

camdolly moves the camera position and the camera target by the
specified amounts.

camdolly(dx,dy,dz) moves the camera position and the camera target
by the specified amounts (see Coordinate Systems).

camdolly(dx,dy,dz, 'targetmode') The targetmode argument can
take on two values that determine how the camera moves:

* movetarget (default) — Move both the camera and the target.

e fixtarget — Move only the camera.

camdolly(dx,dy,dz, 'targetmode', 'coordsys') The coordsys

argument can take on three values that determine how the MATLAB
software interprets dx, dy, and dz:

Coordinate Systems

e camera (default) — Move in the camera’s coordinate system. dx
moves left/right, dy moves down/up, and dz moves along the viewing
axis. The units are normalized to the scene.

For example, setting dx to 1 moves the camera to the right, which
pushes the scene to the left edge of the box formed by the axes
position rectangle. A negative value moves the scene in the other
direction. Setting dz to 0.5 moves the camera to a position halfway
between the camera position and the camera target.

® pixels — Interpret dx and dy as pixel offsets. dz is ignored.

® data — Interpret dx, dy, and dz as offsets in axes data coordinates.

2-477

camdolly

Remarks

Examples

See Also

2-478

camdolly(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camdolly operates on the current axes.

camdolly sets the axes CameraPosition andCameraTarget properties,
which in turn causes the CameraPositionMode and CameraTargetMode
properties to be set to manual.

This example moves the camera along the x- and y-axes in a series of
steps.

surf (peaks)

axis vis3d

t = 0:pi/20:2*pi;

dx = sin(t)./40;

dy = cos(t)./40;

for i = 1:1length(t);
camdolly(dx(i),dy(i),0)
drawnow

end

axes, campos, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

See “Defining Scenes with Camera Graphics” for more information on
camera properties.

cameratoolbar

Purpose

Syntax

Description

Control camera toolbar programmatically

cameratoolbar
cameratoolbar('NoReset')
cameratoolbar('SetMode' ,mode)
cameratoolbar('SetCoordSys',coordsys)
cameratoolbar('Show')

cameratoolbar('Toggle')
cameratoolbar('ResetCameraAndSceneLight')
cameratoolbar('ResetCamera')
cameratoolbar('ResetSceneLight')
cameratoolbar('ResetTarget')

mode = cameratoolbar('GetMode')
paxis = cameratoolbar('GetCoordsys')
vis = cameratoolbar('GetVisible')
cameratoolbar(fig,...)

h = cameratoolbar
cameratoolbar('Close"')

(
(
(
(
cameratoolbar('Hide')
(
(
(
(

cameratoolbar creates a new toolbar that enables interactive
manipulation of the axes camera and light when users drag the mouse
on the figure window. Several axes camera properties are set when
the toolbar is initialized.

cameratoolbar('NoReset') creates the toolbar without setting any
camera properties.

cameratoolbar('SetMode' ,mode) sets the toolbar mode (depressed
button). mode can be 'orbit', 'orbitscenelight', 'pan', 'dollyhv'
'dollyfb', 'zoom', 'roll', 'nomode'. For descriptions of the various
modes, see “Camera Toolbar” in the MATLAB 3-D Visualization User’s
Guide. You can also set these modes using the toolbar, by clicking on
the respective buttons.

cameratoolbar('SetCoordSys',coordsys) sets the principal axis of
the camera motion. coordsys can be: 'x', 'y', 'z', 'none’.

cameratoolbar('Show') shows the toolbar on the current figure.

2-479

cameratoolbar

cameratoolbar('Hide') hides the toolbar on the current figure.
cameratoolbar('Toggle') toggles the visibility of the toolbar.

cameratoolbar('ResetCameraAndSceneLight') resets the current
camera and scenelight.

cameratoolbar('ResetCamera') resets the current camera.
cameratoolbar('ResetSceneLight') resets the current scenelight.
cameratoolbar('ResetTarget') resets the current camera target.
mode = cameratoolbar('GetMode') returns the current mode.

paxis = cameratoolbar('GetCoordsys') returns the current
principal axis.

vis = cameratoolbar('GetVisible') returns the visibility of the
toolbar (1 if visible, 0 if not visible).

cameratoolbar(fig,...) specifies the figure to operate on by passing
the figure handle as the first argument.

h = cameratoolbar returns the handle to the toolbar.
cameratoolbar('Close') removes the toolbar from the current figure.

Note that, in general, the use of OpenGL hardware improves rendering
performance.

See Also rotate3d, zoom

“Camera Toolbar”

2-480

camlight

Purpose

Syntax

Description

Remarks

Create or move light object in camera coordinates

camlight('headlight')
camlight('right")
camlight('left')

camlight
camlight(az,el)
camlight(...,'style')

camlight(light_handle,...)

light_handle = camlight(...)

camlight('headlight') creates a light at the camera position.
camlight('right') creates a light right and up from camera.
camlight('left') creates a light left and up from camera.
camlight with no arguments is the same as camlight('right').

camlight(az,el) creates a light at the specified azimuth (az) and
elevation (el) with respect to the camera position. The camera target is
the center of rotation and az and el are in degrees.

camlight(..., 'style') The style argument can take on two values:

¢ local (default) — The light is a point source that radiates from the
location in all directions.

e infinite — The light shines in parallel rays.

camlight(light_handle,...) uses the light specified in

light_handle.

light handle = camlight(...) returns the light’s handle.

camlight sets the light object Position and Style properties. A light

created with camlight will not track the camera. In order for the light

to stay in a constant position relative to the camera, you must call
camlight whenever you move the camera.

2-481

camlight

Examples This example creates a light positioned to the left of the camera and
then repositions the light each time the camera is moved:

surf (peaks)

axis vis3d

h = camlight('left"');

for i = 1:20;
camorbit(10,0)
camlight(h, 'left"')
drawnow;

end

See Also light, lightangle
“Lighting” on page 1-105 for related functions

“Lighting as a Visualization Tool” for more information on using lights

2-482

camlookat

Purpose

Syntax

Description

Remarks

Examples

Position camera to view object or group of objects

camlookat(object_handles)
camlookat (axes_handle)
camlookat

camlookat(object handles) views the objects identified in the vector
object_handles. The vector can contain the handles of axes children.

camlookat (axes_handle) views the objects that are children of the
axes identified by axes_handle.

camlookat views the objects that are in the current axes.

camlookat moves the camera position and camera target while
preserving the relative view direction and camera view angle. The
object (or objects) being viewed roughly fill the axes position rectangle.

camlookat sets the axes CameraPosition and CameraTarget properties.

This example creates three spheres at different locations and then
progressively positions the camera so that each sphere is the object
around which the scene is composed:

[Xx y z] = sphere;

s1 = surf(x,y,z);

hold on

s2 = surf(x+3,y,z+3);

s3 = surf(x,y,z+6);

daspect([1 1 1])

view(30,10)

camproj perspective

camlookat(gca) % Compose the scene around the current axes
pause(2)

camlookat(s1) % Compose the scene around sphere si
pause(2)

camlookat(s2) % Compose the scene around sphere s2
pause(2)

2-483

camlookat

camlookat(s3) % Compose the scene around sphere s3
pause(2)
camlookat(gca)
See Also campos, camtarget
“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-484

camorbit

Purpose

Syntax

Description

Examples

Rotate camera position around camera target

camorbit(dtheta,dphi)

camorbit(dtheta,dphi, 'coordsys')
camorbit(dtheta,dphi, 'coordsys', 'direction')
camorbit(axes_handle,...)

camorbit(dtheta,dphi) rotates the camera position around the camera
target by the amounts specified in dtheta and dphi (both in degrees).
dtheta is the horizontal rotation and dphi is the vertical rotation.

camorbit(dtheta,dphi, 'coordsys') The coordsys argument
determines the center of rotation. It can take on two values:

¢ data (default) — Rotate the camera around an axis defined by the
camera target and the direction (default is the positive z direction).

e camera — Rotate the camera about the point defined by the camera
target.

camorbit(dtheta,dphi, 'coordsys', 'direction') The direction
argument, in conjunction with the camera target, defines the axis

of rotation for the data coordinate system. Specify direction as a
three-element vector containing the x, y, and z components of the
direction or one of the characters, X, y, or z, to indicate [1 0 0], [0 1
0],or [0 O 1] respectively.

camorbit(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camorbit operates on the current axes.

Compare rotation in the two coordinate systems with these for loops.
The first rotates the camera horizontally about a line defined by the
camera target point and a direction that is parallel to the y-axis.
Visualize this rotation as a cone formed with the camera target at the
apex and the camera position forming the base:

surf (peaks)

2-485

camorbit

axis visad

for 1i=1:36
camorbit (10,0, 'data',[0 1 0])
drawnow

end

Rotation in the camera coordinate system orbits the camera around the
axes along a circle while keeping the center of a circle at the camera
target.

surf (peaks)
axis vis3d

for i=1:36
camorbit (10,0, 'camera')
drawnow
end
Remarks The behavior of cameraorbit differs from the rotate3d function in

that while the rotate3d tool modifies the View property of the axes,
the cameraorbit function fixes the aspect ratio and modifies the
CameraTarget, CameraPosition and CameraUpVector properties of the
axes. See Axes Propertiesfor more information.

You can also enable 3-D rotation from the figure Tools menu or the
figure toolbar.

See Also axes, axis('vis3d'), camdolly, campan, camzoom, camroll
“Camera Viewpoint” on page 1-103 for related functions
“Defining Scenes with Camera Graphics” for more information

Axes Properties for related properties

2-486

campan

Purpose

Syntax

Description

See Also

Rotate camera target around camera position

campan(dtheta,dphi)

campan(dtheta,dphi, 'coordsys")
campan(dtheta,dphi, 'coordsys', 'direction')
campan(axes_handle,...)

campan(dtheta,dphi) rotates the camera target around the camera
position by the amounts specified in dtheta and dphi (both in degrees).
dtheta is the horizontal rotation and dphi is the vertical rotation.

campan(dtheta,dphi, 'coordsys') The coordsys argument
determines the center of rotation. It can take on two values:

¢ data (default) — Rotate the camera target around an axis defined
by the camera position and the direction (default is the positive
z direction)

e camera — Rotate the camera about the point defined by the camera
target.

campan(dtheta,dphi, 'coordsys', 'direction') The direction
argument, in conjunction with the camera position, defines the axis
of rotation for the data coordinate system. Specify direction as a
three-element vector containing the x, y, and z components of the
direction or one of the characters, X, y, or z, to indicate [1 0 0], [0 1
0],or [0 O 1] respectively.

campan(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle,
campan operates on the current axes.

axes, camdolly, camorbit, camtarget, camzoom, camroll

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-487

campos

Purpose

Syntax

Description

Remarks

Examples

2-488

Set or query camera position

campos

campos ([camera_position])
campos ('mode"')
campos(‘'auto')

campos('manual')

campos (axes_handle,...)

campos with no arguments returns the camera position in the current
axes.

campos ([camera_position]) sets the position of the camera in

the current axes to the specified value. Specify the position as a
three-element vector containing the x-, y-, and z-coordinates of the
desired location in the data units of the axes.

campos ('mode') returns the value of the camera position mode, which
can be either auto (the default) or manual.

campos('auto') sets the camera position mode to auto.
campos('manual') sets the camera position mode to manual.

campos (axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, campos operates on the current axes.

campos sets or queries values of the axes CameraPosition and
CameraPositionMode properties. The camera position is the point in the
Cartesian coordinate system of the axes from which you view the scene.

This example moves the camera along the x-axis in a series of steps:

surf (peaks)

axis vis3d off

for x = -200:5:200
campos([x,5,101])
drawnow

campos

end

See Also axis, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-489

camproj

Purpose

Syntax

Description

Remarks

See Also

2-490

Set or query projection type

camproj
camproj ('projection_type')
camproj (axes_handle,...)

The projection type determines whether MATLAB 3-D views use a
perspective or orthographic projection.

camproj with no arguments returns the projection type setting in the
current axes.

camproj ('projection_type') sets the projection type in the current
axes to the specified value. Possible values for projection_type are
orthographic and perspective

camproj (axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camproj operates on the current axes.

camproj sets or queries values of the axes object Projection property.

campos, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

camroll

Purpose

Syntax

Description

Remarks

See Also

Rotate camera about view axis

camroll(dtheta)
camroll(axes_handle,dtheta)

camroll(dtheta) rotates the camera around the camera viewing axis
by the amounts specified in dtheta (in degrees). The viewing axis is
defined by the line passing through the camera position and the camera
target.

camroll(axes_handle,dtheta) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camroll operates on the current axes.

camroll sets the axes CameraUpVector property and thereby also sets
the CameraUpVectorMode property to manual.

axes, axis('vis3d'), camdolly, camorbit, camzoom, campan
“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-491

camtarget

Purpose

Syntax

Description

Remarks

Examples

2-492

Set or query location of camera target

camtarget
camtarget([camera_target])
camtarget('mode')
camtarget('auto')
camtarget('manual')
camtarget(axes_handle,...)

The camera target is the location in the axes that the camera points
to. The camera remains oriented toward this point regardless of its
position.

camtarget with no arguments returns the location of the camera target
in the current axes.

camtarget ([camera_target]) sets the camera target in the current axes
to the specified value. Specify the target as a three-element vector
containing the x-, y-, and z-coordinates of the desired location in the
data units of the axes.

camtarget('mode') returns the value of the camera target mode, which
can be either auto (the default) or manual.

camtarget('auto') sets the camera target mode to auto.
camtarget('manual') sets the camera target mode to manual.

camtarget(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camtarget operates on the current axes.

camtarget sets or queries values of the axes object CameraTarget and
CameraTargetMode properties.

When the camera target mode 1s auto, the camera target is the center
of the axes plot box.

This example moves the camera position and the camera target along
the x-axis in a series of steps:

camtarget

See Also

surf(peaks);

axis visad

xp = linspace(-150,40,50);

xt linspace(25,50,50);

for i=1:50
campos([xp(i),25,5]);
camtarget([xt(i),30,0])
drawnow

end

axis, camproj, campos, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-493

camup

Purpose

Syntax

Description

Remarks

2-494

Set or query camera up vector

camup
camup([up_vector])
camup('mode")
camup('auto')
camup('manual')

camup (axes_handle,...)

The camera up vector specifies the direction that is oriented up in the
scene.

camup with no arguments returns the camera up vector setting in the
current axes.

camup ([up_vector]) sets the up vector in the current axes to the
specified value. Specify the up vector as x, ¥, and z components. See
Remarks.

camup ('mode') returns the current value of the camera up vector mode,
which can be either auto (the default) or manual.

camup('auto') sets the camera up vector mode to auto. In auto mode,
[0 1 0] is the up vector of for 2-D views. This means the z-axis points
up.

camup('manual') sets the camera up vector mode to manual. In manual
mode, the value of the camera up vector does not change unless you
set it.

camup (axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camup operates on the current axes.

camup sets or queries values of the axes object CameraUpVector and
CameraUpVectorMode properties.

Specify the camera up vector as the x-, y-, and z-coordinates of a point
in the axes coordinate system that forms the directed line segment
PQ, where P is the point (0,0,0) and Q is the specified x-, y-, and

camup

See Also

z-coordinates. This line always points up. The length of the line PQ has
no effect on the orientation of the scene. This means a value of [0 0 1]
produces the same results as [0 0 25].

axis, camproj, campos, camtarget, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-495

camva

Purpose

Syntax

Description

Remarks

2-496

Set or query camera view angle

camva
camva(view_angle)
camva('mode"')
camva('auto')
camva('manual')
camva(axes_handle,...)

The camera view angle determines the field of view of the camera.
Larger angles produce a smaller view of the scene. You can implement
zooming by changing the camera view angle.

camva with no arguments returns the camera view angle setting in
the current axes.

camva(view_angle) sets the view angle in the current axes to the
specified value. Specify the view angle in degrees.

camva('mode') returns the current value of the camera view angle
mode, which can be either auto (the default) or manual. See Remarks.

camva('auto') sets the camera view angle mode to auto.

camva('manual') sets the camera view angle mode to manual. See
Remarks.

camva(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camva operates on the current axes.

camva sets or queries values of the axes object CameraViewAngle and
CameraViewAngleMode properties.

When the camera view angle mode is auto, the camera view angle

adjusts so that the scene fills the available space in the window. If
you move the camera to a different position, the camera view angle
changes to maintain a view of the scene that fills the available area
in the window.

camva

Setting a camera view angle or setting the camera view angle to manual
disables the MATLAB stretch-to-fill feature (stretching of the axes

to fit the window). This means setting the camera view angle to its
current value,

camva(camva)

can cause a change in the way the graph looks. See the Remarks section
of the axes reference page for more information.

Examples This example creates two pushbuttons, one that zooms in and another
that zooms out.

uicontrol('Style', 'pushbutton',...

'String', 'Zoom In',...

'Position',[20 20 60 20],...

'Callback','if camva <= 1;return;else;camva(camva-1);end');
uicontrol('Style', 'pushbutton',...

'String', 'Zoom Out',...

'Position',[100 20 60 20],...

'Callback','if camva >= 179;return;else;camva(camva+1);end');

Now create a graph to zoom in and out on:

surf(peaks);

Note the range checking in the callback statements. This keeps the
values for the camera view angle in the range greater than zero and
less than 180.

See Also axis, camproj, campos, camup, camtarget

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

2-497

camzoom

Purpose

Syntax

Description

Remarks

See Also

2-498

Zoom in and out on scene

camzoom(zoom_factor)
camzoom(axes_handle,...)

camzoom(zoom_factor) zooms in or out on the scene depending on the
value specified by zoom_factor. If zoom_factor is greater than 1, the

scene appears larger; if zoom_factor is greater than zero and less than
1, the scene appears smaller.

camzoom(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camzoom operates on the current axes.

camzoom sets the axes CameraViewAngle property, which in turn
causes the CameraViewAngleMode property to be set to manual. Note
that setting the CameraViewAngle property disables the MATLAB
stretch-to-fill feature (stretching of the axes to fit the window). This
may result in a change to the aspect ratio of your graph. See the axes
function for more information on this behavior.

axes, camdolly, camorbit, campan, camroll, camva
“Camera Viewpoint” on page 1-103 for related functions

“Defining Scenes with Camera Graphics” for more information

cart2pol
|

Purpose Transform Cartesian coordinates to polar or cylindrical

Syntax [THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

Description [THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional
Cartesian coordinates stored in corresponding elements of arrays X, Y,
and Z, into cylindrical coordinates. THETA is a counterclockwise angular
displacement in radians from the positive x-axis, RHO is the distance
from the origin to a point in the x-y plane, and Z is the height above
the x-y plane. Arrays X, Y, and Z must be the same size (or any can be
scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into
polar coordinates.

Algorithm The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to
cylindrical coordinates is

Y
A : i
P |
______________ ' |
S |
o ; : !
¥ | |
\ theta
H oy x
Two-Dimensional Mapping Three-Dimensional Mapping
theta = atan2(y,x) theta = atan2(y,x)
rho = sqrt(x."2 + y."2) rho = sqri(x."2 + y."2)

Z =2

2-499

cart2pol

See Also cart2sph, pol2cart, sph2cart

2-500

cart2sph

Purpose
Syntax

Description

Algorithm

See Also

Transform Cartesian coordinates to spherical
[THETA,PHI,R] = cart2sph(X,Y,Z)

[THETA,PHI,R] = cart2sph(X,Y,Z) transforms Cartesian coordinates
stored in corresponding elements of arrays X, Y, and Z into spherical
coordinates. Azimuth THETA and elevation PHI are angular
displacements in radians measured from the positive x-axis, and the x-y
plane, respectively; and R is the distance from the origin to a point.

Arrays X, Y, and Z must be the same size (or any of them can be scalar).

The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is

theta = atan2(y,x)
phi = atan2(z, sgrt(x."2 + y."2))
r = sgri(x."2+y."2+z."°2)

The notation for spherical coordinates is not standard. For the cart2sph
function, the angle PHI is measured from the x-y plane. Notice that if
PHI = 0 then the point is in the x-y plane and if PHI = pi/2 then the
point is on the positive z-axis.

cart2pol, pol2cart, sph2cart

2-501

case

Purpose

Syntax

Description

Examples

2-502

Execute block of code if condition is true

switch switch_expr
case case_expr

statement, ..., statement
case {case_expri, case_expr2, case_expr3, ...}
statement, ..., statement
otherwise
statement, ..., statement
end

case is part of the switch statement syntax which allows for conditional
execution. A particular case consists of the case statement itself
followed by a case expression and one or more statements.

case case_expr compares the value of the expression switch_expr
declared in the preceding switch statement with one or more values
in case_expr, and executes the block of code that follows if any of the
comparisons yield a true result.

You typically use multiple case statements in the evaluation of a single
switch statement. The block of code associated with a particular case
statement is executed only if its associated case expression (case_expr)
is the first to match the switch expression (switch_expr).

To enter more than one case expression in a switch statement, put the
expressions in a cell array, as shown above.

To execute a certain block of code based on what the string, method,
1s set to,

method = 'Bilinear';

switch lower(method)
case {'linear','bilinear'}
disp('Method is linear')
case 'cubic'

case

disp('Method is cubic')
case 'nearest'’
disp('Method is nearest')
otherwise
disp('Unknown method. ')
end

Method is linear

See Also switch, otherwise, end, if, else, elseif, while

2-503

cast

Purpose Cast variable to different data type

Syntax B = cast(A, newclass)

Descripl‘ion B = cast(A, newclass) casts A to class newclass. A must be
convertible to class newclass. newclass must be the name of one of the
built in data types.

Examples a = int8(5);
b cast(a, 'uint8');
class(b)

ans =

uint8

See Also class

2-504

cat

Purpose Concatenate arrays along specified dimension
Syntax C = cat(dim, A, B)
C = cat(dim, A1, A2, A3, A4, ...)

Descripl‘ion C = cat(dim, A, B)concatenates the arrays A and B along dim.
C = cat(dim, A1, A2, A3, A4, ...)concatenates all the input
arrays (A1, A2, A3, A4, and so on) along dim.
cat(2, A, B) is the same as [A, B], and cat(1, A, B) is the same
as [A; B].

Remarks When used with comma-separated list syntax, cat(dim, C{:}) or
cat(dim, C.field) is a convenient way to concatenate a cell or
structure array containing numeric matrices into a single matrix.

Examples Given

A = B =
1 2 5 6
3 4 7 8
concatenating along different dimensions produces
1 2 5 6
3 4 1 2 5 6 i B
5 B 3 4 7 8 1 2
7 B 3 4
C = cat(1,A,B) C = cat(2,A,B) C = cat(3,A,B)

The commands

2-505

cat

magic(3); B = pascal(3);
cat(4, A, B);

A
C

produce a 3-by-3-by-1-by-2 array.

See Also vertcat, horzcat, strcat, strvcat, num2cell, special character []

2-506

catch

Purpose

Syntax

Description

Specify how to respond to error in try statement

catch ME
catch

catch ME marks the start of a caich block in a try-catch statement.
It returns object ME, which is an instance of the MATLAB class
MException. This object contains information about an error caught
in the preceding ¢ry block and can be useful in helping your program
respond to the error appropriately.

A try-catch statement is a programming device that enables you to
define how certain errors are to be handled in your program. This
bypasses the default MATLAB error-handling mechanism when these
errors are detected. The try-catch statement consists of two blocks of
MATLAB code, a try block and a catch block, delimited by the keywords
try, catch, and end:

ctry

MATLAB commands % Try block
catch ME

MATLAB commands % Catch block
end

Each of these blocks consists of one or more MATLAB commands. The
try block is just another piece of your program code; the commands in
this block execute just like any other part of your program. Any errors
MATLAB encounters in the try block are dealt with by the respective
catch block. This is where you write your error-handling code. If the
try block executes without error, MATLAB skips the catch block
entirely. If an error occurs while executing the catch block, the program
terminates unless this error is caught by another try-catch block.

catch marks the start of a catch block but does not return an
MException object. You can obtain the error string that was generated
by calling the lasterror function.

2-507

catch

Examples

2-508

Specifying the try, catch, and end commands, as well as the
commands that make up the try and catch blocks, on separate lines
1s recommended. If you combine any of these components on the same
line, separate them with commas:

try, surf, catch ME, ME.stack, end

ans =
file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: ‘'surf’
line: 54

The catch block in this example checks to see if the specified file could
not be found. If this is the case, the program allows for the possibility
that a common variation of the filename extension (e.g., jpeg instead
of jpg) was used by retrying the operation with a modified extension.
This is done using a try-catch statement that is nested within the
original try-catch.

function d_in = read_image(filename)
[path name ext] = fileparts(filename);
try
fid = fopen(filename, 'r');
d_in = fread(fid);
catch ME1
% Get last segment of the error message identifier.
idSeglLast = regexp(ME1.identifier, '(?<=:)\w+$',
'match');

% Did the read fail because the file could not be found?
if strcmp(idSegLast, 'InvalidFid') && ...
~exist(filename, 'file')

% Yes. Try modifying the filename extension.

switch ext
case '.jpg'’ % Change jpg to jpeg
filename = strrep(filename, '.jpg', '.jpeg')

case '.jpeg’ % Change jpeg to jpg

catch

filename = strrep(filename, '.jpeg', '.jpg')
case '.tif' % Change tif to tiff

filename = strrep(filename, '.tif', '.tiff')
case '.tiff' % Change tiff to tif

filename = strrep(filename, '.tiff', '.tif')
otherwise

fprintf('File %s not found\n', filename);
rethrow(ME1);
end

% Try again, with modifed filenames.
ry
fid = fopen(filename, 'r');
d_in = fread(fid);
catch ME2
fprintf('Unable to access file %s\n', filename);
ME2 = addCause(ME2, ME1);
rethrow(ME2)
end
end
end

~+

See Also try, rethrow, end, lasterror, eval, evalin

2-509

caxis

Purpose

Syntax

Description

Remarks

2-510

Color axis scaling

caxis([cmin cmax])
caxis auto

caxis manual
caxis(caxis) freeze

vV = caxis
caxis(axes_handle,...)

caxis controls the mapping of data values to the colormap. It affects any
surfaces, patches, and images with indexed CData and CDataMapping
set to scaled. It does not affect surfaces, patches, or images with true
color CData or with CDataMapping set to direct.

caxis([cmin cmax]) sets the color limits to specified minimum and
maximum values. Data values less than cmin or greater than cmax map
to cmin and cmax, respectively. Values between cmin and cmax linearly
map to the current colormap.

caxis auto computes the color limits automatically using the minimum
and maximum data values. This is the default behavior. Color values
set to Inf map to the maximum color, and values set to -Inf map to
the minimum color. Faces or edges with color values set to NaN are

not drawn.

caxis manual and caxis(caxis) freeze the color axis scaling at the
current limits. This enables subsequent plots to use the same limits
when hold is on.

v = caxis returns a two-element row vector containing the [cmin
cmax] currently in use.

caxis(axes_handle,...) uses the axes specified by axes_handle
instead of the current axes.

caxis changes the CLim and CLimMode properties of axes graphics
objects.

caxis

Examples

How Color Axis Scaling Works

Surface, patch, and image graphics objects having indexed CData and
CDataMapping set to scaled map CData values to colors in the figure
colormap each time they render. CData values equal to or less than cmin
map to the first color value in the colormap, and CData values equal to
or greater than cmax map to the last color value in the colormap. The
following linear transformation is performed on the intermediate values
(referred to as C below) to map them to an entry in the colormap (whose
length 1s m, and whose row index is referred to as index below).

index = fix((C-cmin)/(cmax-cmin)*m)+1

Create (X,Y,Z) data for a sphere and view the data as a surface.

[X,Y,Z] = sphere;
C = Z;
surf(X,Y,Z,C)

Values of C have the range [-1 1]. Values of C near -1 are assigned
the lowest values in the colormap; values of C near 1 are assigned the
highest values in the colormap.

To map the top half of the surface to the highest value in the color table,
use

caxis([-1 0])

To use only the bottom half of the color table, enter

caxis([-1 3])

which maps the lowest CData values to the bottom of the colormap, and
the highest values to the middle of the colormap (by specifying a cmax
whose value is equal to cmin plus twice the range of the CData).

The command

caxis auto

2-511

caxis

2-512

resets axis scaling back to autoranging and you see all the colors in
the surface. In this case, entering

caxis

returns

[-1 1]

Adjusting the color axis can be useful when using images with scaled
color data. For example, load the image data and colormap for Cape
Cod, Massachusetts.

load cape

This command loads the image’s data X and the image’s colormap map
into the workspace. Now display the image with CDataMapping set to
scaled and install the image’s colormap.

image (X, 'CDataMapping', 'scaled')colormap(map)

This adjusts the color limits to span the range of the image data, which
is 1 to 192:

caxis
ans =
1 192

The blue color of the ocean is the first color in the colormap and is
mapped to the lowest data value (1). You can effectively move sea level
by changing the lower color limit value. For example,

caxis

Caxis = [1 182] Caxis = [3192]

100 200 300 100 200 300

Caxis = [6 192]

100 200 300 100 200 300

See Also axes, axis, colormap, get, mesh, pcolor, set, surf
The CLim and CLimMode properties of axes graphics objects
The Colormap property of figure graphics objects

“Color Operations” on page 1-102 for related functions

2-513

caxis

“Axes Color Limits — the CLim Property” for more examples

2-514

cd

Purpose

GUI
Alternatives

Syntax

Description

Change working directory

As an alternative to the cd function, you can change the current
directory using the current directory field on the desktop toolbar or
using the Current Directory browser.

cd

w = cd
cd('directory')
cd('..")

cd directory

cd displays the current working directory.

w = cd assigns the current working directory to w.

2-515

cd

cd('directory') sets the current working directory to directory. Use
the full path for directory. On UNIX! platforms, the character ~ is
interpreted as the user’s root directory.

cd('..") changes the current working directory to the directory above

it.

cd directory or cd .. is the unquoted form of the syntax.
Examples UNIX Platforms

On UNIX platforms, to change the current working directory to
ctrldemos for the Control System Toolbox™ software, run

cd('/usr/local/matlab/toolbox/control/ctrldemos')

Windows Platforms

On Microsoft Windows platforms, to change the current working
directory to ctrldemos for the Control System Toolbox software, run

cd('c:/matlab/toolbox/control/ctrldemos')

Then change the current working directory to control by running

cd

Then change the current working directory to toolbox by running
cd ..

Change to matlabroot Directory

On any platform, use cd with the matlabroot function to change to a
directory relative to the directory in which the MATLAB executable
is installed. For example,

cd([matlabroot '/toolbox/control/ctrldemos'])

1. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-516

cd

See Also

changes the current working directory to ctrldemos for the Control
System Toolbox software.

dir, fileparts, mfilename, path, pwd, what

“Managing Files and Working with the Current Directory”

2-517

cd (ftp)

Purpose

Syntax

Description

Examples

See Also

2-518

Change current directory on FTP server

cd(f)
cd(f,'dirname')
cd(f,'..")

cd(f) Displays the current directory on the FTP server f, where f was
created using ftp.

cd(f, 'dirname') Changes the current directory on the FTP server

f to dirname, where f was created using ftp. After running cd, the
object f remembers the current directory on the FTP server. You can
then perform file operations functions relative to f using the methods
delete, dir, mget, mkdir, mput, rename, and rmdir.

cd(f,'..") changes the current directory on the FTP server f to the
directory above the current one.

Connect to the MathWorks FTP server.

tmw=ftp('ftp.mathworks.com');

View the contents.

dir(tmw)

Change the current directory to pub.

cd(tmw, 'pub');

View the contents of pub.

dir(tmw)

dir (ftp), ftp

cdf2rdf

Purpose

Syntax

Description

Examples

Convert complex diagonal form to real block diagonal form

[V,D] = cdf2rdf(V,D)
[V,D] = cdf2rdf(V,D)

If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing
in complex-conjugate pairs, cdf2rdf transforms the system so D is in
real diagonal form, with 2-by-2 real blocks along the diagonal replacing
the complex pairs originally there. The eigenvectors are transformed
so that

X = V*D/V

continues to hold. The individual columns of V are no longer
eigenvectors, but each pair of vectors associated with a 2-by-2 block in
D spans the corresponding invariant vectors.

The matrix

X =
1 2 3
0 4 5
0 -5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =
1.0000 -0.0191 - 0.40021 -0.0191 + 0.40021
0 0 - 0.64791 0 + 0.64791
0 0.6479 0.6479
D =
1.0000 0 0

2-519

cdf2rdf

0 4.0000 + 5.0000i 0
0 0 4.0000 - 5.0000i

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

V =
1.0000 -0.0191 -0.4002
0 0 -0.6479
0 0.6479 0
D =
1.0000 0 0
0 4.0000 5.0000
0 -5.0000 4.0000
Algorithm The real diagonal form for the eigenvalues is obtained from the complex

form using a specially constructed similarity transformation.

See Also eig, rsf2csf

2-520

cdfepoch

Purpose
Syntax

Description

See Also

Construct cdfepoch object for Common Data Format (CDF) export

m
I}

cdfepoch(date)

E cdfepoch(date) constructs a cdfepoch object, where date is a
valid string (datestr), a number (datenum) representing a date, or a
cdfepoch object.

When writing data to a CDF using cdfwrite, use cdfepoch to convert
MATLAB formatted dates to CDF formatted dates. The MATLAB
cdfepoch object simulates the CDFEPOCH data type in CDF files.

Use the todatenum function to convert a cdfepoch object into a
MATLAB serial date number.

Note A CDF epoch is the number of milliseconds since 1-Jan-0000.
MATLAB datenums are the number of days since 0-Jan-0000.

cdfinfo, cdfread, cdfwrite, datenum

2-521

cdfinfo

Purpose
Syntax

Description

2-522

Information about Common Data Format (CDF) file

info = cdfinfo(filename)

info = cdfinfo(filename) returns information about the Common
Data Format (CDF) file specified in the string filename.

Note Because cdfinfo creates temporary files, the current working
directory must be writeable.

The return value, info, is a structure that contains the fields listed
alphabetically in the following table.

Field Description

FileModDate Text string indicating the date the file was
last modified

Filename Text string specifying the name of the file

FileSettings Structure array containing library settings
used to create the file

FileSize Double scalar specifying the size of the file,
in bytes

Format Text string specifying the file format

FormatVersion Text string specifying the version of the CDF
library used to create the file

GlobalAttributes Structure array that contains one field for

each global attribute. The name of each field
corresponds to the name of an attribute. The
data in each field, contained in a cell array,

represents the entry values for that attribute.

cdfinfo

Field Description

Subfiles Filenames containing the CDF file’s data, if
it is a multifile CDF

VariableAttributes | Structure array that contains one field for

each variable attribute. The name of each
field corresponds to the name of an attribute.
The data in each field is contained in a n-by-2
cell array, where n is the number of variables.
The first column of this cell array contains the
variable names associated with the entries.
The second column contains the entry values.

2-523

cdfinfo

2-524

Field

Description

Variables

N-by-6 cell array, where N is the number of
variables, containing information about the
variables in the file. The columns present the
following information:

Column | Text string specifying name of

1 variable

Column | Double array specifying the

2 dimensions of the variable, as
returned by the size function

Column | Double scalar specifying the

3 number of records assigned for the
variable

Column | Text string specifying the data

4 type of the variable, as stored in
the CDF file

Column | Text string specifying the record

5 and dimension variance settings
for the variable. The single
T or F to the left of the slash
designates whether values vary
by record. The zero or more T or
F letters to the right of the slash
designate whether values vary at
each dimension. Here are some
examples.

T/ (scalar variable
F/T (one-dimensional variable)

T/TFF (three-dimensional variable)

Column | Text string specifying the sparsity

6 of the variable’s records, with these

possible values:

'"Full' 'Sparse (padded)'
'Sparse (nearest)'

cdfinfo

Note Attribute names returned by cdfinfo might not match the
names of the attributes in the CDF file exactly. Attribute names can
contain characters that are illegal in MATLAB field names. cdfinfo
removes illegal characters that appear at the beginning of attributes
and replaces other illegal characters with underscores (_’). When
cdfinfo modifies an attribute name, it appends the attribute’s internal
number to the end of the field name. For example, the attribute name
Variable%Attribute becomes Variable Attribute 013

Examples info = cdfinfo('example.cdf')
info

Filename: 'example.cdf'
FileModDate: '09-Mar-2001 15:45:22'
FileSize: 1240
Format: 'CDF'
FormatVersion: '2.7.0'
FileSettings: [1x1 struct]
Subfiles: {}
Variables: {5x6 cell}
GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

info.Variables

ans =
'Time' [1x2 double] [24] 'epoch' 'T/' "Full'
'"Longitude’ [1x2 double] [1] 'int8' "F/FT' "Full'
'Latitude’ [1x2 double] [1] 'int8' "F/TF' "Full’
'Data’ [1x3 double] [1] 'double' 'T/TTT' ‘'Full'
‘'multidim' [1x4 double] [1] 'uint8' '"T/TTTT' 'Full'
See Also cdfread

2-525

cdfread

Purpose

Syntax

Description

Read data from Common Data Format (CDF) file

data = cdfread(filename)
data cdfread(filename, parami, vali, param2, val2, ...)
[data, info] = cdfread(filename, ...)

data = cdfread(filename) reads all the data from the Common
Data Format (CDF) file specified in the string filename. CDF data
sets typically contain a set of variables, of a specific data type, each
with an associated set of records. The variable might represent time
values with each record representing a specific time that an observation
was recorded. cdfread returns all the data in a cell array where

each column represents a variable and each row represents a record
associated with a variable. If the variables have varying numbers of
associated records, cdfread pads the rows to create a rectangular cell
array, using pad values defined in the CDF file.

Note Because cdfread creates temporary files, the current working
directory must be writeable.

data = cdfread(filename, paramil, valil, param2, val2, ...)
reads data from the file, where param1, param2, and so on, can be any of
the following parameters.

2-526

Parameter

'Records'

Value

A vector specifying which records to read. Record numbers
are zero-based. cdfread returns a cell array with the
same number of rows as the number of records read and
as many columns as there are variables.

cdfread

Parameter Value

'Variables' A 1-by-n or n-by-1 cell array specifying the names of the
variables to read from the file. n must be less than or
equal to the total number of variables in the file. cdfread
returns a cell array with the same number of columns as
the number of variables read, and a row for each record
read.

'Slices' An m-by-3 array, where each row specifies where to start
reading along a particular dimension of a variable, the
skip interval to use on that dimension (every item, every
other item, etc.), and the total number of values to read
on that dimension. m must be less than or equal to the
number of dimensions of the variable. If m is less than the
total number of dimensions, cdfread reads every value
from the unspecified dimensions ([0 1 n], where n is the
total number of elements in the dimension.

Note: Because the 'Slices' parameter describes how to
process a single variable, it must be used in conjunction
with the 'Variables' parameter.

2-527

cdfread

Parameter

‘ConvertEpochToDatenum'

'CombineRecords'

Value

A Boolean value that determines whether cdfread
automatically converts CDF epoch data types to MATLAB
serial date numbers. If set to false (the default), cdfread
wraps epoch values in MATLAB cdfepoch objects.

Note: For better performance when reading large data
sets, set this parameter to true.

A Boolean value that determines how cdfread returns
the CDF data sets read from the file. If set to false (the
default), cdfread stores the data in an m-by-n cell array,
where m is the number of records and n is the number

of variables requested. If set to true, cdfread combines
all records for a particular variable into one cell in the
output cell array. In this cell, cdfread stores scalar data
as a column array. cdfread extends the dimensionality
of nonscalar and string data. For example, instead of
creating 1000 elements containing 20-by-30 arrays for
each record, cdfread stores all the records in one cell as a
1000-by-20-by-30 array

Note: If you use the 'Records' parameter to specify which
records to read, you cannot use the 'CombineRecords'
parameter.

Note: When using the 'Variable' parameter to read
one variable, if the 'CombineRecords' parameter is
true, cdfread returns the data as an M-by-N numeric or
character array; it does not put the data into a cell array.

2-528

[data,

info] = cdfread(filename, ...) returns details about the

CDF file in the info structure.

Note To maximize performance, specify both the
'ConvertEpochToDatenum' and 'CombineRecords' parameters, setting
their values to 'true'.

cdfread

Examples

See Also

Read all the data from a CDF file.

data = cdfread('example.cdf');

Read the data from the variable 'Time'.

data = cdfread('example.cdf', 'Variable', {'Time'});

Read the first value in the first dimension, the second value in the second
dimension, the first and third values in the third dimension, and all
values in the remaining dimension of the variable 'multidimensional’.

data = cdfread('example.cdf',
'Variable', {'multidimensional'},
'Slices', [0 1 1; 11 1; 02 2]);

This is similar to reading the whole variable into data and then using
matrix indexing, as in the following.

data{1}(1, 2, [1 3], :)

Collapse the records from a data set and convert CDF epoch data types
to MATLAB serial date numbers.

data = cdfread('example.cdf',
"CombineRecords', true,
'ConvertEpochToDatenum', true);

cdfepoch, cdfinfo, cdfwrite

For more information about using this function, see “Common Data
Format (CDF) Files”.

2-529

cdfwrite

Purpose

Syntax

Description

2-530

Write data to Common Data Format (CDF) file

cdfwrite(filename,variablelist)

cdfwrite(..., 'PadValues',padvals)
cdfwrite(..., 'GlobalAttributes',gattrib)
cdfwrite(..., 'VariableAttributes', vattrib)
cdfwrite(..., 'WriteMode' ,mode)

cdfwrite(..., 'Format',format)

cdfwrite(filename,variablelist) writes out a Common Data
Format (CDF) file, specified in filename. The filename input is a
string enclosed in single quotes. The variablelist argument is a cell
array of ordered pairs, each of which comprises a CDF variable name
(a string) and the corresponding CDF variable value. To write out
multiple records for a variable, put the values in a cell array where each
element in the cell array represents a record.

Note Because cdfwrite creates temporary files, both the destination
directory for the file and the current working directory must be
writeable.

cdfwrite(..., 'PadValues',padvals) writes out pad values for given
variable names. padvals is a cell array of ordered pairs, each of which
comprises a variable name (a string) and a corresponding pad value.
Pad values are the default values associated with the variable when
an out-of-bounds record is accessed. Variable names that appear in
padvals must appear in variablelist.

cdfwrite(...,'GlobalAttributes',gattrib) writes the structure
gattrib as global metadata for the CDF file. Each field of the structure
is the name of a global attribute. The value of each field contains the
value of the attribute. To write out multiple values for an attribute,
put the values in a cell array where each element in the cell array
represents a record.

cdfwrite

Note To specify a global attribute name that is invalid in your
MATLAB application, create a field called 'CDFAttributeRename' in
the attribute structure. The value of this field must have a value that is
a cell array of ordered pairs. The ordered pair consists of the name of
the original attribute, as listed in the GlobalAttributes structure, and
the corresponding name of the attribute to be written to the CDF file.

cdfwrite(..., 'VariableAttributes', vattrib) writes the
structure vattrib as variable metadata for the CDF. Each field of

the struct is the name of a variable attribute. The value of each field
should be an M-by-2 cell array where M is the number of variables with
attributes. The first element in the cell array should be the name of the
variable and the second element should be the value of the attribute
for that variable.

Note To specify a variable attribute name that is illegal in MATLAB,
create a field called 'CDFAttributeRename' in the attribute structure.
The value of this field must have a value that is a cell array of ordered
pairs. The ordered pair consists of the name of the original attribute, as
listed in the VariableAttributes struct, and the corresponding name
of the attribute to be written to the CDF file. If you are specifying a
variable attribute of a CDF variable that you are renaming, the name of
the variable in the VariableAttributes structure must be the same

as the renamed variable.

cdfwrite(..., 'WriteMode' ,mode), where mode is either 'overwrite'
or 'append’', indicates whether or not the specified variables should be
appended to the CDF file if the file already exists. By default, cdfwrite
overwrites existing variables and attributes.

cdfwrite(..., 'Format',format), where format is either 'multifile’
or 'singlefile’, indicates whether or not the data is written out as a
multifile CDF. In a multifile CDF, each variable is stored in a separate

2-531

cdfwrite

Examples

See Also

2-532

file with the name *.vN, where N is the number of the variable that is
written out to the CDF. By default, cdfwrite writes out a single file
CDF. When 'WriteMode' is set to 'Append', the 'Format' option is
ignored, and the format of the preexisting CDF is used.

Write out a file 'example.cdf' containing a variable 'Longitude' with
the value [0:360].

cdfwrite('example', {'Longitude', 0:360});

Write out a file 'example.cdf' containing variables 'Longitude' and
'Latitude' with the variable 'Latitude’' having a pad value of 10 for
all out-of-bounds records that are accessed.

cdfwrite('example', {'Longitude', 0:360, 'Latitude', 10:20}, ...
'PadValues', {'Latitude', 10});

Write out a file 'example.cdf', containing a variable 'Longitude'’
with the value [0:360], and with a variable attribute of 'validmin'
with the value 10.

varAttribStruct.validmin = {'longitude' [10]};

cdfwrite('example', {'Longitude' 0:360}, 'VarAttribStruct', ...
varAttribStruct);

cdfread, cdfinfo, cdfepoch

ceil

Purpose
Syntax

Description

Examples

See Also

Round toward positive infinity

B

ceil(A)

B = ceil(A) rounds the elements of A to the nearest integers greater
than or equal to A. For complex A, the imaginary and real parts are
rounded independently.

QO
1l

[-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.61i]
a:
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6

7.0000 2.4000 + 3.60001
ceil(a)
ans =
Columns 1 through 4
-1.0000 0 4.0000 6.0000

Columns 5 through 6
7.0000 3.0000 + 4.0000i

fix, floor, round

2-533

cell

Purpose

Syntax

Description

Remarks

Examples

2-534

Construct cell array

= cell(n)

= cell(m, n)

= cell([m, n])
cell(m, n, p,...)
= cell([mnp ...])
= cell(size(A))

= cell(javaobj)

O 0000 o0o0
I}

¢ = cell(n) creates an n-by-n cell array of empty matrices. An error
message appears if n is not a scalar.

c = cell(m, n)orc = cell([m, n]) creates an m-by-n cell array of
empty matrices. Arguments m and n must be scalars.

c = cell(my n, p,...) orc = cell([mn p ...]) creates an
m-by-n-by-p-... cell array of empty matrices. Arguments m, n, p,... must
be scalars.

c = cell(size(A)) creates a cell array the same size as A containing
all empty matrices.

c = cell(javaobj) converts a Java array or Java object javaobj into
a MATLAB cell array. Elements of the resulting cell array will be of the
MATLAB type (if any) closest to the Java array elements or Java object.

This type of cell is not related to “cell mode”, a MATLAB feature used in
debugging and publishing.

This example creates a cell array that is the same size as another array,
A.

A = ones(2,2)
A =
1 1
1 1

cell

(@]
I

cell(size(A))

[[
[[

The next example converts an array of java.lang.String objects into a
MATLAB cell array.

strArray = java_array('java.lang.String', 3);
strArray(1) = java.lang.String('one');
strArray(2) = java.lang.String('two');
strArray(3) = java.lang.String('three');

cellArray = cell(strArray)
cellArray =

‘one'’

"two'

"three'

See Also num2cell, ones, rand, randn, zeros

2-535

cell2mat

Purpose
Syntax

Description

Remarks

Examples

2-536

Convert cell array of matrices to single matrix

=
I}

cell2mat(c)

m cell2mat(c) converts a multidimensional cell array ¢ with
contents of the same data type into a single matrix, m. The contents of ¢
must be able to concatenate into a hyperrectangle. Moreover, for each
pair of neighboring cells, the dimensions of the cells’ contents must
match, excluding the dimension in which the cells are neighbors.

The example shown below combines matrices in a 3-by-2 cell array into
a single 60-by-50 matrix:

cell2mat(c)

10X25 10%25

20%x25 20x25
cellzmat 60x50
W

30x25 30x25

The dimensionality (or number of dimensions) of m will match the
highest dimensionality contained in the cell array.

cell2mat is not supported for cell arrays containing cell arrays or
objects.

Combine the matrices in four cells of cell array C into the single matrix,
M:

C={[1]1 [2 3 4]; [5; 9] [6 7 8; 10 11 12]}

cell2mat

C =
[1]
[2x1 double]
C{1,1}
ans =
1
Cc{2,1}
ans =
5
9
M = cell2mat(C)
M =
1 2 3
5 6

9 10 11

See Also mat2cell, num2cell

[1x3 double]

[2x3 double]
c{1,2}
ans =

2

C{2,2}

ans =

6

10
4
8
12

2-537

cell2struct

Purpose
Syntax

Description

Examples

2-538

Convert cell array to structure array

cell2struct(c, fields, dim)

(7]
I}

S cell2struct(c, fields, dim) creates a structure array s from
the information contained within cell array c.

The fields argument specifies field names for the structure array.
fields can be a character array or a cell array of strings.

The dim argument controls which axis of the cell array is to be used
in creating the structure array. The length of ¢ along the specified
dimension must match the number of fields named in fields. In other
words, the following must be true.

f fields is a cell array
f fields is a char array

size(c,dim) == length(fields) %
size(c,dim) == size(fields,1) %

— -

The cell array c in this example contains information on trees. The
three columns of the array indicate the common name, genus, and
average height of a tree.

c = {'birch', 'betula', 65; ‘'maple', 'acer', 50}
C:

"birch’ 'betula’ [65]

‘maple’ ‘acer' [50]

To put this information into a structure with the fields name, genus, and
height, use cell2struct along the second dimension of the 2-by-3
cell array.

fields = {'name', 'genus', 'height'};
s = cell2struct(c, fields, 2);

This yields the following 2-by-1 structure array.

s(1) s(2)
ans = ans =
name: 'birch'’ name: 'maple’

cell2struct

genus: 'betula' genus: 'acer'
height: 65 height: 50
See Also struct2cell, cell, iscell, struct, isstruct, fieldnames, dynamic

field names

2-539

celldisp

Purpose Cell array contents

Syntax celldisp(C)
celldisp(C, name)

Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C, name) uses the string name for the display instead of the
name of the first input (or ans).

Examples Use celldisp to display the contents of a 2-by-3 cell array:

C = {[1 2] 'Tony' 3+4i; [1 2;3 4] -5 'abc'};
celldisp(C)

c{1,1}
1 2

C{2,1}
1 2
3 4

C{1,2}
Tony

C{2,2}
-5

C{1,3} =
3.0000+ 4.0000i

Cc{2,3} =
abc

See Also cellplot

2-540

cellfun

Purpose

Syntax

Description

Apply function to each cell in cell array

A = cellfun(fun, C)

A = cellfun(fun, C, D, ...)

[A, B, ...] = cellfun(fun, C, ...)

[A, .] = cellfun(fun, C, ..., 'parami', valuel, ...)
A = cellfun('fname', C)

A = cellfun('size', C, k)

A = cellfun('isclass', C, 'classname')

A = cellfun(fun, C) applies the function specified by fun to the

contents of each cell of cell array C, and returns the results in array

A. The value A returned by cellfun is the same size as C, and the
(I,d,...)thelement of Ais equal to fun(C{I,J,...}). The first input
argument fun is a function handle to a function that takes one input
argument and returns a scalar value. fun must return values of the
same class each time it is called. The order in which cellfun computes
elements of A is not specified and should not be relied upon.

If fun is bound to more than one built-in or M-file (that is, if it
represents a set of overloaded functions), then the class of the values
that cellfun actually provides as input arguments to fun determines
which functions are executed.

A = cellfun(fun, C, D, ...) evaluates fun using the contents of
the cells of cell arrays C, D, ... as input arguments. The (I,J,...)th
element of A is equal to fun(C{I,J,...}, D{I,J,...}, ...). Al
input arguments must be of the same size and shape.

[A, B, ...] = cellfun(fun, C, ...) evaluates fun, which is a
function handle to a function that returns multiple outputs, and returns
arrays A, B, ..., each corresponding to one of the output arguments of

fun. cellfun calls fun each time with as many outputs as there are in
the call to cellfun. fun can return output arguments having different
classes, but the class of each output must be the same each time fun
is called.

[A, ...] = cellfun(fun, C, ..., 'parami', valuel, ...)
enables you to specify optional parameter name and value pairs.

2-541

cellfun

Parameters recognized by cellfun are shown below. Enclose each
parameter name with single quotes.

Parameter Name Parameter Value

UniformOutput Logical 1 (true) or 0 (false), indicating
whether or not the outputs of fun can be
returned without encapsulation in a cell
array. See “UniformOutput Parameter” on
page 2-542 below.

ErrorHandler Function handle, specifying the function that
cellfun is to call if the call to fun fails. See
“ErrorHandler Parameter” on page 2-542
below.

UniformOutput Parameter

If you set the UniformOutput parameter to true (the default), fun must
return scalar values that can be concatenated into an array. These
values can also be a cell array.

If UniformOutput is false, cellfun returns a cell array (or multiple
cell arrays), where the (I,J,...)th cell contains the value

fun(C{I,J,...}, ...)
ErrorHandler Parameter
The MATLAB software calls the function represented by the

ErrorHandler parameter with two input arguments:

® A structure having three fields, named identifier, message,
and index, respectively containing the identifier of the error that
occurred, the text of the error message, and a linear index into the
input array or arrays for which the error occurred

¢ The set of input arguments for which the call to the function failed

The error handling function must either rethrow the error that was
caught, or it must return the output values from the call to fun. Error

2-542

cellfun

handling functions that do not rethrow the error must have the same
number of outputs as fun. MATLAB places these output values in the
output variables used in the call to arrayfun.

Shown here is an example of a simple error handling function, errorfun:
function [A, B] = errorfun(S, varargin)

warning(S.identifier, S.message);
A = NaN; B = NaN;

If 'UniformOutput’ is set to logical 1 (true), the outputs of the error
handler must be scalars and of the same data type as the outputs of
function fun.

If you do not specify an error handler, cellfun rethrows the error.

Backward Compatibility
The following syntaxes are also accepted for backward compatibility:

A = cellfun('fname', C) applies the function fname to the elements
of cell array C and returns the results in the double array A. Each
element of A contains the value returned by fname for the corresponding
element in C. The output array A is the same size as the cell array C.

These functions are supported:

Function Return Value

isempty true for an empty cell element
islogical true for a logical cell element

isreal true for a real cell element

length Length of the cell element

ndims Number of dimensions of the cell element
prodofsize Number of elements in the cell element

A = cellfun('size', C, k) returns the size along the kth dimension
of each element of C.

2-543

cellfun

A = cellfun('isclass', C, 'classname') returns logical 1 (true)
for each element of C that matches classname. This function syntax
returns logical O (false) for objects that are a subclass of classname.

Note For the previous three syntaxes, if C contains objects,
cellfun does not call any overloaded versions of MATLAB functions
corresponding to the above strings.

Examples Compute the mean of several data sets:

C = {1:10, [2; 4; 6], []};

Cmeans = cellfun(@mean, C)
Cmeans =
5.5000 4.0000 NaN

Compute the size of these data sets:

[Chrows, Cncols] = cellfun(@size, C)

Cnrows =

1 3 0
Cncols =

10 1 0

Again compute the size, but with UniformOutput set to false:

Csize = cellfun(@size, C, 'UniformOutput', false)
Csize =
[1x2 double] [1x2 double] [1x2 double]

Csize{:}
ans =

1 10
ans =

3 1
ans =

2-544

cellfun

0 0

Find the positive values in several data sets.

C = {randn(10,1), randn(20,1), randn(30,1)};

Cpositives
Cpositives
[6x1 double] [11x1 double] [15x1 double]

cellfun(@(x) x(x>0), C, 'UniformOutput',false)

Cpositives{:}
ans =
0.1253
0.2877
1.1909
etc.
ans =
0.7258
2.1832
0.1139
etc.

Compute the covariance between several pairs of data sets:

C = {randn(10,1), randn(20,1), randn(30,1)};

D = {randn(10,1), randn(20,1), randn(30,1)};
CDcovs = cellfun(@cov, C, D, 'UniformOutput', false)
CDcovs =

[2x2 double] [2x2 double] [2x2 double]
CDcovs{:}
ans =

2-545

cellfun

0.7353 -0.2148
-0.2148 0.6080

ans =
0.5743 -0.2912
-0.2912 0.8505

ans =
0.7130 0.1750
0.1750 0.6910

See Also arrayfun, spfun, function_handle, cell2mat

2-546

cellplot

Purpose

Syntax

Description

Limitations

Examples

Graphically display structure of cell array

cellplot(c)
cellplot(c, 'legend')
handles = cellplot(c)

cellplot(c) displays a figure window that graphically represents
the contents of c. Filled rectangles represent elements of vectors and
arrays, while scalars and short text strings are displayed as text.

cellplot(c, 'legend') places a colorbar next to the plot labelled to
identify the data types in c.

handles = cellplot(c) displays a figure window and returns a vector
of surface handles.

The cellplot function can display only two-dimensional cell arrays.

Consider a 2-by-2 cell array containing a matrix, a vector, and two text
strings:

c{1,1} = '2-by-2"';

c{1,2} ‘eigenvalues of eye(2)';
c{2,1} = eye(2);

c{2,2} = eig(eye(2));

The command cellplot(c) produces

2-547

cellplot

2-548

cellstr

Purpose Create cell array of strings from character array
Syntax c = cellstr(S)
Description ¢ = cellstr(S) places each row of the character array S into separate

cells of c. Any trailing spaces in the rows of S are removed.

Use the char function to convert back to a string matrix.

Examples Given the string matrix
S = ['abc '; 'defg'; 'hi ']
S =
abc
defg
hi
whos S
Name Size Bytes Class
S 3x4 24 char array

The following command returns a 3-by-1 cell array.

c = cellstr(9)
C =
"abc'
'defg'’
Ihil
whos ¢
Name Size Bytes Class
c 3x1 294 cell array
See Also iscellstr, strings, char, isstrprop

2-549

cgs

Purpose

Syntax

Description

2-550

Conjugate gradients squared method

X = cgs(A,b)

cgs(A,b,tol)

cgs(A,b,tol,maxit)

cgs(A,b,tol,maxit,M)
cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)

[x,flag] = cgs(A,b,...)

[x,flag,relres] = cgs(A,b,...)
[x,flag,relres,iter] = cgs(A,b,...)
[x,flag,relres,iter,resvec] = cgs(A,b,...)

X = cgs(A,b) attempts to solve the system of linear equations A*x = b
for x. The n-by-n coefficient matrix A must be square and should be large
and sparse. The column vector b must have length n. A can be a function
handle afun such that afun(x) returns A*x. See “Function Handles” in
the MATLAB Programming documentation for more information.

“Parametrizing Functions”, in the MATLAB Mathematics
documentation, explains how to provide additional parameters to the
function afun, as well as the preconditioner function mfun described
below, if necessary.

If cgs converges, a message to that effect is displayed. If cgs fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

cgs(A,b,tol) specifies the tolerance of the method, tol. If tolis [],
then cgs uses the default, 1e-6.

cgs(A,b,tol,maxit) specifies the maximum number of iterations,
maxit. If maxit is [] then cgs uses the default, min(n,20).

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If Mis [] then cgs applies no

cgs

preconditioner. M can be a function handle mfun such that mfun(x)
returns M\ x.

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial guess x0. If x0 is
[1, then cgs uses the default, an all-zero vector.

[x,flag] = cgs(A,b,...) returns a solution x and a flag that
describes the convergence of cgs.

Flag Convergence

0 cgs converged to the desired tolerance tol
within maxit iterations.

1 cgs iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 cgs stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during
cgs became too small or too large to continue
computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = cgs(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,iter] = cgs(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,...) also returns a vector
of the residual norms at each iteration, including norm(b-A*x0).

Examples Example

A
b

gallery('wilk',21);
sum(A,2);

2-551

cgs

tol = 1e-12; maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
X = cgs(A,b,tol,maxit,M1);

displays the message

cgs converged at iteration 13 to a solution with relative residual
1.3e-016

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun, and the preconditioner M1 with a
handle to a backsolve function mfun. The example is contained in an
M-file run_cgs that

e (Calls cgs with the function handle @afun as its first argument.

® Contains afun as a nested function, so that all variables in run_cgs

are available to afun and myfun.

The following shows the code for run_cgs:

function x1 = run_cgs

n = 21;
A = gallery('wilk',n);
b = sum(A,2);

tol = 1e-12; maxit = 15;
x1 = cgs(@afun,b,tol,maxit,@mfun);

function y = afun(x)
y = [0; x(1:n-1)] +
[((n-1)/2:-1:0)"'; (1:(n-1)/2)"'].*x +
[x(2:n); O];
end

function y = mfun(r)

y=r ./ [((n-1)/2:-1:1)"; 1; (1:(n-1)/2)'1;
end

2-552

cgs

end
When you enter

X1 = run_cgs
MATLAB software returns

cgs converged at iteration 13 to a solution with relative residual
1.3e-016

Example 3

load west0479

A = west0479

b = sum(A,2)
[x,flag] = cgs(A,b)

flag is 1 because cgs does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5)
[x1,flag1] = cgs(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal,
and cgs fails in the first iteration when it tries to solve a system such
as U1*y = r for y with backslash.

[L2,U2] = luinc(A,1e-6)
[x2,flag2,relres2,iter2,resvec2] = cgs(A,b,1e-15,10,L2,U2)

flag2 is 0 because cgs converges to the tolerance of 6.344e-16 (the
value of relres2) at the fifth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(6) = norm(b-A*x2).
You can follow the progress of cgs by plotting the relative residuals at
each iteration starting from the initial estimate (iterate number 0) with

semilogy(O:iter2,resvec2/norm(b),'-0")
xlabel('iteration number')

2-553

cgs

ylabel('relative residual')

1|:|D i T T T T T T T T T

relaive resical
g
T
1

1t-:l—l-l_ _E

.]
4] 0.5 1 1.5 2 25 3 35 4 45 5
iteration number

See Also bicg, bicgstab, gmres, 1sqr, luinc, minres, pcg, qmr, symmlq
function_handle (@), mldivide (\)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric
linear systems,” SIAM oJ. Sci. Stat. Comput., January 1989, Vol. 10,
No. 1, pp. 36-52.

2-554

char

Purpose

Syntax

Description

Examples

See Also

Convert to character array (string)

S = char(X)

S = char(C)

S = char(t1, t2, t3, ...)

S = char(X) converts the array X that contains nonnegative integers

representing character codes into a MATLAB character array. The
actual characters displayed depend on the character encoding scheme
for a given font. The result for any elements of X outside the range from
0 to 65535 is not defined (and can vary from platform to platform). Use
double to convert a character array into its numeric codes.

S = char(C), when C is a cell array of strings, places each element of C
into the rows of the character array s. Use cellstr to convert back.

S = char(t1, t2, t3, ...) forms the character array S containing
the text strings T1, T2, T3, ... as rows, automatically padding each
string with blanks to form a valid matrix. Each text parameter, Ti, can
itself be a character array. This allows the creation of arbitrarily large
character arrays. Empty strings are significant.

To print a 3-by-32 display of the printable ASCII characters,

ascii = char(reshape(32:127, 32, 3)')
ascii =
V" #%%&' ()*+,-./0123456789: ;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]"_
"abcdefghijklmnopgrstuvwxyz{|}-~

ischar, isletter, isspace, isstrprop, cellstr, iscellstr, get, set,
strings, strvcat, text

2-555

checkin

Purpose

GUI
Alternatives

Syntax

Description

2-556

Check files into a source control system (UNIX platforms)

As an alternative to the checkin function, use File > Source
Control > Check In in the Editor, the Simulink® product, or the
Stateflow® product, or in the context menu of the Current Directory
browser. For more information, see “Checking Files Into the Source
Control System on UNIX Platforms”.

checkin('filename’, 'comments', 'comment_text')

checkin({'filenamei','filename2'}, 'comments','comment_text')

checkin('filename', 'comments', 'comment_text', 'option’,
'value')

checkin('filename’, 'comments','comment text') checks in the file
named filename to the source control system. Use the full path for
filename and include the file extension. You must save the file before
checking it in, but the file can be open or closed. The comment_text
argument is a MATLAB string containing checkin comments for the
source control system. You must supply comments and comment_text.

checkin({'filenamei','filename2'}, 'comments','comment_text')
checks in the files filename1 through filenamen to the source control
system. Use the full paths for the files and include file extensions.
Comments apply to all files checked in.

checkin('filename', 'comments',
‘comment_text','option’,'value') provides additional checkin
options. For multiple file names, use an array of strings instead of
filename, thatis, {'filename1','filename2',...}. Options apply to
all file names. The option and value arguments are shown in the
following table.

option value

Argument Argument Purpose

'force' ‘on' filename is checked in even if the file
has not changed since it was checked
out.

checkin

Examples

option value

Argument Argument Purpose

'force' ‘off' filename is not checked in if there
(default) were no changes since checkout.

'lock’ ‘on' filename is checked in with

comments, and is automatically
checked out.

"lock "off! filename is checked in with
(default) comments but does not remain
checked out.

Check In a File
Typing

checkin('/myserver/mymfiles/clock.m', 'comments’',...
'Adjustment for leapyear')

checks the file /myserver/mymfiles/clock.m into the source control
system, with the comment Adjustment for leapyear.

Check In Multiple Files
Typing

checkin({'/myserver/mymfiles/clock.m',
"/myserver/mymfiles/calendar.m'}, 'comments’,...
'Adjustment for leapyear')

checks the two files into the source control system, using the same
comment for each.

Check In a File and Keep It Checked Out
Typing

checkin('/myserver/mymfiles/clock.m','comments',...
'Adjustment for leapyear', 'lock','on')

2-557

checkin

checks the file /myserver/mymfiles/clock.m into the source control
system and keeps the file checked out.

See Also checkout, cmopts, undocheckout

For Microsoft Windows platforms, use verctrl.

2-558

checkout

Purpose

GUI
Alternatives

Syntax

Description

Check files out of a source control system (UNIX platforms)

As an alternative to the checkout function, select Source

Control > Check Out from the File menu in the MATLAB Editor, the
Simulink product, or the Stateflow product, or in the context menu of
the Current Directory browser. For details, see “Checking Files Out of
the Source Control System on UNIX”.

checkout('filename')
checkout({'filenamet','filename2', ...})
checkout('filename', 'option’,'value',...)

checkout('filename') checks out the file named filename from the
source control system. Use the full path for filename and include the
file extension. The file can be open or closed when you use checkout.

checkout({'filenamel1','filename2', ...}) checks out the files
named filename1 through filenamen from the source control system.
Use the full paths for the files and include the file extensions.

checkout('filename', 'option’, 'value',...) provides additional
checkout options. For multiple file names, use an array of strings
instead of filename, that is, {'filename1','filename2', ...}.

Options apply to all file names. The option and value arguments are
shown in the following table.

option Argument value Argument Purpose

‘force' ‘on' The checkout is
forced, even if you
already have the
file checked out.
This is effectively
an undocheckout
followed by a
checkout.

2-559

checkout

option Argument value Argument

'force' 'off' (default)
'lock’ ‘on' (default)
‘lock ‘off'
‘revision’ version_num’

Purpose

Prevents you from
checking out the file
if you already have it
checked out.

The checkout gets
the file, allows you to
write to it, and locks
the file so that access
to the file for others is
read only.

The checkout gets a
read-only version of
the file, allowing
another user to
check out the file

for updating. You do
not have to check the
file in after checking
it out with this option.

Checks out the
specified revision
of the file.

If you end the MATLAB session, the file remains checked out. You
can check in the file from within the MATLAB desktop during a later
session, or directly from your source control system.

Examples Check Out a File
Typing

checkout('/myserver/mymfiles/clock.m")

checks out the file /myserver/mymfiles/clock.

control system.

2-560

m from the source

checkout

See Also

Check Out Multiple Files
Typing

checkout ({'/myserver/mymfiles/clock.m',...
"/myserver/mymfiles/calendar.m'})

checks out /matlab/mymfiles/clock.m and
/matlab/mymfiles/calendar.m from the source control system.

Force a Checkout, Even If File Is Already Checked Out
Typing

checkout (' /myserver/mymfiles/clock.m', 'force','on')

checks out /matlab/mymfiles/clock.m even if clock.m is already
checked out to you.

Check Out Specified Revision of File
Typing

checkout('/matlab/mymfiles/clock.m', 'revision','1.1")
checks out revision 1.1 of clock.m.

checkin, cmopts, undocheckout, customverctrl

For Microsoft Windows platforms, use verctrl.

2-561

chol

Purpose

Syntax

Description

2-562

Cholesky factorization

R chol(A)

L chol(A, 'lower")

[R,p] = chol(A)

[Ly,p] = chol(A, 'lower")

[R,p,S] = chol(A)

[R,p;s] = chol(A, 'vector')

[Lyp,s] = chol(A, 'lower', 'vector')

R = chol(A) produces an upper triangular matrix R from the diagonal
and upper triangle of matrix A, satisfying the equation R' *R=A. The
lower triangle is assumed to be the (complex conjugate) transpose of the
upper triangle. Matrix A must be positive definite; otherwise, MATLAB
software displays an error message.

L = chol(A, 'lower') produces a lower triangular matrix L from the
diagonal and lower triangle of matrix A, satisfying the equation L*L'=A.
When A is sparse, this syntax of chol is typically faster. Matrix A must
be positive definite; otherwise MATLAB displays an error message.

[R,p] = chol(A) for positive definite A, produces an upper triangular
matrix R from the diagonal and upper triangle of matrix A, satisfying
the equation R' *R=A and p is zero. If A is not positive definite, then p
1s a positive integer and MATLAB does not generate an error. When
A is full, R is an upper triangular matrix of order q=p-1 such that
R'*R=A(1:q9,1:q). When A is sparse, R is an upper triangular matrix
of size g-by-n so that the L-shaped region of the first q rows and first g
columns of R' *R agree with those of A.

[L,p] = chol(A, 'lower') for positive definite A, produces a lower
triangular matrix L from the diagonal and lower triangle of matrix A,
satisfying the equation L*L'=A and p is zero. If A is not positive definite,
then p is a positive integer and MATLAB does not generate an error.
When A is full, L is a lower triangular matrix of order q=p-1 such that
L*L'=A(1:q9,1:q9). When A is sparse, L is a lower triangular matrix of
size q-by-n so that the L-shaped region of the first q rows and first q
columns of L*L' agree with those of A.

chol

[R,p,S] = chol(A), when A is sparse, returns a permutation matrix
S. Note that the preordering S may differ from that obtained from amd
since chol will slightly change the ordering for increased performance.
When p=0, R is an upper triangular matrix such that R' *R=S"' *A*S.
When p is not zero, R is an upper triangular matrix of size g-by-n so
that the L-shaped region of the first q rows and first q columns of R' *R
agree with those of S' *A*S. The factor of S' *A*S tends to be sparser
than the factor of A.

[R,p,s] = chol(A, 'vector') returns the permutation information as
a vector s such that A(s,s)=R'*R, when p=0. You can use the 'matrix'
option in place of 'vector' to obtain the default behavior.

[L,p,s] = chol(A, 'lower', 'vector') uses only the diagonal and
the lower triangle of A and returns a lower triangular matrix L and
a permutation vector s such that A(s,s)=L*L"', when p=0. As above,
you can use the 'matrix' option in place of 'vector' to obtain a
permutation matrix.

For sparse A, CHOLMOD is used to compute the Cholesky factor.

Note Using chol is preferable to using eig for determining positive
definiteness.

Examples The binomial coefficients arranged in a symmetric array create an
interesting positive definite matrix.

n =5;

X = pascal(n)

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

2-563

chol

It is interesting because its Cholesky factor consists of the same
coefficients, arranged in an upper triangular matrix.

R
R =

chol(X)

ococoo =
co0o = =
o= Www=
N I

OO =N =

Destroy the positive definiteness (and actually make the matrix
singular) by subtracting 1 from the last element.

X(n,n) = X(n,n)-1

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization fails.

Algorithm For full matrices X, chol uses the LAPACK routines listed in the
following table.
Real Complex
X double DPOTRF ZPOTRF
X single SPOTRF CPOTRF

For sparse matrices, MATLAB software uses CHOLMOD to compute
the Cholesky factor.

2-564

chol

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack lug.html), Third
Edition, STAM, Philadelphia, 1999.

[2] Davis, T. A., CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod), Dept. of

Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, 2005.

See Also cholinc, cholupdate

2-565

http://www.netlib.org/lapack/lug/lapack_lug.html
http://www.cise.ufl.edu/research/sparse/cholmod

cholinc

Purpose

Syntax

Description

2-566

Sparse incomplete Cholesky and Cholesky-Infinity factorizations

cholinc(X,droptol)
cholinc(X,options)
cholinc(X,'0")
R,p] = cholinc(X,'0")
cholinc (X, 'inf")

T — 1V TV
I

cholinc produces two different kinds of incomplete Cholesky
factorizations: the drop tolerance and the 0 level of fill-in factorizations.
These factors may be useful as preconditioners for a symmetric positive
definite system of linear equations being solved by an iterative method
such as pcg (Preconditioned Conjugate Gradients). cholinc works only
for sparse matrices.

R = cholinc(X,droptol) performs the incomplete Cholesky
factorization of X, with drop tolerance droptol.

R = cholinc(X,options) allows additional options to the incomplete
Cholesky factorization. options is a structure with up to three fields:

droptol Drop tolerance of the incomplete factorization
michol Modified incomplete Cholesky
rdiag Replace zeros on the diagonal of R

Only the fields of interest need to be set.

droptol is a non-negative scalar used as the drop tolerance for the
incomplete Cholesky factorization. This factorization is computed by
performing the incomplete LU factorization with the pivot threshold
option set to 0 (which forces diagonal pivoting) and then scaling the
rows of the incomplete upper triangular factor, U, by the square root
of the diagonal entries in that column. Since the nonzero entries
U(i,j) are bounded below by droptol*norm(X(:,j)) (see luinc), the
nonzero entries R(i,j) are bounded below by the local drop tolerance
droptol*norm(X(:,j))/R(i,1).

cholinc

Setting droptol = 0 produces the complete Cholesky factorization,
which is the default.

michol stands for modified incomplete Cholesky factorization. Its value
1s either 0 (unmodified, the default) or 1 (modified). This performs the
modified incomplete LU factorization of X and scales the returned upper
triangular factor as described above.

rdiag is either 0 or 1. If it is 1, any zero diagonal entries of the upper
triangular factor R are replaced by the square root of the local drop
tolerance in an attempt to avoid a singular factor. The default is 0.

R = cholinc (X, '0") produces the incomplete Cholesky factor of a real
sparse matrix that is symmetric and positive definite using no fill-in.
The upper triangular R has the same sparsity pattern as triu(X),
although R may be zero in some positions where X is nonzero due to
cancellation. The lower triangle of X is assumed to be the transpose of
the upper. Note that the positive definiteness of X does not guarantee
the existence of a factor with the required sparsity. An error message
results if the factorization is not possible. If the factorization is
successful, R' *R agrees with X over its sparsity pattern.

[R,p] = cholinc(X,'0"') with two output arguments, never produces
an error message. If R exists, p is 0. If R does not exist, then p is a
positive integer and R 1s an upper triangular matrix of size q-by-n where
g = p-1. In this latter case, the sparsity pattern of R is that of the
g-by-n upper triangle of X. R'*R agrees with X over the sparsity pattern
of its first g rows and first q columns.

R = cholinc (X, 'inf') produces the Cholesky-Infinity factorization.
This factorization is based on the Cholesky factorization, and
additionally handles real positive semi-definite matrices. It may be
useful for finding a solution to systems which arise in interior-point
methods. When a zero pivot is encountered in the ordinary Cholesky
factorization, the diagonal of the Cholesky-Infinity factor is set to Inf
and the rest of that row is set to 0. This forces a 0 in the corresponding
entry of the solution vector in the associated system of linear equations.
In practice, X is assumed to be positive semi-definite so even negative
pivots are replaced with a value of Inf.

2-567

cholinc

Remarks

Examples

2-568

The incomplete factorizations may be useful as preconditioners

for solving large sparse systems of linear equations. A single 0 on

the diagonal of the upper triangular factor makes it singular. The
incomplete factorization with a drop tolerance prints a warning message
if the upper triangular factor has zeros on the diagonal. Similarly, using
the rdiag option to replace a zero diagonal only gets rid of the symptoms
of the problem, but it does not solve it. The preconditioner may not be
singular, but it probably is not useful, and a warning message is printed.

The Cholesky-Infinity factorization is meant to be used within
interior-point methods. Otherwise, its use is not recommended.

Example 1

Start with a symmetric positive definite matrix, S.

S = delsq(numgrid('C',15));

S is the two-dimensional, five-point discrete negative Lapacian on the
grid generated by numgrid('C’,15).

Compute the Cholesky factorization and the incomplete Cholesky
factorization of level O to compare the fill-in. Make S singular by zeroing
out a diagonal entry and compute the (partial) incomplete Cholesky
factorization of level 0.

C = chol(S);

RO = cholinc(S,'0');
S2 = §; S2(101,101) = 0;

[R,p] = cholinc(S2,'0");

Fill-in occurs within the bands of S in the complete Cholesky factor, but
none in the incomplete Cholesky factor. The incomplete factorization
of the singular S2 stopped at row p = 101 resulting in a 100-by-139
partial factor.

D1
D2

(RO'*R0O) .*spones(S) -S;
(R'*R).*spones(S2)-S2;

cholinc

D1 has elements of the order of eps, showing that RO' *R0 agrees with S
over its sparsity pattern. D2 has elements of the order of eps over its
first 100 rows and first 100 columns, D2(1:100,:) and D2(:,1:100).

5 Cmchalis)
] \]
20 20
2 ~
an N M
-,
80 &
80 E]
100 100
120 120
140 140
0 50 100 0 a0 100
nz =343 = = 1557
a W-chalnoS,'T] Farfal taciar [R pl=chalingS2,0°)
]
2ol Ny X
: 2 sk NN
0 \-\ N N
o,
a0 qof b S
AN
80 aal “ .,
SO
100 a0l \\\\
120 , ,
100 N
140
h - - o sun__qgn 100
nz =391 -
Example 2

The first subplot below shows that cholinc(S,0), the incomplete
Cholesky factor with a drop tolerance of 0, is the same as the Cholesky
factor of S. Increasing the drop tolerance increases the sparsity of the
incomplete factors, as seen below.

2-569

cholinc

2-570

chaline(S,0]
0
20
a0f gy
[=0n]
0
100 N
120 \
140
o 50 100
Nz = 1557
chdinc(5,1e-2)
[n}
=y
40 .
a0 \
100 L\
120
140
o 50 100
Nz = 571

chaling(S, 18-3)

BB EHBo

AN
N

30 100
nz=1211

chalinc([5,1e-1]

AN

N
N

30 100
nz =32

Unfortunately, the sparser factors are poor approximations, as is seen
by the plot of drop tolerance versus norm(R'*R-S,1)/norm(S,1) in

the next figure.

cholinc

Crop tolerance ve nnz(choline(S droptal)|

1500 T T T

1000 1

S00 k
1o 1o 1o 1o 1
" Crop tolerance ve norm(R*R-5)/norm 5]

Example 3

The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically
positive definite:

H3 = hilb(3)

H3 =
1.0000 0.5000 0.3333
0.5000 0.3333 .2500
0.3333 0.2500 0.2000

R3 = chol(H3)

o

R3 =
1.0000 0.5000 0.3333
0 0.2887 0.2887
0 0 0.0745

In practice, the Cholesky factorization breaks down for larger matrices:

H20 = sparse(hilb(20));

2-571

cholinc

Limitations

Algorithm

2-572

[R,p] = chol(H20);
p:
14

For hilb(20), the Cholesky factorization failed in the computation

of row 14 because of a numerically zero pivot. You can use the
Cholesky-Infinity factorization to avoid this error. When a zero pivot is
encountered, cholinc places an Inf on the main diagonal, zeros out the
rest of the row, and continues with the computation:

Rinf = cholinc(H20, 'inf');

In this case, all subsequent pivots are also too small, so the remainder
of the upper triangular factor is:

full(Rinf(14:end,14:end))
ans =
Inf

O OO OoOOoOo

[elNelNeNeNolt el
O +HhO OO OO
- O OO O OO

In

cholinc works on square sparse matrices only. For cholinc(X,'0")
and cholinc (X, 'inf'), X must be real.

R = cholinc(X,droptol) is obtained from [L,U] =
luinc(X,options), where options.droptol = droptol and
options.thresh = 0. The rows of the uppertriangular U are scaled
by the square root of the diagonal in that row, and this scaled factor
becomes R.

R = cholinc(X,options) is produced in a similar manner, except the
rdiag option translates into the udiag option and the milu option takes
the value of the michol option.

cholinc

See Also

References

R = cholinc (X, '0") is based on the “KJI” variant of the Cholesky
factorization. Updates are made only to positions which are nonzero
in the upper triangle of X.

R = cholinc (X, 'inf') is based on the algorithm in Zhang [2].
chol, ilu, luinc, pcg

[1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS
Publishing Company, 1996. Chapter 10, “Preconditioning Techniques”

[2] Zhang, Yin, Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment, Department of Mathematics
and Statistics, University of Maryland Baltimore County, Technical
Report TR96-01

2-573

cholupdate

Purpose

Syntax

Description

Remarks

Example

2-574

Rank 1 update to Cholesky factorization

R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+")
R1 = cholupdate(R,x,'-")

[R1,p] = cholupdate(R,x,"'-")

R1 = cholupdate(R,x) where R = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A +
x*x', where x is a column vector of appropriate length. cholupdate
uses only the diagonal and upper triangle of R. The lower triangle of R
is ignored.

R1

cholupdate(R,x,"'+") is the same as R1 = cholupdate(R,x).

R1 cholupdate(R,x, ' -"') returns the Cholesky factor of A - x*x'.
An error message reports when R is not a valid Cholesky factor or when
the downdated matrix is not positive definite and so does not have

a Cholesky factorization.

[R1,p] = cholupdate(R,x,"'-") will not return an error message. If p
is 0, R1 is the Cholesky factor of A - x*x’. If p is greater than 0, R1 is
the Cholesky factor of the original A. If p is 1, cholupdate failed because
the downdated matrix is not positive definite. If p is 2, cholupdate
failed because the upper triangle of R was not a valid Cholesky factor.

cholupdate works only for full matrices.

A = pascal(4)

A:
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

R = chol(A)

R:

cholupdate

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1
x=[0001]";

This is called a rank one update to A since rank (x*x') is 1:

A+ x*x'

ans =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'),
we can use cholupdate:

R1
R1

cholupdate (R, x)

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix

singular) by subtracting 1 from the last element of A. The downdated
matrix is:

A - xX*Xx'

ans =
1 1 1 1
1 2 3 4

2-575

cholupdate

1 3 6 10
1 4 10 19

Compare chol with cholupdate:

R1 = chol(A-x*x")

??? Error using ==> chol

Matrix must be positive definite.

R1 = cholupdate(R,x,"'-")

??? Error using ==> cholupdate

Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky
factor:

Xx = [000 1/sqrt(2)]"';

R1 = cholupdate(R,x,"'-")
R1 =
1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 0.7071
Algorithm cholupdate uses the algorithms from the LINPACK subroutines ZCHUD

and ZCHDD. cholupdate is useful since computing the new Cholesky

. 3 . o .
factor from scratch is an @ (N7) algoalthm, while simply updating the
existing factor in this way is an O(N=) algorithm.

See Also chol, grupdate

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart,
LINPACK Users’ Guide, SIAM, Philadelphia, 1979.

2-576

circshift

Purpose Shift array circularly
Syntax B = circshift(A,shiftsize)
Description B = circshift(A,shiftsize) circularly shifts the values in the array, A,

by shiftsize elements. shiftsize is a vector of integer scalars where
the n-th element specifies the shift amount for the n-th dimension of
array A. If an element in shiftsize is positive, the values of A are
shifted down (or to the right). If it is negative, the values of A are shifted
up (or to the left). If it is 0, the values in that dimension are not shifted.

Example Circularly shift first dimension values down by 1.
A=1[123;456; 7 8 9]
A =

1 2 3

4 5 6

7 8 9
B = circshift(A,1)
B =

7 8 9

1 2 3

4 5 6

Circularly shift first dimension values down by 1 and second dimension
values to the left by 1.

B = circshift(A,[1 -11);
B =
8 9 7
2 3 1
5 6 4
See Also fftshift, shiftdim

2-577

cla

Purpose

GUI
Alternatives

Syntax

Description

Remarks

See Also

2-578

Clear current axes

Remove axes and clear objects from them in plot edit mode. For
details, see “Working in Plot Edit Mode” in the MATLAB Graphics
documentation.

cla

cla reset
cla(ax)

cla(ax, 'reset')

cla deletes from the current axes all graphics objects whose handles
are not hidden (i.e., their HandleVisibility property is set to on).

cla reset deletes from the current axes all graphics objects regardless
of the setting of their HandleVisibility property and resets all axes
properties, except Position and Units, to their default values.

cla(ax) or cla(ax, 'reset') clears the single axes with handle ax.

The cla command behaves the same way when issued on the command
line as it does in callback routines — it does not recognize the
HandleVisibility setting of callback. This means that when issued
from within a callback routine, cla deletes only those objects whose
HandleVisibility property is set to on.

clf, hold, newplot, reset

“Axes Operations” on page 1-100 for related functions

clabel

Purpose

Syntax

Description

Contour plot elevation labels

clabel(C,h)

clabel(C,h,v)

clabel(C,h, 'manual')

clabel(C)

clabel(C,v)

clabel(C, 'manual')

text_handles = clabel(...)

clabel(..., 'PropertyName',propertyvalue,...)
clabel(...'LabelSpacing',points)

The clabel function adds height labels to a 2-D contour plot.

clabel(C,h) rotates the labels and inserts them in the contour lines.
The function inserts only those labels that fit within the contour,
depending on the size of the contour.

clabel(C,h,v) creates labels only for those contour levels given in
vector v, then rotates the labels and inserts them in the contour lines.

clabel(C,h, 'manual') places contour labels at locations you select
with a mouse. Press the left mouse button (the mouse button on a
single-button mouse) or the space bar to label a contour at the closest
location beneath the center of the cursor. Press the Return key while
the cursor is within the figure window to terminate labeling. The labels
are rotated and inserted in the contour lines.

clabel(C) adds labels to the current contour plot using the contour
array C output from contour. The function labels all contours displayed
and randomly selects label positions.

clabel(C,v) labels only those contour levels given in vector v.

clabel(C, 'manual') places contour labels at locations you select with
a mouse.

text_handles = clabel(...) returns the handles of text objects
created by clabel. The UserData properties of the text objects contain
the contour values displayed. If you call clabel without the h argument,

2-579

clabel

Remarks

Examples

2-580

text_handles also contains the handles of line objects used to create
the '+' symbols.

clabel(..., 'PropertyName' ,propertyvalue,...) enables you to
specify text object property/value pairs for the label strings. (See Text
Properties.)

clabel(...'LabelSpacing',points) specifies the spacing between
labels on the same contour line, in units of points (72 points equal one
inch).

When the syntax includes the argument h, this function rotates the
labels and inserts them in the contour lines (see Examples). Otherwise,
the labels are displayed upright and a '+' indicates which contour line
the label is annotating.

Generate, draw, and label a simple contour plot.

[X,y] = meshgrid(-2:.2:2);
z = X."exp(-x."2-y."2);
[C,h] = contour(x,y,z);
clabel(C,h);

clabel

151 - i |

0.5F

0.8

-1k

-2 |]

—= =15 -1 -0.5 4] 0.5 1 1.5
Label a contour plot with label spacing set to 72 points (one inch).
[X,y,z] = peaks;

[C,h] = contour(x,y,z);
clabel(C,h, 'LabelSpacing',72)

2-581

clabel

2-582

3 T T T T T
2 2
g
ar & g
¢ o ¥ (ﬁfﬂiwjﬁhk) =
>3]
o —e B W
1k |
& 2
/--?’-ﬂ o)
v} (o]
ol E i o
\a_udf/ 1
5]
" Q)
-r it < o T T o
e
0 /f:’;
e
) I x 0
-2 \\ A ﬂ"
g—f’f/
-3 ! o ! ! ! !
Z3 -2 -1 o 1 E

Label a contour plot with 15 point red text.

[X,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h, 'FontSize',15, 'Color','r', 'Rotation',0)

clabel

3 T T T T T
2
2r g) 47 g -
2 4 < IB
5 4
r 0 2]
2 2
/ 0
ol _0 -

)
%

-1k

2} 0 -4 -
_//—.z

-3 1 1 1 1 1
] -2 =1 a 1 2 3

|

Label a contour plot with upright text and '+' symbols indicating which
contour line each label annotates.

[x,y,z] = peaks;

C = contour(x,y,z);
clabel(C)

2-583

clabel

-1}

-3 1 1 1 1 1

-3 -2 -1 0 1 2

See Also contour, contourc, contourf
“Annotating Plots” on page 1-91 for related functions

“Drawing Text in a Box” for an example that illustrates the use of
contour labels

2-584

class

Purpose

Syntax

Description

Create object or return class of object

str = class(object)

obj = class(s, 'class_name')
obj = class(s, 'class_name',parenti,parent2,...)
obj = class(struct([]),'class_name',parenti,parent2,...)

obj_struct = class(struct_array, 'class_name',parent_array)

str = class(object) returns a string specifying the class of object.

The following table lists the class names that can be returned. All
except the last one are MATLAB classes.

logical
char
int8
uint8
int16
uinti16
int32
uint32
int64
uint64
single
double
cell
struct

function_handle

Logical array of true and false values
Character array

8-bit signed integer array

8-bit unsigned integer array

16-bit signed integer array

16-bit unsigned integer array

32-bit signed integer array

32-bit unsigned integer array

64-bit signed integer array

64-bit unsigned integer array
Single-precision floating-point number array
Double-precision floating-point number array
Cell array

Structure array

Array of values for calling functions indirectly

2-585

class

2-586

‘class_name’ User—defined MATLAB class

‘Java_class_name’ Java class

Using the class function within a class constructor (prior to
MATLAB Version 7.6)

The following usage of the class function is restricted to pre MATLAB
Version 7.6 class constructors (classes defined without a classdef
statement). It can be used only within a function named class_name.m,
which is in a directory named @class_name (where class_name is the
same as the string passed to class and is the name of the class being
constructed).

See “Class Constructor Methods” for information on implementing class
constructor methods in MATLAB Version 7.6 and after.

obj = class(s, 'class _name') creates an array of class class_name
objects using the struct s as a pattern to determine the size of obj.

obj = class(s, 'class_name',parenti,parent2,...) creates an
array of class class_name objects that inherit the methods and fields
of the parent objects parent1, parent2, and so on. The struct s is
used as a pattern to determine the size of obj. The size of the parent
objects must match the size of s or be a scalar (1-by-1), in which case,
MATLAB performs scalar expansion.

obj = class(struct([]),'class_name',parenti,parent2,...)
creates an array of class class_name objects that inherits the methods
and fields of the parent objects parent1, parent2, and so on. Specifying
the empty structure struct([]) as the first argument ensures that the
object created contains no fields other than those that are inherited
from the parent objects. All parents must have the same, nonzero size,
which determines the size of the returned object obj.

Arrays of objects

obj_struct = class(struct_array, 'class_name',parent_array)
struct_array is an array of structs and parent_array is an array

class

of parent objects. Every element of the parent_array is mapped to

a corresponding element in the struct_array to produce the output
array of objects, obj_struct. All arrays must be of the same size or,
if either the struct_array or the parent_array is of size 1-by1, then
MATLAB performs scalar expansion to match the array sizes.

Note that you can create an object array of size 0—by-0 by setting the
size of the struct_array and parent_array to O-by-0.

Examples To return in nameStr the class of Java object j,

nameStr = class(j)

Obtain the full name of a package-based Java class,
import java.lang.*;

obj = String('mystring');
class(obj)

See Also inferiorto, isa, struct, superiorto
Object-Oriented Programming

2-587

classdef

Purpose

Syntax

Description

2-588

Class definition key words

classdef
properties
methods
events

classdef begins the class definition, which is terminated by an end key
word. Only blank lines and comments can precede classdef. You must
place a class definition in a file having the same name as the class, with
a filename extension of .m. Class definition M-files can be in directories
on the MATLAB path or in @ directories whose parent directory is on
the MATLAB path. See “Class Directories” for more information.

See “The Classdef Block” and “Defining Classes — Syntax” for more
information on classes.

properties begins a property definition block, which is terminated

by an end key word. Class definitions can contain multiple property
definition blocks, each specifying different attribute settings that apply
to the properties in that particular block.

See “Defining Properties” for more information.

methods begins a methods definition block, which is terminated by
an end key word. This block contains functions that implement class
methods. Class definitions can contain multiple method blocks, each
specifying different attribute settings that apply to the methods in
that particular block. It is possible for method functions to be defined
in separate files.

See “Class Methods” for more information.

events begins an events definition block, which is terminated by an end
key word. This block contains event names defined by the class. Class
definitions can contain multiple event blocks, each specifying different
attribute settings that apply to the events in that particular block.

See “Defining Events and Listeners — Syntax and Techniques” for more
information.

classdef

Table of Attributes

Display the attributes of all class component in a popup window, click
this link: Attribute Tables

Examples Here is the basic structure of a class definition.

classdef class_name
properties
PropertyName
end
methods
function obj = methodName(obj,arg2,...)

end
end
events
EventName
end
end

See Also Object-Oriented Programming

2-589

clc

Purpose

GUI
Alternatives

Syntax

Description

Examples

See Also

2-590

Clear Command Window

As an alternative to the clc function, select Edit > Clear Command
Window in the MATLAB desktop.

clc

clc clears all input and output from the Command Window display,
giving you a “clean screen.”

After using clc, you cannot use the scroll bar to see the history of
functions, but you still can use the up arrow to recall statements from
the command history.

Use clc in an M-file to always display output in the same starting
position on the screen.

clear, clf, close, home

clear

Purpose

Graphical
Interface

Syntax

Description

Remove items from workspace, freeing up system memory

As an alternative to the clear function, use Edit > Clear Workspace
in the MATLAB desktop.

clear

clear name

clear nameil name2 name3

clear global name

clear -regexp expri expr2 ...
clear global -regexp expri expr2
clear keyword
clear('namel', ‘name2', 'name3',...)

clear removes all variables from the workspace. This frees up system
memory.

clear name removes just the M-file or MEX-file function or variable
name from the workspace. You can use wildcards (*) to remove items
selectively. For example, clear my* removes any variables whose
names begin with the string my. It removes debugging breakpoints in
M-files and reinitializes persistent variables, since the breakpoints for
a function and persistent variables are cleared whenever the M-file is
changed or cleared. If name is global, it is removed from the current
workspace, but left accessible to any functions declaring it global. If
name has been locked by mlock, it remains in memory.

Use a partial path to distinguish between different overloaded
versions of a function. For example, clear polynom/display clears
only the display method for polynom objects, leaving any other
implementations in memory.

clear name1 name2 name3 ... removes namel, name2, and name3
from the workspace.

clear global name removes the global variable name. If name is global,
clear name removes name from the current workspace, but leaves it

2-591

clear

accessible to any functions declaring it global. Use clear global name
to completely remove a global variable.

clear -regexp expri expr2 ... clears all variables that match any
of the regular expressions expri, expr2, etc. This option only clears
variables.

clear global -regexp expri expr2 ... clears all global variables
that match any of the regular expressions expri, expr2, etc.

clear keyword clears the items indicated by keyword.

Keyword Items Cleared

all Removes all variables, functions, and MEX-files
from memory, leaving the workspace empty.
Using clear all removes debugging breakpoints
in M-files and reinitializes persistent variables,
since the breakpoints for a function and persistent
variables are cleared whenever the M-file is
changed or cleared. When issued from the
Command Window prompt, also removes the Sun
Microsystems Java packages import list.

classes The same as clear all, but also clears MATLAB
class definitions. If any objects exist outside the
workspace (for example, in user data or persistent
variables in a locked M-file), a warning is issued
and the class definition is not cleared. Issue a
clear classes function if the number or names of
fields in a class are changed.

functions Clears all the currently compiled M-functions
and MEX-functions from memory. Using clear
function removes debugging breakpoints in

the function M-file and reinitializes persistent
variables, since the breakpoints for a function
and persistent variables are cleared whenever the
M-file is changed or cleared.

2-592

clear

Remarks

Keyword

Items Cleared

global

Clears all global variables from the workspace.

import

Removes the Java packages import list. It can only
be issued from the Command Window prompt. It
cannot be used in a function.

java

The same as clear all, but also clears the
definitions of all Java classes defined by files on
the Java dynamic class path (see “The Java Class
Path” in the External Interfaces documentation).
If any Java objects exist outside the workspace (for
example, in user data or persistent variables in a
locked M-file), a warning is issued and the Java
class definition is not cleared. Issue a clear java
command after modifying any files on the Java
dynamic class path.

variables

Clears all variables from the workspace.

clear('namel','name2','name3',...) is the function form of the
syntax. Use this form when the variable name or function name is

stored in a string.

When you use clear in a function, it has the following effect on items in
your function and base workspaces:

e clear name — If name is the name of a function, the function is
cleared in both the function workspace and in your base workspace.

® clear functions — All functions are cleared in both the function
workspace and in your base workspace.

e clear global — All global variables are cleared in both the function
workspace and in your base workspace.

e clear all — All functions and global variables are cleared in both
the function workspace and in your base workspace.

2-593

clear

Limitations On UNIX? systems, clear does not affect the amount of memory
allocated to the MATLAB process.

The clear function does not clear Simulink models. Use close instead.

Examples Given a workspace containing the following variables
Name Size Bytes Class
c 3x4 1200 cell array
frame 1x1 java.awt.Frame
gbl1 1x1 8 double array (global)
gbl2 1x1 8 double array (global)
xint 1x1 1 1int8 array

you can clear a single variable, xint, by typing

clear xint

To clear all global variables, type

clear global

whos
Name Size Bytes Class
c 3x4 1200 cell array
frame 1x1 java.awt.Frame

Using regular expressions, clear those variables with names that begin
with Mon, Tue, or Wed:

clear('-regexp', '“Mon|~Tue|"Wed');

To clear all compiled M- and MEX-functions from memory, type clear
functions. In the case shown below, clear functions was unable to

2. 1is a registered trademark of The Open Group in the United States and other
countries

2-594

clear

clear one M-file function from memory, testfun, because the function is

locked.
clear functions % Attempt to clear all functions.
inmem
ans =
"testfun' % One M-file function remains in memory.

mislocked testfun
ans =
1 % This function is locked in memory.

Once you unlock the function from memory, you can clear it.

munlock testfun
clear functions

inmem
ans =
Empty cell array: 0-by-1

See Also clc, clearvars, close, import, inmem, load, mlock, munlock, pack,
persistent, save, who, whos, workspace

“MATLAB Workspace” in the Desktop Tools and Development
Environment documentation

2-595

clearvars

Purpose

Graphical
Interface

Syntax

Description

2-596

Clear variables from memory

As an alternative to the clearvars function, in the Workspace browser,
select variables to clear and then press Delete.

clearvars vi1 v2

clearvars -global

clearvars -global vi v2
clearvars -regexp pi1 p2
clearvars -except vi1 v2
clearvars -except -regexp p1 p2

clearvars v1 v2 ... -except -regexp pl p2 ...
clearvars -regexp pi1 p2 ... -except vl v2 ...
clearvars vi1 v2 ... clears variables v1, v2, and so on from the

currently active workspace. Each input must be an unquoted string
specifying the variable to be cleared. This string may include the
wildcard character (*) to clear all variables that match a pattern.
For example, clearvars X* clears all the variables in the current
workspace that start with the letter X.

If any of the variables v1, v2, and so on, are global, clearvars
removes these variables from the current workspace only, leaving them
accessible to any functions that declare them as global.

clearvars -global removes all global variables, including those made
global within functions.

clearvars -global vi v2 ... completely removes the specified
global variables.

The -global flag may be used with any of the following syntaxes. When
used in this way, it must immediately follow the function name.

clearvars -regexp pl1 p2 ... clears all variables that match regular
expression patterns p1, p2, and so on.

clearvars -except vi v2 ... clears all variables except for those
specified following the -except flag. Use the wildcard character *

clearvars

Examples

See Also

in a variable name to exclude variables that match a pattern from
being cleared. clearvars -except X* clears all the variables in the
current workspace, except for those that start with X, for instance. Use
clearvars -except to keep the variables you want and remove all
others.

clearvars -except -regexp p1 p2 ... clears all variables except
those that regular expression patterns p1, p2. If used in this way, the
-regexp flag must immediately follow the -except flag.

clearvars v1 v2 ... -except -regexp pl p2 ... can be used to
specify variables to clear that do not match specified regular expression
patterns.

clearvars -regexp pl p2 ... -except vl v2 ... clears variables
that match p1, p2, ..., except for variables v1, v2, ...

Clear variables starting with a, except for the variable ab:

clearvars a* -except ab

Clear all global variables except those starting with x:

clearvars -global -except x*

Clear variables that start with b and are followed by 3 digits, for the
variable b106:

clearvars -regexp "“b\d{3}$ -except b106

Clear variables that start with a, except those ending with a:

clearvars a* -except -regexp a$

clear, exist, global, persistent, save, who, whos

“MATLAB Workspace” in the Desktop Tools and Development
Environment documentation

2-597

clear (serial)

Purpose
Syntax

Description

Remarks

Example

See Also

2-598

Remove serial port object from MATLAB workspace
clear obj

clear obj removes obj from the MATLAB workspace, where obj is a
serial port object or an array of serial port objects.

If obj is connected to the device and it is cleared from the workspace,
then obj remains connected to the device. You can restore obj to the
workspace with the instrfind function. A serial port object connected
to the device has a Status property value of open.

To disconnect obj from the device, use the fclose function. To remove
obj from memory, use the delete function. You should remove invalid
serial port objects from the workspace with clear.

This example creates the serial port object s, copies s to a new variable
scopy, and clears s from the MATLAB workspace. s is then restored to
the workspace with instrfind and is shown to be identical to scopy.

s = serial('COM1');
Scopy = S;
clear s
s = instrfind;
isequal(scopy,Ss)
ans =

1

Functions

delete, fclose, instrfind, isvalid

Properties
Status

clf

Purpose

GUI
Alternatives

Syntax

Description

Remarks

See Also

Clear current figure window

Use Clear Figure from the figure window’s File menu to clear the
contents of a figure. You can also create a desktop shortcut to clear the
current figure with one mouse click. See “M ATLAB Shortcuts — Easily
Run a Group of Statements” in the MATLAB Desktop Environment
documentation.

clf('reset')

clf (fig)

clf(fig, 'reset')
figure_handle = clf(...)

clf deletes from the current figure all graphics objects whose handles
are not hidden (i.e., their HandleVisibility property is set to on).

clf('reset') deletes from the current figure all graphics objects
regardless of the setting of their HandleVisibility property and resets
all figure properties except Position, Units, PaperPosition, and
PaperuUnits to their default values.

clf(fig) or c1f(fig, 'reset') clears the single figure with handle fig.

figure_handle = clf(...) returns the handle of the figure. This
1s useful when the figure IntegerHandle property is off because the
noninteger handle becomes invalid when the reset option is used (i.e.,
IntegerHandle is reset to on, which is the default).

The c1f command behaves the same way when issued on the command
line as it does in callback routines — it does not recognize the
HandleVisibility setting of callback. This means that when issued
from within a callback routine, c1f deletes only those objects whose
HandleVisibility property is set to on.

cla, clc, hold, reset

“Figure Windows” on page 1-99 for related functions

2-599

clipboard

Purpose

Graphical
Interface

Syntax

Description

See Also

2-600

Copy and paste strings to and from system clipboard

As an alternative to clipboard, use the Import Wizard. To use the
Import Wizard to copy data from the clipboard, select Paste to
Workspace from the Edit menu.

clipboard('copy', data)
str = clipboard('paste')
data = clipboard('pastespecial')

clipboard('copy', data) sets the clipboard contents to data. If data
1s not a character array, the clipboard uses mat2str to convert it to a
string.

str = clipboard('paste') returns the current contents of the
clipboard as a string or as an empty string (' '), if the current clipboard
contents cannot be converted to a string.

data = clipboard('pastespecial') returns the current contents of
the clipboard as an array using uiimport.

Note The clipboard function requires Sun Microsystems Java
software.

load, uiimport

clock

Purpose
Syntax

Description

Remarks

See Also

Current time as date vector
¢ = clock

¢ = clock returns a 6-element date vector containing the current date
and time in decimal form:

[year month day hour minute seconds]

The sixth element of the date vector output (seconds) is accurate to
several digits beyond the decimal point. The statement fix (clock)
rounds to integer display format.

When timing the duration of an event, use the tic and toc functions
instead of clock or etime. These latter two functions are based on the
system time which can be adjusted periodically by the operating system
and thus might not be reliable in time comparison operations.

cputime, datenum, datevec, now, etime, tic, toc

2-601

close

Purpose

Syntax

Description

Remarks

2-602

Remove specified figure

close

close(h)

close name

close all

close all hidden
status = close(...)

close deletes the current figure or the specified figure(s). It optionally
returns the status of the close operation.

close deletes the current figure (equivalent to close(gcf)).

close(h) deletes the figure identified by h. If h is a vector or matrix,
clse deletes all figures identified by h.

close name deletes the figure with the specified name.
close all deletes all figures whose handles are not hidden.

close all hidden deletes all figures including those with hidden
handles.

status = close(...) returns 1 if the specified windows have been
deleted and 0 otherwise.

The close function works by evaluating the specified figure’s
CloseRequestFcn property with the statement

eval(get(h, 'CloseRequestFcn'))

The default CloseRequestFcn, closereq, deletes the current figure
using delete(get (0, 'CurrentFigure')). If you specify multiple figure
handles, close executes each figure’s CloseRequestFcn in turn. If an
error that terminates the execution of a CloseRequestFcn occurs, the
figure is not deleted. Note that using your computer’s window manager
(i.e., the Close menu item) also calls the figure’s CloseRequestFcn.

close

See Also

If a figure’s handle is hidden (i.e., the figure’s HandleVisibility
property 1s set to callback or off and the root ShowHiddenHandles
property is set to on), you must specify the hidden option when trying
to access a figure using the all option.

To delete all figures unconditionally, use the statements

set (0, 'ShowHiddenHandles', 'on')
delete(get (0, 'Children'))

The delete function does not execute the figure’s CloseRequestFcn; it
simply deletes the specified figure.

The figure CloseRequestFcn allows you to either delay or abort the
closing of a figure once the close function has been issued. For
example, you can display a dialog box to see if the user really wants to
delete the figure or save and clean up before closing.

delete, figure, gcf
The figure HandleVisibility property
The root ShowHiddenHandles property

“Figure Windows” on page 1-99 for related functions

2-603

close (avifile)

Purpose Close Audio/Video Interleaved (AVI) file
Syntax aviobj = close(aviobj)
Description aviobj = close(aviobj) finishes writing and closes the AVI file

associated with aviobj, which is an AVI file object created using the
avifile function.

See Also avifile, addframe, movie2avi

2-604

close (ftp)

Purpose
Syntax

Description

Examples

See Also

Close connection to FTP server

close(T)

close(f) closes the connection to the FTP server, represented by object
f, which was created using ftp. Be sure to use close after completing
work on the server. If you do not run close, the connection will be
terminated automatically either because of the server’s time-out feature
or by exiting MATLAB.

Connect to the MathWorks FTP server and then disconnect.

tmw=ftp('ftp.mathworks.com');
close(tmw)

ftp

2-605

closereq

Purpose Default figure close request function
Syntax closereq

Description closereq deletes the current figure.
See Also The figure CloseRequestFcn property

“Figure Windows” on page 1-99 for related functions

2-606

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/figure_props.html%23CloseRequestFcn

cmopts

Purpose

GUI
Alternatives

Syntax

Description

Examples

Name of source control system

As an alternative to cmopts, select
File > Preferences > General > Source Control to view the
currently selected source control system.

cmopts

cmopts displays the name of the source control system you selected
using preferences, which is one of the following:

® clearcase (UNIX platforms only)
e customverctrl (UNIX platforms only)
¢ cvs (UNIX platforms only)

¢ pvcs (UNIX platforms only, used for PVCS® and ChangeMan®
software)

¢ rcs (UNIX platforms only)
® sourcesafe (Windows platforms only)
If you have not selected a source control system, cmopts displays

none

For more information, see “Specify Source Control System with
MATLAB Software” for PC platforms, and “Specifying the Source
Control System on UNIX Platforms” for UNIX platforms in the
MATLAB Desktop Tools and Development Environment documentation.

Type

cmopts

and MATLAB returns

ans =

2-607

cmopts

Microsoft Visual SourceSafe
which is the source control system specified in preferences.

See Also checkin, checkout, customverctrl, verctrl

2-608

colamd

Purpose
Syntax

Description

Column approximate minimum degree permutation

colamd(S)

el
I}

p = colamd(S) returns the column approximate minimum degree
permutation vector for the sparse matrix S. For a non-symmetric matrix
S, S(:,p) tends to have sparser LU factors than S. The Cholesky
factorization of S(:,p)"' * S(:,p) also tends to be sparser than that
of S'*8.

knobs is a two-element vector. If S is m-by-n, then rows with more
than (knobs(1))*n entries are ignored. Columns with more than
(knobs(2)) *m entries are removed prior to ordering, and ordered last in
the output permutation p. If the knobs parameter is not present, then
knobs (1) = knobs(2) = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and
the validity of the matrix S.

stats(1) Number of dense or empty rows ignored by
colamd

stats(2) Number of dense or empty columns ignored by
colamd

stats(3) Number of garbage collections performed on the

internal data structure used by colamd (roughly
of size 2.2*nnz(S) + 4*m + 7*n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or
contains duplicate entries, or 0 if no such
column exists

2-609

colamd

Examples

2-610

stats(6) Last seen duplicate or out-of-order row index in
the column index given by stats(5), or 0 if no
such row index exists

stats(7) Number of duplicate and out-of-order row
indices

Although MATLAB built-in functions generate valid sparse matrices,
a user may construct an invalid sparse matrix using the MATLAB C
or Fortran APIs and pass it to colamd. For this reason, colamd verifies
that S is valid:

¢ [f a row index appears two or more times in the same column, colamd
ignores the duplicate entries, continues processing, and provides
information about the duplicate entries in stats(4:7).

e If row indices in a column are out of order, colamd sorts each column
of its internal copy of the matrix S (but does not repair the input
matrix S), continues processing, and provides information about the
out-of-order entries in stats(4:7).

e [fSisinvalid in any other way, colamd cannot continue. It prints an
error message, and returns no output arguments (p or stats) .

The ordering is followed by a column elimination tree post-ordering.

The Harwell-Boeing collection of sparse matrices and the MATLAB
demos directory include a test matrix west0479. It is a matrix of order
479 resulting from a model due to Westerberg of an eight-stage chemical
distillation column. The spy plot shows evidence of the eight stages.
The colamd ordering scrambles this structure.

load west0479

A = west0479;

p = colamd(A);

subplot(1,2,1), spy(A,4), title('A")
subplot(1,2,2), spy(A(:,p),4), title('A(:,p)")

colamd

A
0
S
100f. ?"l. Ly -
o
200t 4r " ;:-‘ \
- :;‘ t .
300+t - - .
iy - '
e T
oot %
- A
E . . o
0 100 200 300 400
nz = 1887

1001 ¢

200
3
3008

400

o "h.i

331

0

100 200 300 400
nz = 1887

Comparing the spy plot of the LU factorization of the original matrix
with that of the reordered matrix shows that minimum degree reduces
the time and storage requirements by better than a factor of 2.8. The
nonzero counts are 16777 and 5904, respectively.

spy (Lu(A),4)
spy (Lu(A(:,p)),4)

2-611

colamd

See Also

References

2-612

u(A] I (ALp))
0 g 0 — . ——
= 1 i_l- -I *
rm 23] -} F—_ - - - ™
100" Wi b | S TI 100 1 7
tf o a0t ﬁ
2001 » b= = ST T I 1 I -
- T] *
-_ = "Wl -
= A= Cope
anot . ingr— A aoot i g
F=x . =I - i .
. _-IH-E Ll
iy -
400f YT 400} a2 g w
bl =1
0 100 200 300 400 0 100 200 300 400
nz = 16777 nz = 5943

colperm, spparms, symamd, symrcm

[1] The authors of the code for “colamd” are Stefan I. Larimore
and Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,
Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

http://www.cise.ufl.edu/research/sparse/%0D

colorbar

Purpose

GUI
Alternatives

Syntax

Description

Colorbar showing color scale

Add a colorbar to a plot with the colorbar tool O on the figure toolbar,
or use Insert —> Colorbar from the figure menu. Use the Property
Editor to modify the position, font and other properties of a legend. .
For details, see “Working in Plot Edit Mode” in the MATLAB Graphics
documentation.

colorbar
colorbar('off')
colorbar('hide')
colorbar('delete')

colorbar(..., 'peer',axes_handle)
colorbar(...,'location')
colorbar(..., 'PropertyName' ,propertyvalue)

cbar_axes = colorbar(...)

colorbar(cbar_handle, 'off")
colorbar(cbar_handle, 'hide"')

colorbar(cbar_handle, 'delete"')

colorbar(cbar_handle, PropertyName',propertyvalue,...)

The colorbar function displays the current colormap in the current
figure and resizes the current axes to accommodate the colorbar.

colorbar adds a new vertical colorbar on the right side of the current
axes. If a colorbar exists in that location, colorbar replaces it with a
new one. If a colorbar exists at a nondefault location, it is retained
along with the new colorbar.

colorbar('off'), colorbar('hide'), and colorbar('delete')
delete all colorbars associated with the current axes.

colorbar(..., 'peer',axes_handle) creates a colorbar associated
with the axes axes_handle instead of the current axes.

colorbar(...,"'location') adds a colorbar in the specified orientation
with respect to the axes. If a colorbar exists at the location specified,

2-613

colorbar

2-614

it 1s replaced. Any colorbars not occupying the specified location are
retained. Possible values for Iocation are

North Inside plot box near top
South Inside bottom

East Inside right

West Inside left

NorthOutside Outside plot box near top

SouthOutside Outside bottom

EastOutside Outside right
WestOutside Outside left

Using one of the ...Outside values for location ensures that the
colorbar does not overlap the plot, whereas overlaps can occur when you
specify any of the other four values.

colorbar(..., 'PropertyName' ,propertyvalue) specifies property
names and values for the axes object used to create the colorbar. See
Axes Properties for a description of the properties you can set. The

location property applies only to colorbars and legends, not to axes.

cbar_axes = colorbar(...) returns a handle to a new colorbar
object, which is a child of the current figure. If a colorbar exists, a new
one is still created.

colorbar(cbar_handle, ‘'off'), colorbar(cbar_handle, 'hide'),
and colorbar(cbar_handle, 'delete') delete the colorbar specified
by cbar_handle.

colorbar(cbar_handle, PropertyName',propertyvalue,...) sets
properties for the existing colorbar having the handle cbar_handle. To
obtain the handle to an existing colorbar, use the command

cbar_handle = findobj(figure_handle, 'tag', 'Colorbar')

colorbar

Remarks

Examples

where figure_handle is the handle of the figure containing the colorbar
you want to modify. If the figure contains more than one colorbar,
cbar_handle is returned as a vector, and you must choose which of
the handles to specify to colorbar.

Backward-Compatible Version

h = colorbar('v6',...) creates a colorbar compatible with MATLAB
6.5 and earlier. It returns the handles of patch objects instead of a
colorbar object.

Note The v6 option enables MATLAB Version 7.x users to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.
You can use colorbar with 2-D and 3-D plots.

Example 1

Display a colorbar beside the axes and use descriptive text strings as
y-tick labels. Note that labels will repeat cyclically when the number
of y-ticks is greater than the number of labels, and not all labels will
appear if there are fewer y-ticks than labels you have specified. Also
note that when colorbars are horizontal, their ticks and labels are
governed by the XTick property rather than the YTick property. For
more information, see “Labeling Colorbar Ticks”.

surf (peaks(30))
colorbar('YTickLabel',...
{'Freezing', 'Cold', 'Cool', 'Neutral',...
'Warm', 'Hot', 'Burning', 'Nuclear'})

2-615

colorbar

Muclear

Burning

= Cool

Cald

Freezing

Example 2
Display a horizontal colorbar beneath the axes of a filled contour plot:
contourf (peaks(60))

colormap cool
colorbar('location', 'southoutside')

2-616

colorbar

See Also colormap

“Color Operations” on page 1-102 for related functions

2-617

colordef

Purpose

Syntax

Description

Remarks

2-618

Set default property values to display different color schemes

colordef white

colordef black

colordef none
colordef(fig,color_option)

h = colordef('new',color_option)

colordef enables you to select either a white or black background for
graphics display. It sets axis lines and labels so that they contrast with
the background color.

colordef white sets the axis background color to white, the axis lines
and labels to black, and the figure background color to light gray.

colordef black sets the axis background color to black, the axis lines
and labels to white, and the figure background color to dark gray.

colordef none sets the figure coloring to that used by MATLAB
Version 4. The most noticeable difference is that the axis background
is set to 'none', making the axis background and figure background
colors the same. The figure background color is set to black.

colordef(fig,color_option) sets the color scheme of the figure
identified by the handle fig to one of the color options 'white’,
"black', or 'none'. When you use this syntax to apply colordef to an
existing figure, the figure must have no graphic content. If it does, you
should first clear it (via c1f) before using this form of the command.

h = colordef('new',color option) returns the handle to a new
figure created with the specified color options (i.e., 'white', 'black"', or
'none'). This form of the command is useful for creating GUIs when
you may want to control the default environment. The figure is created
with 'visible', 'off' to prevent flashing.

colordef affects only subsequently drawn figures, not those currently
on the display. This is because colordef works by setting default
property values (on the root or figure level). You can list the currently
set default values on the root level with the statement

colordef

get (0, 'defaults')

You can remove all default values using the reset command:

reset(0)

See the get and reset references pages for more information.

See Also whitebg, c1f

“Color Operations” on page 1-102 for related functions

2-619

colormap

Purpose

GUI
Alternatives

Syntax

Description

2-620

Set and get current colormap

Select a built-in colormap with the Property Editor. To modify the
current colormap, use the Colormap Editor, accessible from Edit >
Colormap on the figure menu.

colormap(map)
colormap(‘'default')
cmap = colormap
colormap(ax,...)

A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0.
Each row is an RGB vector that defines one color. The kth row of the
colormap defines the kth color, where map(k,:) = [r(k) g(k) b(k)])
specifies the intensity of red, green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in
map are outside the interval [0 1], you receive the error Colormap must
have values in [0,1].

colormap('default') sets the current colormap to the default
colormap.

cmap = colormap retrieves the current colormap. The values returned
are in the interval [0 1].

colormap(ax, ...) uses the figure corresponding to axes ax instead of
the current figure.

Specifying Colormaps

M-files in the color directory generate a number of colormaps. Each
M-file accepts the colormap size as an argument. For example,

colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size, a
colormap the same size as the current colormap is created.

colormap

Supported Colormaps

The built-in MATLAB colormaps are illustrated and described below.
In addition to specifying built-in colormaps programmatically, you can
use the Colormap menu in the Figure Properties pane of the Plot
Tools GUI to select one interactively.

The named built-in colormaps are the following:

e T)t
N L e
I Huot
I ol
. Sping
. Summer
[Avturrin
I inter
= Gray
[DR Buore
- Copper
n Firik
I i -

® autumn varies smoothly from red, through orange, to yellow.

® bone is a grayscale colormap with a higher value for the blue
component. This colormap is useful for adding an “electronic” look
to grayscale images.

® colorcube contains as many regularly spaced colors in RGB color
space as possible, while attempting to provide more steps of gray,
pure red, pure green, and pure blue.

® c001l consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

2-621

colormap

Examples

2-622

copper varies smoothly from black to bright copper.

flag consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.

gray returns a linear grayscale colormap.

hot varies smoothly from black through shades of red, orange, and
yellow, to white.

hsv varies the hue component of the hue-saturation-value color
model. The colors begin with red, pass through yellow, green, cyan,
blue, magenta, and return to red. The colormap is particularly
appropriate for displaying periodic functions. hsv(m) is the same
as hsv2rgb([h ones(m,2)]) where h is the linear ramp, h =

(O:m 1) "' /m.

jet ranges from blue to red, and passes through the colors cyan,
yellow, and orange. It is a variation of the hsv colormap. The jet
colormap is associated with an astrophysical fluid jet simulation from
the National Center for Supercomputer Applications. See “Examples”
on page 2-622 on page -3.

lines produces a colormap of colors specified by the axes ColorOrder
property and a shade of gray.

pink contains pastel shades of pink. The pink colormap provides
sepia tone colorization of grayscale photographs.

prism repeats the six colors red, orange, yellow, green, blue, and
violet.

spring consists of colors that are shades of magenta and yellow.
summer consists of colors that are shades of green and yellow.
white 1s an all white monochrome colormap.

winter consists of colors that are shades of blue and green.

The images and colormaps demo, imagedemo, provides an introduction
to colormaps. Select Color Spiral from the menu. This uses the pcolor
function to display a 16-by-16 matrix whose elements vary from 0 to 255

colormap

in a rectilinear spiral. The hsv colormap starts with red in the center,
then passes through yellow, green, cyan, blue, and magenta before
returning to red at the outside end of the spiral. Selecting Colormap
Menu gives access to a number of other colormaps.

The rgbplot function plots colormap values. Try rgbplot(hsv),
rgbplot(gray), and rgbplot(hot).

The following commands display the flujet data using the jet
colormap:

load flujet
image (X)
colormap(jet)
2]
100
150
200

250

300

350

400
b0 100 150 200 250 300

The demos directory contains a CAT scan image of a human spine. To
view the image, type the following commands:

load spine

2-623

colormap

Algorithm

See Also

2-624

image (X)
colormap bone

&0

100

180

200

240

300

350

Each figure has its own colormap property. colormap is an M-file that
sets and gets this property.

brighten, caxis, colorbar, colormapeditor, contrast, hsv2rgb,
pcolor, rgbplot, rgh2hsv

The Colormap property of figure graphics objects
“Color Operations” on page 1-102 for related functions

“Coloring Mesh and Surface Plots” for information about colormaps
and other coloring methods

colormapeditor

Purpose
Syntax

Description

Start colormap editor
colormapeditor

colormapeditor displays the current figure’s colormap as a strip of
rectangular cells in the colormap editor. Node pointers are colored cells
below the colormap strip that indicate points in the colormap where
the rate of the variation of R, G, and B values changes. You can also
work in the HSV colorspace by setting the Interpolating Colorspace
selector to HSV.

You can also start the colormap editor by selecting Colormap from
the Edit menu.

Node Pointer Operations

You can select and move node pointers to change a range of colors in
the colormap. The color of a node pointer remains constant as you move
it, but the colormap changes by linearly interpolating the RGB values
between nodes.

Change the color at a node by double-clicking the node pointer. A color
picker box appears, from which you can select a new color. After you
select a new color at a node, the colors between nodes are reinterpolated.

Operation How to Perform

Add a node Click below the corresponding cell in
the colormap strip.

Select a node Left-click the node.

Select multiple nodes Adjacent: left-click first node,

Shift+click the last node.

Nonadjacent: left-click first node,
Ctrl+click subsequent nodes.

Move a node Select and drag with the mouse or
select and use the left and right arrow
keys.

2-625

colormapeditor

Operation How to Perform

Move multiple nodes Select multiple nodes and use the left
and right arrow keys to move nodes as
a group. Movement stops when one of
the selected nodes hits an unselected
node or an end node.

Delete a node Select the node and then press the
Delete key, or select Delete from the
Edit menu, or type Ctrl+x.

Delete multiple nodes Select the nodes and then press the
Delete key, or select Delete from the
Edit menu, or type Ctrl+x.

Display color picker for a Double-click the node pointer.
node

Current Color Info

When you put the mouse over a color cell or node pointer, the colormap
editor displays the following information about that colormap element:
¢ The element’s index in the colormap

¢ The value from the graphics object color data that is mapped to the
node’s color (i.e., data from the CData property of any image, patch,
or surface objects in the figure)

® The color’s RGB and HSV color value

2-626

colormapeditor

<} Colormap Editor -' =101 x|
File Edit Toolz Help

Colormap index for—_|
color cell

Object's cData for—-
colar cell

RGB and HSY====""

values of selected
colormap element

Data: 2.5570

B: 255 W 100

Colar Data Min-2.4832
nterpolating Cnlarspace:lRGEl vI —_—

Color Data Max|11.5417

v Immediate Apply Apply | (0]54 | Cancel Help

Interpolating Colorspace

The colorspace determines what values are used to calculate the colors
of cells between nodes. For example, in the RGB colorspace, internode
colors are calculated by linearly interpolating the red, green, and blue
intensity values from one node to the next. Switching to the HSV
colorspace causes the colormap editor to recalculate the colors between
nodes using the hue, saturation, and value components of the color
definition.

Note that when you switch from one colorspace to another, the color
editor preserves the number, color, and location of the node pointers,
which can cause the colormap to change.

2-627

colormapeditor

Examples

2-628

Interpolating in HSV. Since hue is conceptually mapped about a
color circle, the interpolation between hue values can be ambiguous.
To minimize this ambiguity, the interpolation uses the shortest
distance around the circle. For example, interpolating between

two nodes, one with hue of 2 (slightly orange red) and another

with a hue of 356 (slightly magenta red), does not result in hues
3,4,5...353,354,355 (orange/red-yellow-green-cyan-blue-magenta/red).
Taking the shortest distance around the circle gives 357,358,1,2
(orange/red-red-magenta/red).

Color Data Min and Max

The Color Data Min and Color Data Max text fields enable you to
specify values for the axes CLim property. These values change the
mapping of object color data (the CData property of images, patches,
and surfaces) to the colormap. See “Axes Color Limits — the CLim
Property” for discussion and examples of how to use this property.

This example modifies a default MATLAB colormap so that ranges of
data values are displayed in specific ranges of color. The graph is a slice
plane illustrating a cross section of fluid flow through a jet nozzle. See
the slice reference page for more information on this type of graph.

Example Objectives
The objectives are as follows:
¢ Regions of flow from left to right (positive data) are mapped to colors

from yellow through orange to dark red. Yellow is slowest and dark
red is the fastest moving fluid.

* Regions that have a speed close to zero are colored green.
¢ Regions where the fluid is actually moving right to left (negative

data) are shades of blue (darker blue is faster).

The following picture shows the desired coloring of the slice plane. The
colorbar shows the data to color mapping.

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23CLim

colormapeditor

Running the Example

Note If you are viewing this documentation in the MATLAB help
browser, you can display the graph used in this example by running this
M-file from the MATLAB editor (select Run from the Debug menu).

Initially, the default colormap (jet) colored the slice plane, as illustrated
in the following picture. Note that this example uses a colormap that is
48 elements to display wider bands of color (the default is 64 elements).

2-629

colormapeditor

1 Start the colormap editor using the colormapeditor command. The
color map editor displays the current figure’ s colormap, as shown
in the following picture.

2-630

colormapeditor

<} Colormap Editor

File Edit Toolz Help

=0l x|

|:2.4832

Current color info
Index: 18 R: 0 H: 179
CData: 2.4834 G: 255 5. 100
B: 255 Y. 100
Interpolating culurspace:IRGEl 'I sl
Color data mas: [11.5417

¥ Immediate apply Ok | Cancel | Apply |

Help

2 Since we want the regions of left-to-right flow (positive speed) to
range from yellow to dark red, we can delete the cyan node pointer.
To do this, first select it by clicking with the left mouse button and

press Delete. The colormap now looks like this.

2-631

colormapeditor

2-632

File

<} Colormap Editor

Edit Toolz Help

=0l x|

Current Color Info

Index: 10
CData: 01464

R 42
G 42
B 212

H: 238

g 80
Y 84

Interpolating CDIDrspace:IRGEI 'I

v Immediate Apply Apply

Color Data Min:

Colar Data Mas:|11.5417

Ok

Cancel |

':2.4832

Help

The Immediate Apply box is checked, so the graph displays the
results of the changes made to the colormap.

colormapeditor

3 We want the fluid speed values around zero to stand out, so we need
to find the color cell where the negative-to-positive transition occurs.
Dragging the cursor over the color strip enables you to read the data
values in the Current Color Info panel.

In this case, cell 10 is the first positive value, so we click below that

cell and create a node pointer. Double-clicking the node pointer
displays the color picker. Set the color of this node to green.

2-633

colormapeditor

<} Colormap Editor

File Edit Toolz Help

=0l x|

I'ﬁg ((I

Current Caolor Info

Index: 10 R: O H: 1149

CData: 0.1464 G: 245 g 100
B0 Y. 100

Colar Data Mas:|11.5417

v Immediate Apply Apply | [o]34 | Cancel |

Color Data Min:FE.dBSE
Interpolating CDIDrspace:IRGEI 'I [

Help

The graph continues to update to the modified colormap.

2-634

colormapeditor

4 In the current state, the colormap colors are interpolated from the
green node to the yellowish node about 20 cells away. We actually
want only the single cell that is centered around zero to be colored
green. To limit the color green to one cell, move the blue and yellow
node pointers next to the green pointer.

2-635

colormapeditor

+J). Colormap Editor =101 %]
File Edit Toolz Help

Current Colar Info

Index: 10 R: 0 H: 113

CData: 0.1464 G: 245 g 100
B0 Y. 100

Color Data Min:FE.dBSE
Interpolating CDIDrspace:IRGEI 'I [

Colar Data Masx:|11.5417

v Immediate Apply Apply | Ok | cancel | Help |

5 Before making further adjustments to the colormap, we need to move
the green cell so that it is centered around zero. Use the colorbar to
locate the green cell.

2-636

colormapeditor

Note that green cell is not
centered around zero.

To recenter the green cell around zero, select the blue, green, and
yellow node pointers (left-click blue, Shift+click yellow) and move
them as a group using the left arrow key. Watch the colorbar in the
figure window to see when the green color is centered around zero.

2-637

colormapeditor

+}). Colormap Editor : 10| =l

File Edit Tools Help

Current Color Info

Index: 9 R: 0 H: 113

CData: -0.1458 G: 255 g 100
B: 0 Y. 100

Color Data Min:FE.dBSE
Interpolating CDIDrspace:IRGEI 'I [

Colar Data Mas:|11.5417

v Immediate Apply Apply | Ok | cancel | Help |

The slice plane now has the desired range of colors for negative, zero,
and positive data.

2-638

colormapeditor

Green cell is now centered
around zero.

6 Increase the orange-red coloring in the slice by moving the red node
pointer toward the yellow node.

2-639

colormapeditor

<} Colormap Editor =101 x|

File Edit Tools Help

- —

Current Color Info

Index: 28 R: 255 H: 0

CData: 5.4058 1] g 100
B: 0 Y. 100

Color Data Min:FE.dBSE

Colar Data Masx:|11.5417

Interpolating CDIDrspace:IRGEI 'I

v Immediate Apply Apply | Ok | cancel | Help |

7 Darken the endpoints to bring out more detail in the extremes of the
data. Double-click the end nodes to display the color picker. Set the
red endpoint to the RGB value [50 0 0] and set the blue endpoint to
the RGB value [0 0 50].

The slice plane coloring now matches the example objectives.

2-640

colormapeditor

Saving the Modified Colormap

You can save the modified colormap using the colormap function or the
figure Colormap property.

After you have applied your changes, save the current figure colormap
in a variable:

mycmap = get(fig, 'Colormap'); % fig is figure
handle or use gcf

To use this colormap in another figure, set that figure’s Colormap
property:

set(new_fig, 'Colormap',mycmap)

To save your modified colormap in a MAT-file, use the save command to
save the mycmap workspace variable:

save('MyColormaps', 'mycmap')

2-641

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/figure_props.html%23Colormap

colormapeditor

See Also

2-642

To use your saved colormap in another MATLAB session, load the
variable into the workspace and assign the colormap to the figure:

load('MyColormaps', ‘'mycmap')
set(fig, 'Colormap',mycmap)

colormap, get, load, save, set
Color Operations for related functions

See “Colormaps” for more information on using MATLAB colormaps.

ColorSpec (Color Specification)

Purpose Color specification

Description ColorSpec is not a function; it refers to the three ways in which you
specify color for MATLAB graphics:

¢ RGB triple

¢ Short name

¢ Long name

The short names and long names are MATLAB strings that specify
one of eight predefined colors. The RGB triple is a three-element row
vector whose elements specify the intensities of the red, green, and blue

components of the color; the intensities must be in the range [0 1]. The
following table lists the predefined colors and their RGB equivalents.

RGB Value Short Name Long Name
[1 1 0] y yellow
[1 0 1] m magenta
[0 1 1] c cyan
[1 0 0] r red
[0 1 0] g green
[0 O 1] b blue
[1 1 1] w white
[0 O 0] k black
Remarks The eight predefined colors and any colors you specify as RGB values

are not part of a figure’s colormap, nor are they affected by changes to
the figure’s colormap. They are referred to as fixed colors, as opposed
to colormap colors.

Some high-level functions (for example, scatter) accept a colorspec as
an input argument and use it to set the CData of graphic objects they

2-643

ColorSpec (Color Specification)

Examples

See Also

2-644

create. When using such functions, take care not to specify a colorspec
in a property/value pair that sets CData; values for CData are always
n-length vectors or n-by-3 matrices, where n is the length of XData and
YData, never strings.

To change the background color of a figure to green, specify the color
with a short name, a long name, or an RGB triple. These statements
generate equivalent results:

whitebg('g"')

whitebg('green')
whitebg ([0 1 0]);

You can use ColorSpec anywhere you need to define a color. For
example, this statement changes the figure background color to pink:

set(gcf, 'Color',[1,0.4,0.6])

bar, bar3, colordef, colormap, fill, fill3, whitebg

“Color Operations” on page 1-102 for related functions

colperm

Purpose
Syntax

Description

Algorithm

Examples

Sparse column permutation based on nonzero count

colperm(S)

.
I}

j colperm(S) generates a permutation vector j such that the
columns of S(:,j) are ordered according to increasing count of nonzero
entries. This is sometimes useful as a preordering for LU factorization;
in this case use 1u(S(:,j)).

If S is symmetric, then j = colperm(S) generates a permutation j so
that both the rows and columns of S(j,j) are ordered according to
increasing count of nonzero entries. If S is positive definite, this is
sometimes useful as a preordering for Cholesky factorization; in this
case use chol(S(j,j)).

The algorithm involves a sort on the counts of nonzeros in each column.

The n-by-n arrowhead matrix

A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, 1u(A), is almost
completely full. The statement

j = colperm(A)

returns j = [2:n 1]. So A(j,j) sends the full row and column to the
bottom and the rear, and 1u(A(j,j)) has the same nonzero structure
as A itself.

On the other hand, the Bucky ball example,

B = bucky

has exactly three nonzero elements in each row and column, so j
= colperm(B) is the identity permutation and is no help at all for
reducing fill-in with subsequent factorizations.

2-645

colperm

See Also chol, colamd, lu, spparms, symamd, symrcm

2-646

comet

Purpose

GUI
Alternatives

Syntax

Description

Remarks

2-D comet plot

To graph selected variables, use the Plot Selector " in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs

in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

comet(y)

comet(x,y)
comet(x,y,p)

comet (axes_handle,...)

A comet graph is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

comet(y) displays a comet graph of the vector y.
comet(x,y) displays a comet graph of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults
to 0.1.

comet (axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

The trace left by comet is created by using an EraseMode of none, which
means you cannot print the graph (you get only the comet head), and it
disappears if you cause a redraw (e.g., by resizing the window).

2-647

comet

Examples Create a simple comet graph:
t = 0:.01:2*pi;
X = cos(2*t).*(cos(t)."2);

H
y sin(2*t).*(sin(t)."2);
comet(x,y);

See Also comet3

“Direction and Velocity Plots” on page 1-93 for related functions

2-648

comet3

Purpose

GUI
Alternatives

Syntax

Description

Remarks

3-D comet plot

To graph selected variables, use the Plot Selector " in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs

in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

comet3(z)

comet3(x,y,z)
comet3(x,y,z,p)
comet3(axes_handle,...)

A comet plot is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

comet3(z) displays a 3-D comet graph of the vector z.

comet3(x,y,z) displays a comet graph of the curve through the points
[x(i),y(i),z(1)].
comet3(x,y,z,p) specifies a comet body of length p*length(y).

comet3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

The trace left by comet3 is created by using an EraseMode of none,
which means you cannot print the graph (you get only the comet head),
and it disappears if you cause a redraw (e.g., by resizing the window).

2-649

comet3

Examples Create a 3-D comet graph.

t = -10*pi:pi/250:10*pi;
comet3((cos(2*t).”2).*sin(t), (sin(2*t)."2).*cos(t),t);

See Also comet

“Direction and Velocity Plots” on page 1-93 for related functions

2-650

commandhistory

Purpose

GUI
Alternatives

Syntax

Description

See Also

Open Command History window, or select it if already open

As an alternative to commandhistory, select Desktop > Command
History to open it, or Window > Command History to select it.

commandhistory

commandhistory opens the MATLAB Command History window when
it is closed, and selects the Command History window when it is open.
The Command History window presents a log of the statements most
recently run in the Command Window.

Timestamp marks the start of each session. Select it
to select all entries in the history for that session.

Click - to hide <} Command History
history for that File Edit [Debug Deskiop ‘Window Help
session. Click + __ Tom. ™= (0100003 10030 am = B
to expand. which collats

collatz(2)
Selectone ormore collatzplot (3]
lines and dbouit
right-click to copy, E-%-- 09/25/03 09:11 AN —-%
evaluate, or create— " load theta
a shortcut or an 17 =l
M-file from the 4
selection.

diary, prefdir, startup

MATLAB Desktop Tools and Development Environment Documentation

e “Recalling Previous Lines in the Command Window”

¢ “Command History Window”

2-651

commandwindow

Purpose

GUI
Alternatives

Syntax

Description

Remarks

See Also

2-652

Open Command Window, or select it if already open

As an alternative to commandwindow, select Desktop > Command
Window to open it, or Window > Command Window to select it.

commandwindow

commandwindow opens the MATLAB Command Window when it is
closed, and selects the Command Window when it is open.

To determine the number of columns and rows that display in the
Command Window, given its current size, use

get (0, 'CommandWindowSize")

The number of columns is based on the width of the Command Window.
With the matrix display width preference set to 80 columns, the number
of columns is always 80.

commandhistory, input, inputdlg

MATLAB Desktop Tools and Development Environment documentation

® “Opening and Arranging Tools”
¢ “Running Functions and Programs, and Entering Variables”

e “Preferences for the Command Window”

compan

Purpose Companion matrix
Syntax A = compan(u)
Description A = compan(u) returns the corresponding companion matrix whose

first row is -u(2:n) /u(1), where u is a vector of polynomial coefficients.
The eigenvalues of compan(u) are the roots of the polynomial.

Examples The polynomial (X — I(x-2)x+3) = x3-Tx+6 has a
companion matrix given by

u=1_[1 0 -7 6]

A = compan(u)

A =
0 7 -6
1 0 0
0 1 0

The eigenvalues are the polynomial roots:
eig(compan(u))
ans =
-3.0000

2.0000
1.0000

This is also roots(u).

See Also eig, poly, polyval, roots

2-653

compass

Purpose

GUI
Alternatives

Syntax

Description

2-654

Plot arrows emanating from origin

%

To graph selected variables, use the Plot Selector " in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs

in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

compass(U,V)

compass(Z)
compass(...,LineSpec)
compass(axes_handle,...)

h = compass(...)

A compass graph displays the vectors with components (U,V) as arrows
emanating from the origin. U, V, and Z are in Cartesian coordinates and
plotted on a circular grid.

compass(U,V) displays a compass graph having n arrows, where n is
the number of elements in U or V. The location of the base of each arrow
is the origin. The location of the tip of each arrow is a point relative to
the base and determined by [U(1),V(i)].

compass(Z) displays a compass graph having n arrows, where n is the
number of elements in Z. The location of the base of each arrow is the
origin. The location of the tip of each arrow is relative to the base as
determined by the real and imaginary components of Z. This syntax is
equivalent to compass(real(Z),imag(Z)).

compass(...,LineSpec) draws a compass graph using the line type,
marker symbol, and color specified by LineSpec.

compass(axes_handle, ...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

compass

h = compass(...) returns handles to line objects.

Examples Draw a compass graph of the eigenvalues of a matrix.

Z = eig(randn(20,20));
compass(Z)

270

See Also feather, LineSpec, quiver, rose
“Direction and Velocity Plots” on page 1-93 for related functions

“Compass Plots” for another example

2-655

complex

Purpose
Syntax

Description

2-656

Construct complex data from real and imaginary components

complex(a,b)

o
I}

c = complex(a,b) creates a complex output, c, from the two real
inputs.

c =a+ bi

The output is the same size as the inputs, which must be scalars or
equally sized vectors, matrices, or multi-dimensional arrays.

Note If b is all zeros, ¢ is complex and the value of all its imaginary
components is 0. In contrast, the result of the addition a+0i returns a
strictly real result.

The following describes when a and b can have different data types, and
the resulting data type of the output c:

e [f either of a or b has type single, ¢ has type single.

e [f either of a or b has an integer data type, the other must have the
same integer data type or type scalar double, and ¢ has the same
integer data type.

¢ = complex(a) for real a returns the complex result ¢ with real part
a and 0 as the value of all imaginary components. Even though the
value of all imaginary components is 0, ¢ is complex and isreal(c)
returns false.

The complex function provides a useful substitute for expressions such
as

a+ i*b or a+ j*b

complex

Example

See Also

in cases when the names “i” and

[TEE]
]

may be used for other variables

(and do not equal -'\l"—l), when a and b are not single or double, or
when b is all zero.

Create complex uint8 vector from two real uint8 vectors.

O O T o

abs,

uint8([1;2;3;4])
uint8([2;2;7;71])
complex(a,b)

1.0000 + 2.0000i
2.0000 + 2.0000i
3.0000 + 7.0000i
4.0000 + 7.0000i

angle, conj, i, imag, isreal, j, real

2-657

computer

Purpose

Syntax

Description

2-658

Information about computer on which MATLAB software is running

str = computer

[str,maxsize] = computer
[str,maxsize,endian] = computer
archstr = computer('arch')

str = computer returns the string str with the computer type on
which MATLAB software is running.

[str,maxsize] = computer returns the integer maxsize, which
contains the maximum number of elements allowed in an array with
this version of MATLAB software.

[str,maxsize,endian] = computer also returns either 'L’ for
little-endian byte ordering or 'B’ for big-endian byte ordering.

archstr = computer('arch') returns the string archstr which is the
architecture of the build platform. This string can be used for the term
arch in the mex command switch -<arch>.

The list of supported computers changes as new computers are added
and others become obsolete. A typical list follows.

32-bit Platforms

Computer str archstr | ispq isunixismac
GNUP® on x86 GLNX86 g1lnx86 0 1 0
Apple® Macintosh OS X MACI maci 0 1 1

on x86

Microsoft Windows on x86 | PCWIN win32 1 0 0

64-bit Platforms

Computer str archstr | ispc isunixismac
GNU Linux® on x86_64 GLNXAG4 glnxa64 0 1 0
(T:innv is a v‘ngicfpw:-r]

trademark of Linus
Torvalds.)

computer

Remarks

See Also

64-bit Platforms (Continued)

Computer str archstr | ispc isunixismac
Microsoft Windows on PCWING64 win64 1 0 0

x64

Sun Solaris™ on SPARC® | SOL64 s0l64 0 1 0

In some cases, both 32-bit and 64-bit versions of MATLAB can run on
the same platform. In this case, the value returned by computer reflects
which of these is running. For example, if you run a 32-bit version

of MATLAB on a Windows x64 platform, computer returns PCWIN,
indicating that the 32-bit version is running.

getenv, setenv, ispc, isunix, ismac

2-659

cond

Purpose

Syntax

Description

Algorithm

See Also

References

2-660

Condition number with respect to inversion

o
I}

cond (X)
cond(X,p)

o
I}

The condition number of a matrix measures the sensitivity of the
solution of a system of linear equations to errors in the data. It gives
an indication of the accuracy of the results from matrix inversion and
the linear equation solution. Values of cond (X) and cond(X,p) near 1
indicate a well-conditioned matrix.

¢ = cond(X) returns the 2-norm condition number, the ratio of the
largest singular value of X to the smallest.

¢ = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p

If p is... Then cond(X,p) returns the...

1 1-norm condition number

2 2-norm condition number

fro’ Frobenius norm condition number
inf Infinity norm condition number

The algorithm for cond (when p = 2) uses the singular value
decomposition, svd.

condeig, condest, norm, normest, rank, rcond, svd

[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack lug.html), Third
Edition, STAM, Philadelphia, 1999.

http://www.netlib.org/lapack/lug/lapack_lug.html

condeig

Purpose

Syntax

Description

See Also

Condition number with respect to eigenvalues

c = condeig(A)
[V,D,s] = condeig(A)

¢ = condeig(A) returns a vector of condition numbers for the
eigenvalues of A. These condition numbers are the reciprocals of the
cosines of the angles between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to

[V,D] = eig(A);
s = condeig(A);

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

balance, cond, eig

2-661

condest

Purpose

Syntax

Description

Algorithm

See Also

2-662

1-norm condition number estimate

c condest(A)
c condest(A,t)
[c,v] = condest(A)

¢ = condest(A) computes a lower bound C for the 1-norm condition
number of a square matrix A.

¢ = condest(A,t) changes t, a positive integer parameter equal to
the number of columns in an underlying iteration matrix. Increasing
the number of columns usually gives a better condition estimate but
increases the cost. The default is t = 2, which almost always gives an
estimate correct to within a factor 2.

[c,v] = condest(A) also computes a vector v which is an
approximate null vector if ¢ is large. v satisfies norm(A*v,1) =
norm(A,1)*norm(v,1)/c.

Note condest invokes rand. If repeatable results are required then
invoke rand('state',j), for some j, before calling this function.

This function is particularly useful for sparse matrices.

condest is based on the 1-norm condition estimator of Hager [1] and a
block oriented generalization of Hager’s estimator given by Higham and
Tisseur [2]. The heart of the algorithm involves an iterative search to

. -1 .) -1 ..
estimate ”‘d’L " 1 without computing A ~. This is posed as the convex,
but nondifferentiable, optimization problem

max "f!”-_1 j{”1 subject to”K":L =1

cond, norm, normest

condest

Reference [1] William W. Hager, “Condition Estimates,” SIAM <J. Sci. Stat.
Comput. 5,1984, 311-316, 1984.

[2] Nicholas J. Higham and Francoise Tisseur, “A Block Algorithm

for Matrix 1-Norm Estimation with an Application to 1-Norm
Pseudospectra, “SIAM J. Matrix Anal. Appl., Vol. 21, 1185-1201, 2000.

2-663

coneplot

Purpose

GUI
Alternatives

Syntax

Description

2-664

Plot velocity vectors as cones in 3-D vector field

1 =

——
P

To graph selected variables, use the Plot Selector " in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs

in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools and Development Environment documentation.

coneplot(X,Y,z,U,V,W,Cx,Cy,Cz)
coneplot(U,V,w,Cx,Cy,Cz)

coneplot(...,s)
coneplot(...,color)
coneplot(...,'quiver')
coneplot(..., 'method")
coneplot(X,Y,Z,U,V,W, 'nointerp')
coneplot(axes_handle,...)

h = coneplot(...)

coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) plots velocity vectors as cones
pointing in the direction of the velocity vector and having a length
proportional to the magnitude of the velocity vector.

® X, Y, Z define the coordinates for the vector field.

® U, V, W define the vector field. These arrays must be the same size,
monotonic, and 3-D plaid (such as the data produced by meshgrid).

® Cx, Cy, Cz define the location of the cones in the vector field. The
section “Specifying Starting Points for Stream Plots” in Visualization
Techniques provides more information on defining starting points.

coneplot

Remarks

coneplot(U,V,W,Cx,Cy,Cz) (omitting the X, Y, and Z arguments)
assumes [X,Y,Z] = meshgrid(1:n,1:m,1:p), where [m,n,p]=
size(U).

coneplot(...,s) automatically scales the cones to fit the graph and
then stretches them by the scale factor s. If you do not specify a value
for s, a value of 1 is used. Use s = 0 to plot the cones without automatic
scaling.

coneplot(...,color) interpolates the array color onto the vector
field and then colors the cones according to the interpolated values. The
size of the color array must be the same size as the U, V, W arrays. This
option works only with cones (i.e., not with the quiver option).

coneplot(..., 'quiver') draws arrows instead of cones (see quiver3
for an i1llustration of a quiver plot).

coneplot(..., 'method') specifies the interpolation method to use.
method can be linear, cubic, or nearest. linear is the default. (See
interp3 for a discussion of these interpolation methods.)

coneplot(X,Y,Z,U,V,W, 'nointerp') does not interpolate the positions
of the cones into the volume. The cones are drawn at positions defined
by X, Y, Z and are oriented according to U, V, W. Arrays X, Y, Z, U, V, W
must all be the same size.

coneplot(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = coneplot(...) returns the handle to the patch object used to
draw the cones. You can use the set command to change the properties
of the cones.

coneplot automatically scales the cones to fit the graph, while keeping
them in proportion to the respective velocity vectors.

It is usually best to set the data aspect ratio of the axes before calling
coneplot. You can set the ratio using the daspect command.

daspect([1,1,1])

2-665

coneplot

Examples

2-666

This example plots the velocity vector cones for vector volume data
representing the motion of air through a rectangular region of space.
The final graph employs a number of enhancements to visualize the
data more effectively:

® (Cone plots indicate the magnitude and direction of the wind velocity.

e Slice planes placed at the limits of the data range provide a visual
context for the cone plots within the volume.

® Directional lighting provides visual cues to the orientation of the
cones.

® View adjustments compose the scene to best reveal the information
content of the data by selecting the view point, projection type, and
magnification.

1. Load and Inspect Data

The winds data set contains six 3-D arrays: u, v, and w specify the vector
components at each of the coordinates specified in x, y, and z. The
coordinates define a lattice grid structure where the data is sampled
within the volume.

It is useful to establish the range of the data to place the slice planes
and to specify where you want the cone plots (min, max).

load wind
xmin = min(x(
xmax = max(X(
ymin = min(y(
(y(
(z(

);
);
);
);
)

H

ymax = max
zmin = min

~—~ — — ~— ~—

2. Create the Cone Plot

® Decide where in data space you want to plot cones. This example
selects the full range of x and y in eight steps and the range 3 to 15 in
four steps in z (linspace, meshgrid).

coneplot

e Use daspect to set the data aspect ratio of the axes before calling
coneplot to automatically determine the proper size of the cones.

* Draw the cones, setting the scale factor to 5 to make the cones larger
than the default size.

® Set the coloring of each cone (FaceColor, EdgeColor).

daspect([2,2,1])

xrange = linspace(xmin,xmax,8);

yrange = linspace(ymin,ymax,8);

zrange 3:4:15;

[cx cy cz] = meshgrid(xrange,yrange,zrange);
hcones = coneplot(x,y,z,u,v,w,CcXx,Cy,Cz,5);
set(hcones, 'FaceColor', 'red', 'EdgeColor', 'none')

3. Add the Slice Planes

¢ (Calculate the magnitude of the vector field (which represents wind
speed) to generate scalar data for the slice command.

¢ (Create slice planes along the x-axis at xmin and xmax, along the
y-axis at ymax, and along the z-axis at zmin.

® Specify interpolated face color so the slice coloring indicates wind
speed, and do not draw edges (hold, slice, FaceColor, EdgeColor).

hold on

wind_speed = sqrt(u.”2 + v."2 + w."2);

hsurfaces = slice(x,y,z,wind_speed, [xmin,xmax],ymax,zmin);
set(hsurfaces, 'FaceColor', 'interp', 'EdgeColor', 'none')
hold off

4, Define the View

¢ Use the axis command to set the axis limits equal to the range of
the data.

® Orient the view to azimuth = 30 and elevation = 40. (rotate3dis a
useful command for selecting the best view.)

2-667

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23FaceColor
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23EdgeColor

coneplot

2-668

® Select perspective projection to provide a more realistic looking
volume (camproj).

e Zoom in on the scene a little to make the plot as large as possible
(camzoom).

axis tight; view(30,40); axis off
camproj perspective; camzoom(1.5)

5. Add Lighting to the Scene

The light source affects both the slice planes (surfaces) and the cone
plots (patches). However, you can set the lighting characteristics of
each independently:

® Add a light source to the right of the camera and use Phong lighting
to give the cones and slice planes a smooth, three-dimensional
appearance (camlight, lighting).

® Increase the value of the AmbientStrength property for each slice
plane to improve the visibility of the dark blue colors. (Note that
you can also specify a different colormap to change the coloring of
the slice planes.)

¢ Increase the value of the DiffuseStrength property of the cones to
brighten particularly those cones not showing specular reflections.

camlight right; lighting phong
set(hsurfaces, 'AmbientStrength', .6)
set(hcones, 'DiffuseStrength',.8)

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/surface_props.html%23AmbientStrength
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/patch_props.html%23DiffuseStrength

coneplot

See Also isosurface, patch, reducevolume, smooth3, streamline, stream2,
stream3, subvolume

“Volume Visualization” on page 1-106 for related functions

2-669

conj

Purpose Complex conjugate
Syntax ZC = conj(2)
Description ZC = conj(Z) returns the complex conjugate of the elements of Z.

Algorithm If Z is a complex array:

conj(Z) = real(z) - i*imag(Z)

See Also i, i, imag, real

2-670

continue

Purpose
Syntax

Description

Examples

See Also

Pass control to next iteration of for or while loop
continue

continue passes control to the next iteration of the for or while loop

in which it appears, skipping any remaining statements in the body of
the loop. The same holds true for continue statements in nested loops.

That is, execution continues at the beginning of the loop in which the
continue statement was encountered.

The example below shows a continue loop that counts the lines of
code in the file magic.m, skipping all blank lines and comments. A
continue statement is used to advance to the next line in magic.m
without incrementing the count whenever a blank line or comment
line is encountered.

fid = fopen('magic.m','r");
count = 0O;
while ~feof (fid)
line = fgetl(fid);
if isempty(line) | strncmp(line,'S',1)
continue
end
count = count + 1;
end
disp(sprintf('sd lines',count));

for, while, end, break, return

2-671

contour

Purpose

GUI
Alternatives

Syntax

Description

2-672

Contour plot of matrix

{t=)]
Q

©&

To graph selected variables, use the Plot Selector " in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs

in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools and Development Environment documentation.

contour(2)

contour(Z,n)

contour(zZ,v)
contour(X,Y,Z)
contour(X,Y,Z,n)
contour(X,Y,Z,v)
contour(...,LineSpec)
contour(axes_handle,...)
[C,h] = contour(...)
[C,h] = contour('ve',...)

A contour plot displays isolines of matrix Z. Label the contour lines
using clabel.

contour(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to the x-y plane. Z must be at least a 2-by-2 matrix
that contains at least two different values. The number of contour lines
and the values of the contour lines are chosen automatically based on
the minimum and maximum values of Z. The ranges of the x- and y-axis
are [1:n] and [1:m], where [m,n] = size(Z).

contour(Z,n) draws a contour plot of matrix Z with n contour levels.

contour(Z,v) draws a contour plot of matrix Z with contour lines
at the data values specified in the monotonically increasing vector v.
The number of contour levels is equal to 1length(v). To draw a single

confour

contour of level i, use contour(Z,[i i]). Specifying the vector v sets
the LevellListMode to manual to allow user control over contour levels.
See contourgroup properties for more information.

contour(X,Y,Z), contour(X,Y,Z,n), and contour(X,Y,Z,v) draw
contour plots of Z using X and Y to determine the x- and y-axis limits.
When X and Y are matrices, they must be the same size as Z and must
be monotonically increasing.

contour(...,LineSpec) draws the contours using the line type and
color specified by LineSpec. contour ignores marker symbols.

contour(axes_handle, ...) plots into axes gerkaxes_handle instead
of gca.

[C,h] = contour(...) returns a contour matrix, C, derived from the
matrix returned by the low-level contourc function, and a handle, h, to
a contourgroup object. clabel uses the contour matrix C to create the
labels. (See descriptions of contourgroup properties.)

Backward Compatibility

[C,h] = contour('v6e',...)returns the contour matrix C, as
calculated by the function contourc and used by clabel, a vector of
handles h to patch graphics objects instead of a contourgroup object, for
compatibility with MATLAB Version 6.5 and earlier. When called with
the 'v6' flag, contour creates patch graphics objects, unless you specify
a LineSpec, in which case contour creates line graphics objects. In this
case, contour lines are not mapped to colors in the figure colormap, but
are colored using the colors defined in the axes ColorOrder property. If
you do not specify a LineSpec argument, the figure colormap and the
color limits (caxis) control the color of the contour lines (patch objects).

Note The v6 option enables users of MATLAB Version 7.x to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

2-673

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ColorOrder

contour

Remarks Use contourgroup object properties to control the contour plot
appearance.

If X or Y is irregularly spaced, contour calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.
Examples Contour Plot of a Function

Create a contour plot of the peaks function using the contour matrix
and contourgroup object handle as output.

[C,h] = contour(peaks(20),10);
colormap autumn

3 T T T | T T T

25F

151

0.5

\5!9

-n.2

2-674

confour

See Also

Smoothing Contour Data

Use interp2 to create smoother contours. Also set the contour label
text BackgroundColor to a light yellow and the EdgeColor to light gray.

Z = peaks;

[C,h] = contour(interp2(Z,4));

text_handle = clabel(C,h);

set(text_handle, 'BackgroundColor',[1 1 .6],...
'Edgecolor',[.7 .7 .71])

T T T T T T T
TOOF o |
B
GO0 - aQ i = |
0 %)
2 & s
500 2 = -
fer]
W
! =)
400 t\ e
-2
!‘b
300 % —
0 _4 2 s}
20| N]
&
.d'b' tl:u
A"

- F_/’/ ;

&
1 =l 1 1 1 1 1
100 200 300 400 500 500 700

For more examples using contour, see “Contour Plots”.

clabel, contourf, contour3, contourc, quiver

2-675

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/text_props.html%23BackgroundColor
file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/text_props.html%23EdgeColor

contour

“Contour Plots” for related functions and more examples

contourgroup properties for related properties

2-676

contour3d

Purpose

GUI
Alternatives

Syntax

Description

3-D contour plot

To graph selected variables, use the Plot Selector " in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs

in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools and Development Environment documentation.

contour3(2)

contour3(Z,n)
contour3(Z,v)
contour3(X,Y,Z)
contour3(X,Y,Z,n)
contour3(X,Y,Z,v)
contour3(...,LineSpec)
contour3(axes_handle,...)
[C,h] = contour3(...)

contour3 creates a 3-D contour plot of a surface defined on a
rectangular grid.

contour3(Z) draws a contour plot of matrix Z in a 3-D view. Z is
interpreted as heights with respect to the x-y plane. Z must be at least a
2-by-2 matrix that contains at least two different values. The number of
contour levels and the values of contour levels are chosen automatically
based on the minimum and maximum values of Z. The ranges of the x-
and y-axis are [1:n] and [1:m], where [m,n] = size(Z).

contour3(Z,n) draws a contour plot of matrix Z with n contour levels
in a 3-D view.

contour3(Z,v) draws a contour plot of matrix Z with contour lines at
the values specified in vector v. The number of contour levels is equal
to length(v). To draw a single contour of level i, use contour(Z,[i

2-677

contour3

Remarks

Examples

2-678

i]). Specifying the vector v sets the LevelListMode to manual to
allow user control over contour levels. See contourgroup properties
for more information.

contour3(X,Y,Z), contour3(X,Y,Z,n), and contour3(X,Y,Z,v) draw
contour plots of Z using X and Y to determine the x- and y-axis limits. If
X 1s a matrix, X(1,:) defines the x-axis. If Y is a matrix, Y(:,1) defines
the y-axis. When X and Y are matrices, they must be the same size as Z
and must be monotonically increasing.

contour3(...,LineSpec) draws the contour lines using the line type
and color specified by LineSpec. contour3 ignores marker symbols.

contour3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

[C,h] = contour3(...) returns a contour matrix C, derived from the
matrix returned by the low-level contourc function, and a handle,

h, to a contourgroup object containing handles to graphics objects.
contour3 creates patch graphics objects unless you specify LineSpec,
in which case contour3 creates 1ine graphics objects.

If X or Y is irregularly spaced, contour3 calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

If you do not specify LineSpec, the functions colormap and caxis
control the color.

Label the contour lines using clabel.

contour3(...) works the same as contour(...) with these
exceptions:

® The contours are drawn at their corresponding Z level.

® Multiple patch objects are created instead of a contourgroup.

¢ (Calling contour3 with trailing property-value pairs is not allowed.

Plot the three-dimensional contour of a function and superimpose a
surface plot to enhance visualization of the function.

contour3d

See Also

[X,Y] = meshgrid([-2:.25:2]);

Z = X.*exp(-X."2-Y."2);

contour3(X,Y,Z,30)

surface(X,Y,Z, 'EdgeColor',[.8 .8 .8], 'FaceColor', 'none')
grid off

view(-15,25)

colormap cool

0.5

-o5 0O

27, 45

For more examples using contour3, see “Contour Plots”.

contour, contourc, contourf, meshc, meshgrid, surfc
“Contour Plots” section for more examples

contourgroup properties for related properties

2-679

confourc

Purpose

Syntax

Description

Remarks

2-680

Low-level contour plot computation

= contourc
= contourc
= contourc
= contourc
= contourc
= contourc

)

z
Z,n
Z,V
X;Y,2Z)
X,Y,Z,n
X,Y,2Z,V)

)

OOOOOOO

(
(
(
(
(
(

))
contourc calculates the contour matrix C used by contour, contour3,
and contourf. The values in Z determine the heights of the contour
lines with respect to a plane. The contour calculations use a regularly
spaced grid determined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix Z,
where Z must be at least a 2-by-2 matrix. The contours are isolines
in the units of Z. The number of contour lines and the corresponding
values of the contour lines are chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour
levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines
at the values specified in vector v. The length of v determines the
number of contour levels. To compute a single contour of level i, use
contourc(Z,[i 1i]).

C = contourc(x,y,Z), C = contourc(x,y,Z,n), and C =
contourc(x,y,Z,v) compute contours of Z using vectors x and y to
determine the x- and y-axis limits. x and y must be monotonically
increasing.

C is a two-row matrix specifying all the contour lines. Each contour
line defined in matrix C begins with a column that contains the value
of the contour (specified by v and used by clabel), and the number of
(x,y) vertices in the contour line. The remaining columns contain the
data for the (x,y) pairs.

C = [valueixdata(1)xdata(2)..value2xdata(1)xdata(2)...;

contourc

See Also

dimiydata(1)ydata(2)...dim2 ydata(1)ydata(2)...]

Specifying irregularly spaced x and y vectors is not the same as
contouring irregularly spaced data. If x or y is irregularly spaced,
contourc calculates contours using a regularly spaced contour grid,
then transforms the data to x or y.

clabel, contour, contour3, contourf
“Contour Plots” on page 1-93 for related functions

“The Contouring Algorithm” for more information

2-681

contourf

Purpose

GUI
Alternatives

Syntax

Description

2-682

Filled 2-D contour plot

To graph selected variables, use the Plot Selector " in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs

in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools and Development Environment documentation.

contourf(2)

contourf(Z,n)

contourf(Z,v)

contourf(X,Y,Z)
contourf(X,Y,Z,n)
contourf(X,Y,Z,v)
contourf(...,LineSpec)
contourf(axes_handle,...)
[C,h] = contourf(...)
[C,h,CF] = contourf('v6e',...)

A filled contour plot displays isolines calculated from matrix Z and
fills the areas between the isolines using constant colors corresponding
to the current figure’s colormap.

contourf(Z) draws a filled contour plot of matrix Z, where Z is
interpreted as heights with respect to the x-y plane. Z must be at
least a 2-by-2 matrix that contains at least two different values. The
number of contour lines and the values of the contour lines are chosen
automatically based on the minimum and maximum values of Z. The
ranges of the x- and y-axis are [1:n] and [1:m], where [m,n] =
size(Z).

contourf(Z,n) draws a filled contour plot of matrix Z with n contour
levels.

contourf

contourf(Z,v) draws a filled contour plot of matrix Z with contour
lines at the data values specified in the monotonically increasing vector
v. The number of contour levels is equal to length(v). To draw a single
contour of level i, use contour(Z,[i i]). Specifying the vector v sets
the LevellListMode to manual to allow user control over contour levels.
See contourgroup properties for more information.

contourf(X,Y,Z), contourf(X,Y,Z,n), and contourf(X,Y,Z,v) draw
filled contour plots of Z using X and Y to determine the x- and y-axis
limits. When X and Y are matrices, they must be the same size as Z and
must be monotonically increasing.

contourf(...,LineSpec) draws the contour lines using the line type
and color specified by LineSpec. contourf ignores marker symbols.

contourf(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

[C,h] = contourf(...) returns a contour matrix C, derived from the
matrix returned by the low-level contourc function, and a handle, h, to
a contourgroup object containing the filled contours. clabel uses the
contour matrix C to create the labels. (See descriptions of contourgroup
properties.)

Backward Compatibility

[C,h,CF] = contourf('v6',...) returns the contour matrix C, as
calculated by the function contourc and used by clabel, a vector of
handles h to patch graphics objects (instead of a contourgroup object,
for compatibility with MATLAB Version 6.5 and earlier) and a contour
matrix CF for the filled areas. When called with the 'v6' flag, contourf
creates patch graphics objects, unless you specify a LineSpec. In this
case, contour creates line graphics objects and colors them using the
colors defined in the axes ColorOrder property. If you do not specify a
LineSpec argument, the figure colormap and the color limits (caxis)
control the color of the contour lines (patch objects).

2-683

file:///B:/matlab/doc/src/toolbox/matlab/matlab_ref/ref/axes_props.html%23ColorOrder

contourf

Remarks

Examples

2-684

Note The v6 option enables users of MATLAB Version 7.x to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Use contourgroup object properties to control the filled contour plot
appearance.

Label the contour lines using clabel.

NaNs in the Z-data leave white holes with black borders in the contour
plot.

If X or Y is irregularly spaced, contourf calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

Create a filled contour plot of the peaks function with contour matrix
and contourgroup object handle as output and autumn colormap.

[C,h] = contourf(peaks(20),10);
colormap autumn

contourf

2 4 B 8 10 12 14 16 18

For more examples using contourf, see “Contour Plots”.

See Also clabel, contour, contour3, contourc, quiver
“Contour Plots” for related functions and more examples

contourgroup properties for related properties

20

2-685

Contourgroup Properties

Purpose

Modifying
Properties

Contourgroup
Property
Descriptions

2-686

Define contourgroup properties

You can set and query graphics object properties using the set and get

commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for contourgroup objects.

See “Plot Objects” for more information on contourgroup objects.

This section provides a description of properties. Curly braces { } enclose

default values.

Annotation
hg.Annotation object Read Only

Control the display of contourgroup objects in legends. The
Annotation property enables you to specify whether this

contourgroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an

hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
contourgroup object is displayed in a figure legend:

IconDispIayStyIé Purpose

Value

on Include the contourgroup object in a legend
as one entry, but not its children objects

off Do not include the contourgroup or its
children in a legend (default)

children Include only the children of the contourgroup
as separate entries in the legend

Contourgroup Properties

Setting the IconDisplayStyle Property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj, 'Annotation');
hLegendEntry = get(hAnnotation, 'LegendInformation');
set(hLegendEntry, 'IconDisplayStyle', 'children')

Using the IconDisplayStyle Property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in

the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

2-687

Contourgroup Properties

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs

at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

e cancel — Discard the event that attempted to execute a second
callback routine.

® queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

® A string that is a valid MATLAB expression

¢ The name of an M-file

¢ A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

2-688

Contourgroup Properties

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set (0, 'ShowHiddenHandles', 'on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

ContourMatrix
2-by-n matrix Read Only

A two-row matrix specifying all the contour lines. Each contour
line defined in the ContourMatrix begins with a column that
contains the value of the contour (specified by the LevellList
property and is used by clabel), and the number of (x,y) vertices
in the contour line. The remaining columns contain the data for
the (x,y) pairs:

C = [valuel xdata(1) xdata(2)...value2 xdata(1) xdata(2)...;
dim1 ydata(1) ydata(2)... dim2 ydata(1) ydata(2)...

That is,
C = [C(1) C(2)...C(I)...C(N)]
where N is the number of contour levels, and

C(i) = [level(i) x(1) x(2)...x(numel(i));

2-689

Contourgroup Properties

2-690

numel(i) y(1) y(2)...y(numel(i))];

For further information, see The Contouring Algorithm.

CreateFcn

string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y, 'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn

string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

Contourgroup Properties

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this contourgroup object. The legend
function uses the string defined by the DisplayName property to
label this contourgroup object in the legend.

¢ If you specify string arguments with the legend function,
DisplayName is set to this contourgroup object’s corresponding
string and that string is used for the legend.

e If DisplayName is empty, legend creates a string of the form,
['data' n], where n 1s the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

¢ Ifyou edit the string directly in an existing legend, DisplayName
is set to the edited string.

¢ If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

¢ To add programmatically a legend that uses the DisplayName
string, call 1legend with the toggle or show option.
See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

2-691

Contourgroup Properties

2-692

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine

Contourgroup Properties

Fill

layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

{off} | on

Color spaces between contour lines. By default, contour draws
only the contour lines of the surface. If you set Fill to on, contour
colors the regions in between the contour lines according to the
Z-value of the region and changes the contour lines to black.

HandleVisibility

{on} | callback | off

Conirol access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in

its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

® on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

2-693

Contourgroup Properties

2-694

e off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, cl1f, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity
Handles that are hidden are still valid. If you know an object’s

handle, you can set and get its properties and pass it to any
function that operates on handles.

Contourgroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest

is of f, clicking this object selects the object below it (which 1s
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

e Select by clicking lines or markers (default).

e Select by clicking anywhere in the extent of the plot.

When HitTestArea is of f, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

2-695

Contourgroup Properties

2-696

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows a